/* Copyright (C) 2000 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* These functions handle keyblock cacheing for ISAM and MyISAM tables. One cache can handle many files. It must contain buffers of the same blocksize. init_key_cache() should be used to init cache handler. The free list (free_block_list) is a stack like structure. When a block is freed by free_block(), it is pushed onto the stack. When a new block is required it is first tried to pop one from the stack. If the stack is empty, it is tried to get a never-used block from the pool. If this is empty too, then a block is taken from the LRU ring, flushing it to disk, if neccessary. This is handled in find_key_block(). With the new free list, the blocks can have three temperatures: hot, warm and cold (which is free). This is remembered in the block header by the enum BLOCK_TEMPERATURE temperature variable. Remembering the temperature is neccessary to correctly count the number of warm blocks, which is required to decide when blocks are allowed to become hot. Whenever a block is inserted to another (sub-)chain, we take the old and new temperature into account to decide if we got one more or less warm block. blocks_unused is the sum of never used blocks in the pool and of currently free blocks. blocks_used is the number of blocks fetched from the pool and as such gives the maximum number of in-use blocks at any time. */ #include "mysys_priv.h" #include #include "my_static.h" #include #include #include /* Some compilation flags have been added specifically for this module to control the following: - not to let a thread to yield the control when reading directly from key cache, which might improve performance in many cases; to enable this add: #define SERIALIZED_READ_FROM_CACHE - to set an upper bound for number of threads simultaneously using the key cache; this setting helps to determine an optimal size for hash table and improve performance when the number of blocks in the key cache much less than the number of threads accessing it; to set this number equal to add #define MAX_THREADS - to substitute calls of pthread_cond_wait for calls of pthread_cond_timedwait (wait with timeout set up); this setting should be used only when you want to trap a deadlock situation, which theoretically should not happen; to set timeout equal to seconds add #define KEYCACHE_TIMEOUT - to enable the module traps and to send debug information from key cache module to a special debug log add: #define KEYCACHE_DEBUG the name of this debug log file can be set through: #define KEYCACHE_DEBUG_LOG if the name is not defined, it's set by default; if the KEYCACHE_DEBUG flag is not set up and we are in a debug mode, i.e. when ! defined(DBUG_OFF), the debug information from the module is sent to the regular debug log. Example of the settings: #define SERIALIZED_READ_FROM_CACHE #define MAX_THREADS 100 #define KEYCACHE_TIMEOUT 1 #define KEYCACHE_DEBUG #define KEYCACHE_DEBUG_LOG "my_key_cache_debug.log" */ #define STRUCT_PTR(TYPE, MEMBER, a) \ (TYPE *) ((char *) (a) - offsetof(TYPE, MEMBER)) /* types of condition variables */ #define COND_FOR_REQUESTED 0 #define COND_FOR_SAVED 1 #define COND_FOR_READERS 2 typedef pthread_cond_t KEYCACHE_CONDVAR; /* descriptor of the page in the key cache block buffer */ struct st_keycache_page { int file; /* file to which the page belongs to */ my_off_t filepos; /* position of the page in the file */ }; /* element in the chain of a hash table bucket */ struct st_hash_link { struct st_hash_link *next, **prev; /* to connect links in the same bucket */ struct st_block_link *block; /* reference to the block for the page: */ File file; /* from such a file */ my_off_t diskpos; /* with such an offset */ uint requests; /* number of requests for the page */ }; /* simple states of a block */ #define BLOCK_ERROR 1 /* an error occured when performing disk i/o */ #define BLOCK_READ 2 /* the is page in the block buffer */ #define BLOCK_IN_SWITCH 4 /* block is preparing to read new page */ #define BLOCK_REASSIGNED 8 /* block does not accept requests for old page */ #define BLOCK_IN_FLUSH 16 /* block is in flush operation */ #define BLOCK_CHANGED 32 /* block buffer contains a dirty page */ /* page status, returned by find_key_block */ #define PAGE_READ 0 #define PAGE_TO_BE_READ 1 #define PAGE_WAIT_TO_BE_READ 2 /* block temperature determines in which (sub-)chain the block currently is */ enum BLOCK_TEMPERATURE { BLOCK_COLD /*free*/ , BLOCK_WARM , BLOCK_HOT }; /* key cache block */ struct st_block_link { struct st_block_link *next_used, **prev_used; /* to connect links in the LRU chain (ring) */ struct st_block_link *next_changed, **prev_changed; /* for lists of file dirty/clean blocks */ struct st_hash_link *hash_link; /* backward ptr to referring hash_link */ KEYCACHE_WQUEUE wqueue[2]; /* queues on waiting requests for new/old pages */ uint requests; /* number of requests for the block */ byte *buffer; /* buffer for the block page */ uint offset; /* beginning of modified data in the buffer */ uint length; /* end of data in the buffer */ uint status; /* state of the block */ enum BLOCK_TEMPERATURE temperature; /* block temperature: cold, warm, hot */ uint hits_left; /* number of hits left until promotion */ ulonglong last_hit_time; /* timestamp of the last hit */ KEYCACHE_CONDVAR *condvar; /* condition variable for 'no readers' event */ }; KEY_CACHE dflt_key_cache_var; KEY_CACHE *dflt_key_cache= &dflt_key_cache_var; #define FLUSH_CACHE 2000 /* sort this many blocks at once */ static int flush_all_key_blocks(KEY_CACHE *keycache); #ifdef THREAD static void link_into_queue(KEYCACHE_WQUEUE *wqueue, struct st_my_thread_var *thread); static void unlink_from_queue(KEYCACHE_WQUEUE *wqueue, struct st_my_thread_var *thread); #endif static void free_block(KEY_CACHE *keycache, BLOCK_LINK *block); #ifndef DBUG_OFF static void test_key_cache(KEY_CACHE *keycache, const char *where, my_bool lock); #endif #define KEYCACHE_HASH(f, pos) \ (((ulong) ((pos) >> keycache->key_cache_shift)+ \ (ulong) (f)) & (keycache->hash_entries-1)) #define FILE_HASH(f) ((uint) (f) & (CHANGED_BLOCKS_HASH-1)) #define DEFAULT_KEYCACHE_DEBUG_LOG "keycache_debug.log" #if defined(KEYCACHE_DEBUG) && ! defined(KEYCACHE_DEBUG_LOG) #define KEYCACHE_DEBUG_LOG DEFAULT_KEYCACHE_DEBUG_LOG #endif #if defined(KEYCACHE_DEBUG_LOG) static FILE *keycache_debug_log=NULL; static void keycache_debug_print _VARARGS((const char *fmt,...)); #define KEYCACHE_DEBUG_OPEN \ if (!keycache_debug_log) \ { \ keycache_debug_log= fopen(KEYCACHE_DEBUG_LOG, "w"); \ (void) setvbuf(keycache_debug_log, NULL, _IOLBF, BUFSIZ); \ } #define KEYCACHE_DEBUG_CLOSE \ if (keycache_debug_log) \ { \ fclose(keycache_debug_log); \ keycache_debug_log= 0; \ } #else #define KEYCACHE_DEBUG_OPEN #define KEYCACHE_DEBUG_CLOSE #endif /* defined(KEYCACHE_DEBUG_LOG) */ #if defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG) #define KEYCACHE_DBUG_PRINT(l, m) \ { if (keycache_debug_log) fprintf(keycache_debug_log, "%s: ", l); \ keycache_debug_print m; } #define KEYCACHE_DBUG_ASSERT(a) \ { if (! (a) && keycache_debug_log) fclose(keycache_debug_log); \ assert(a); } #else #define KEYCACHE_DBUG_PRINT(l, m) DBUG_PRINT(l, m) #define KEYCACHE_DBUG_ASSERT(a) DBUG_ASSERT(a) #endif /* defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG) */ #if defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF) #ifdef THREAD static long keycache_thread_id; #define KEYCACHE_THREAD_TRACE(l) \ KEYCACHE_DBUG_PRINT(l,("|thread %ld",keycache_thread_id)) #define KEYCACHE_THREAD_TRACE_BEGIN(l) \ { struct st_my_thread_var *thread_var= my_thread_var; \ keycache_thread_id= thread_var->id; \ KEYCACHE_DBUG_PRINT(l,("[thread %ld",keycache_thread_id)) } #define KEYCACHE_THREAD_TRACE_END(l) \ KEYCACHE_DBUG_PRINT(l,("]thread %ld",keycache_thread_id)) #else /* THREAD */ #define KEYCACHE_THREAD_TRACE(l) KEYCACHE_DBUG_PRINT(l,("")) #define KEYCACHE_THREAD_TRACE_BEGIN(l) KEYCACHE_DBUG_PRINT(l,("")) #define KEYCACHE_THREAD_TRACE_END(l) KEYCACHE_DBUG_PRINT(l,("")) #endif /* THREAD */ #else #define KEYCACHE_THREAD_TRACE_BEGIN(l) #define KEYCACHE_THREAD_TRACE_END(l) #define KEYCACHE_THREAD_TRACE(l) #endif /* defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF) */ #define BLOCK_NUMBER(b) \ ((uint) (((char*)(b)-(char *) keycache->block_root)/sizeof(BLOCK_LINK))) #define HASH_LINK_NUMBER(h) \ ((uint) (((char*)(h)-(char *) keycache->hash_link_root)/sizeof(HASH_LINK))) #if (defined(KEYCACHE_TIMEOUT) && !defined(__WIN__)) || defined(KEYCACHE_DEBUG) static int keycache_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex); #else #define keycache_pthread_cond_wait pthread_cond_wait #endif #if defined(KEYCACHE_DEBUG) static int keycache_pthread_mutex_lock(pthread_mutex_t *mutex); static void keycache_pthread_mutex_unlock(pthread_mutex_t *mutex); static int keycache_pthread_cond_signal(pthread_cond_t *cond); #else #define keycache_pthread_mutex_lock pthread_mutex_lock #define keycache_pthread_mutex_unlock pthread_mutex_unlock #define keycache_pthread_cond_signal pthread_cond_signal #endif /* defined(KEYCACHE_DEBUG) */ static inline uint next_power(uint value) { return (uint) my_round_up_to_next_power((uint32) value) << 1; } /* Initialize a key cache SYNOPSIS init_key_cache() keycache pointer to a key cache data structure key_cache_block_size size of blocks to keep cached data use_mem total memory to use for the key cache division_limit division limit (may be zero) age_threshold age threshold (may be zero) RETURN VALUE number of blocks in the key cache, if successful, 0 - otherwise. NOTES. if keycache->key_cache_inited != 0 we assume that the key cache is already initialized. This is for now used by myisamchk, but shouldn't be something that a program should rely on! It's assumed that no two threads call this function simultaneously referring to the same key cache handle. */ int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, ulong use_mem, uint division_limit, uint age_threshold) { uint blocks, hash_links, length; int error; DBUG_ENTER("init_key_cache"); DBUG_ASSERT(key_cache_block_size >= 512); KEYCACHE_DEBUG_OPEN; if (keycache->key_cache_inited && keycache->disk_blocks > 0) { DBUG_PRINT("warning",("key cache already in use")); DBUG_RETURN(0); } keycache->global_cache_w_requests= keycache->global_cache_r_requests= 0; keycache->global_cache_read= keycache->global_cache_write= 0; keycache->disk_blocks= -1; if (! keycache->key_cache_inited) { keycache->key_cache_inited= 1; keycache->in_init= 0; pthread_mutex_init(&keycache->cache_lock, MY_MUTEX_INIT_FAST); keycache->resize_queue.last_thread= NULL; } keycache->key_cache_mem_size= use_mem; keycache->key_cache_block_size= key_cache_block_size; keycache->key_cache_shift= my_bit_log2(key_cache_block_size); DBUG_PRINT("info", ("key_cache_block_size: %u", key_cache_block_size)); blocks= (uint) (use_mem / (sizeof(BLOCK_LINK) + 2 * sizeof(HASH_LINK) + sizeof(HASH_LINK*) * 5/4 + key_cache_block_size)); /* It doesn't make sense to have too few blocks (less than 8) */ if (blocks >= 8 && keycache->disk_blocks < 0) { for ( ; ; ) { /* Set my_hash_entries to the next bigger 2 power */ if ((keycache->hash_entries= next_power(blocks)) < blocks * 5/4) keycache->hash_entries<<= 1; hash_links= 2 * blocks; #if defined(MAX_THREADS) if (hash_links < MAX_THREADS + blocks - 1) hash_links= MAX_THREADS + blocks - 1; #endif while ((length= (ALIGN_SIZE(blocks * sizeof(BLOCK_LINK)) + ALIGN_SIZE(hash_links * sizeof(HASH_LINK)) + ALIGN_SIZE(sizeof(HASH_LINK*) * keycache->hash_entries))) + ((ulong) blocks << keycache->key_cache_shift) > use_mem) blocks--; /* Allocate memory for cache page buffers */ if ((keycache->block_mem= my_large_malloc((ulong) blocks * keycache->key_cache_block_size, MYF(MY_WME)))) { /* Allocate memory for blocks, hash_links and hash entries; For each block 2 hash links are allocated */ if ((keycache->block_root= (BLOCK_LINK*) my_malloc((uint) length, MYF(0)))) break; my_large_free(keycache->block_mem, MYF(0)); keycache->block_mem= 0; } if (blocks < 8) { my_errno= ENOMEM; goto err; } blocks= blocks / 4*3; } keycache->blocks_unused= (ulong) blocks; keycache->disk_blocks= (int) blocks; keycache->hash_links= hash_links; keycache->hash_root= (HASH_LINK**) ((char*) keycache->block_root + ALIGN_SIZE(blocks*sizeof(BLOCK_LINK))); keycache->hash_link_root= (HASH_LINK*) ((char*) keycache->hash_root + ALIGN_SIZE((sizeof(HASH_LINK*) * keycache->hash_entries))); bzero((byte*) keycache->block_root, keycache->disk_blocks * sizeof(BLOCK_LINK)); bzero((byte*) keycache->hash_root, keycache->hash_entries * sizeof(HASH_LINK*)); bzero((byte*) keycache->hash_link_root, keycache->hash_links * sizeof(HASH_LINK)); keycache->hash_links_used= 0; keycache->free_hash_list= NULL; keycache->blocks_used= keycache->blocks_changed= 0; keycache->global_blocks_changed= 0; keycache->blocks_available=0; /* For debugging */ /* The LRU chain is empty after initialization */ keycache->used_last= NULL; keycache->used_ins= NULL; keycache->free_block_list= NULL; keycache->keycache_time= 0; keycache->warm_blocks= 0; keycache->min_warm_blocks= (division_limit ? blocks * division_limit / 100 + 1 : blocks); keycache->age_threshold= (age_threshold ? blocks * age_threshold / 100 : blocks); keycache->cnt_for_resize_op= 0; keycache->resize_in_flush= 0; keycache->can_be_used= 1; keycache->waiting_for_hash_link.last_thread= NULL; keycache->waiting_for_block.last_thread= NULL; DBUG_PRINT("exit", ("disk_blocks: %d block_root: 0x%lx hash_entries: %d\ hash_root: 0x%lx hash_links: %d hash_link_root: 0x%lx", keycache->disk_blocks, (long) keycache->block_root, keycache->hash_entries, (long) keycache->hash_root, keycache->hash_links, (long) keycache->hash_link_root)); bzero((gptr) keycache->changed_blocks, sizeof(keycache->changed_blocks[0]) * CHANGED_BLOCKS_HASH); bzero((gptr) keycache->file_blocks, sizeof(keycache->file_blocks[0]) * CHANGED_BLOCKS_HASH); } keycache->blocks= keycache->disk_blocks > 0 ? keycache->disk_blocks : 0; DBUG_RETURN((int) keycache->disk_blocks); err: error= my_errno; keycache->disk_blocks= 0; keycache->blocks= 0; if (keycache->block_mem) { my_large_free((gptr) keycache->block_mem, MYF(0)); keycache->block_mem= NULL; } if (keycache->block_root) { my_free((gptr) keycache->block_root, MYF(0)); keycache->block_root= NULL; } my_errno= error; keycache->can_be_used= 0; DBUG_RETURN(0); } /* Resize a key cache SYNOPSIS resize_key_cache() keycache pointer to a key cache data structure key_cache_block_size size of blocks to keep cached data use_mem total memory to use for the new key cache division_limit new division limit (if not zero) age_threshold new age threshold (if not zero) RETURN VALUE number of blocks in the key cache, if successful, 0 - otherwise. NOTES. The function first compares the memory size and the block size parameters with the key cache values. If they differ the function free the the memory allocated for the old key cache blocks by calling the end_key_cache function and then rebuilds the key cache with new blocks by calling init_key_cache. The function starts the operation only when all other threads performing operations with the key cache let her to proceed (when cnt_for_resize=0). */ int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, ulong use_mem, uint division_limit, uint age_threshold) { int blocks; #ifdef THREAD struct st_my_thread_var *thread; KEYCACHE_WQUEUE *wqueue; #endif DBUG_ENTER("resize_key_cache"); if (!keycache->key_cache_inited) DBUG_RETURN(keycache->disk_blocks); if(key_cache_block_size == keycache->key_cache_block_size && use_mem == keycache->key_cache_mem_size) { change_key_cache_param(keycache, division_limit, age_threshold); DBUG_RETURN(keycache->disk_blocks); } keycache_pthread_mutex_lock(&keycache->cache_lock); #ifdef THREAD wqueue= &keycache->resize_queue; thread= my_thread_var; link_into_queue(wqueue, thread); while (wqueue->last_thread->next != thread) { keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); } #endif keycache->resize_in_flush= 1; if (flush_all_key_blocks(keycache)) { /* TODO: if this happens, we should write a warning in the log file ! */ keycache->resize_in_flush= 0; blocks= 0; keycache->can_be_used= 0; goto finish; } keycache->resize_in_flush= 0; keycache->can_be_used= 0; #ifdef THREAD while (keycache->cnt_for_resize_op) { KEYCACHE_DBUG_PRINT("resize_key_cache: wait", ("suspend thread %ld", thread->id)); keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); } #else KEYCACHE_DBUG_ASSERT(keycache->cnt_for_resize_op == 0); #endif end_key_cache(keycache, 0); /* Don't free mutex */ /* The following will work even if use_mem is 0 */ blocks= init_key_cache(keycache, key_cache_block_size, use_mem, division_limit, age_threshold); finish: #ifdef THREAD unlink_from_queue(wqueue, thread); /* Signal for the next resize request to proceeed if any */ if (wqueue->last_thread) { KEYCACHE_DBUG_PRINT("resize_key_cache: signal", ("thread %ld", wqueue->last_thread->next->id)); keycache_pthread_cond_signal(&wqueue->last_thread->next->suspend); } #endif keycache_pthread_mutex_unlock(&keycache->cache_lock); DBUG_RETURN(blocks); } /* Increment counter blocking resize key cache operation */ static inline void inc_counter_for_resize_op(KEY_CACHE *keycache) { keycache->cnt_for_resize_op++; } /* Decrement counter blocking resize key cache operation; Signal the operation to proceed when counter becomes equal zero */ static inline void dec_counter_for_resize_op(KEY_CACHE *keycache) { #ifdef THREAD struct st_my_thread_var *last_thread; if (!--keycache->cnt_for_resize_op && (last_thread= keycache->resize_queue.last_thread)) { KEYCACHE_DBUG_PRINT("dec_counter_for_resize_op: signal", ("thread %ld", last_thread->next->id)); keycache_pthread_cond_signal(&last_thread->next->suspend); } #else keycache->cnt_for_resize_op--; #endif } /* Change the key cache parameters SYNOPSIS change_key_cache_param() keycache pointer to a key cache data structure division_limit new division limit (if not zero) age_threshold new age threshold (if not zero) RETURN VALUE none NOTES. Presently the function resets the key cache parameters concerning midpoint insertion strategy - division_limit and age_threshold. */ void change_key_cache_param(KEY_CACHE *keycache, uint division_limit, uint age_threshold) { DBUG_ENTER("change_key_cache_param"); keycache_pthread_mutex_lock(&keycache->cache_lock); if (division_limit) keycache->min_warm_blocks= (keycache->disk_blocks * division_limit / 100 + 1); if (age_threshold) keycache->age_threshold= (keycache->disk_blocks * age_threshold / 100); keycache_pthread_mutex_unlock(&keycache->cache_lock); DBUG_VOID_RETURN; } /* Remove key_cache from memory SYNOPSIS end_key_cache() keycache key cache handle cleanup Complete free (Free also mutex for key cache) RETURN VALUE none */ void end_key_cache(KEY_CACHE *keycache, my_bool cleanup) { DBUG_ENTER("end_key_cache"); DBUG_PRINT("enter", ("key_cache: 0x%lx", (long) keycache)); if (!keycache->key_cache_inited) DBUG_VOID_RETURN; if (keycache->disk_blocks > 0) { if (keycache->block_mem) { my_large_free((gptr) keycache->block_mem, MYF(0)); keycache->block_mem= NULL; my_free((gptr) keycache->block_root, MYF(0)); keycache->block_root= NULL; } keycache->disk_blocks= -1; /* Reset blocks_changed to be safe if flush_all_key_blocks is called */ keycache->blocks_changed= 0; } DBUG_PRINT("status", ("used: %lu changed: %lu w_requests: %lu " "writes: %lu r_requests: %lu reads: %lu", keycache->blocks_used, keycache->global_blocks_changed, (ulong) keycache->global_cache_w_requests, (ulong) keycache->global_cache_write, (ulong) keycache->global_cache_r_requests, (ulong) keycache->global_cache_read)); if (cleanup) { pthread_mutex_destroy(&keycache->cache_lock); keycache->key_cache_inited= keycache->can_be_used= 0; KEYCACHE_DEBUG_CLOSE; } DBUG_VOID_RETURN; } /* end_key_cache */ #ifdef THREAD /* Link a thread into double-linked queue of waiting threads. SYNOPSIS link_into_queue() wqueue pointer to the queue structure thread pointer to the thread to be added to the queue RETURN VALUE none NOTES. Queue is represented by a circular list of the thread structures The list is double-linked of the type (**prev,*next), accessed by a pointer to the last element. */ static void link_into_queue(KEYCACHE_WQUEUE *wqueue, struct st_my_thread_var *thread) { struct st_my_thread_var *last; if (! (last= wqueue->last_thread)) { /* Queue is empty */ thread->next= thread; thread->prev= &thread->next; } else { thread->prev= last->next->prev; last->next->prev= &thread->next; thread->next= last->next; last->next= thread; } wqueue->last_thread= thread; } /* Unlink a thread from double-linked queue of waiting threads SYNOPSIS unlink_from_queue() wqueue pointer to the queue structure thread pointer to the thread to be removed from the queue RETURN VALUE none NOTES. See NOTES for link_into_queue */ static void unlink_from_queue(KEYCACHE_WQUEUE *wqueue, struct st_my_thread_var *thread) { KEYCACHE_DBUG_PRINT("unlink_from_queue", ("thread %ld", thread->id)); if (thread->next == thread) /* The queue contains only one member */ wqueue->last_thread= NULL; else { thread->next->prev= thread->prev; *thread->prev=thread->next; if (wqueue->last_thread == thread) wqueue->last_thread= STRUCT_PTR(struct st_my_thread_var, next, thread->prev); } thread->next= NULL; } /* Add a thread to single-linked queue of waiting threads SYNOPSIS add_to_queue() wqueue pointer to the queue structure thread pointer to the thread to be added to the queue RETURN VALUE none NOTES. Queue is represented by a circular list of the thread structures The list is single-linked of the type (*next), accessed by a pointer to the last element. */ static inline void add_to_queue(KEYCACHE_WQUEUE *wqueue, struct st_my_thread_var *thread) { struct st_my_thread_var *last; if (! (last= wqueue->last_thread)) thread->next= thread; else { thread->next= last->next; last->next= thread; } wqueue->last_thread= thread; } /* Remove all threads from queue signaling them to proceed SYNOPSIS realease_queue() wqueue pointer to the queue structure thread pointer to the thread to be added to the queue RETURN VALUE none NOTES. See notes for add_to_queue When removed from the queue each thread is signaled via condition variable thread->suspend. */ static void release_queue(KEYCACHE_WQUEUE *wqueue) { struct st_my_thread_var *last= wqueue->last_thread; struct st_my_thread_var *next= last->next; struct st_my_thread_var *thread; do { thread=next; KEYCACHE_DBUG_PRINT("release_queue: signal", ("thread %ld", thread->id)); keycache_pthread_cond_signal(&thread->suspend); next=thread->next; thread->next= NULL; } while (thread != last); wqueue->last_thread= NULL; } #endif /* Unlink a block from the chain of dirty/clean blocks */ static inline void unlink_changed(BLOCK_LINK *block) { if (block->next_changed) block->next_changed->prev_changed= block->prev_changed; *block->prev_changed= block->next_changed; } /* Link a block into the chain of dirty/clean blocks */ static inline void link_changed(BLOCK_LINK *block, BLOCK_LINK **phead) { block->prev_changed= phead; if ((block->next_changed= *phead)) (*phead)->prev_changed= &block->next_changed; *phead= block; } /* Unlink a block from the chain of dirty/clean blocks, if it's asked for, and link it to the chain of clean blocks for the specified file */ static void link_to_file_list(KEY_CACHE *keycache, BLOCK_LINK *block, int file, my_bool unlink_block) { if (unlink_block) unlink_changed(block); link_changed(block, &keycache->file_blocks[FILE_HASH(file)]); if (block->status & BLOCK_CHANGED) { block->status&= ~BLOCK_CHANGED; keycache->blocks_changed--; keycache->global_blocks_changed--; } } /* Unlink a block from the chain of clean blocks for the specified file and link it to the chain of dirty blocks for this file */ static inline void link_to_changed_list(KEY_CACHE *keycache, BLOCK_LINK *block) { unlink_changed(block); link_changed(block, &keycache->changed_blocks[FILE_HASH(block->hash_link->file)]); block->status|=BLOCK_CHANGED; keycache->blocks_changed++; keycache->global_blocks_changed++; } /* Link a block to the LRU chain at the beginning or at the end of one of two parts. SYNOPSIS link_block() keycache pointer to a key cache data structure block pointer to the block to link to the LRU chain hot <-> to link the block into the hot subchain at_end <-> to link the block at the end of the subchain RETURN VALUE none NOTES. The LRU chain is represented by a curcular list of block structures. The list is double-linked of the type (**prev,*next) type. The LRU chain is divided into two parts - hot and warm. There are two pointers to access the last blocks of these two parts. The beginning of the warm part follows right after the end of the hot part. Only blocks of the warm part can be used for replacement. The first block from the beginning of this subchain is always taken for eviction (keycache->last_used->next) LRU chain: +------+ H O T +------+ +----| end |----...<----| beg |----+ | +------+last +------+ | v<-link in latest hot (new end) | | link in latest warm (new end)->^ | +------+ W A R M +------+ | +----| beg |---->...----| end |----+ +------+ +------+ins first for eviction */ static void link_block(KEY_CACHE *keycache, BLOCK_LINK *block, my_bool hot, my_bool at_end) { BLOCK_LINK *ins; BLOCK_LINK **pins; KEYCACHE_DBUG_ASSERT(! (block->hash_link && block->hash_link->requests)); #ifdef THREAD if (!hot && keycache->waiting_for_block.last_thread) { /* Signal that in the LRU warm sub-chain an available block has appeared */ struct st_my_thread_var *last_thread= keycache->waiting_for_block.last_thread; struct st_my_thread_var *first_thread= last_thread->next; struct st_my_thread_var *next_thread= first_thread; HASH_LINK *hash_link= (HASH_LINK *) first_thread->opt_info; struct st_my_thread_var *thread; do { thread= next_thread; next_thread= thread->next; /* We notify about the event all threads that ask for the same page as the first thread in the queue */ if ((HASH_LINK *) thread->opt_info == hash_link) { KEYCACHE_DBUG_PRINT("link_block: signal", ("thread %ld", thread->id)); keycache_pthread_cond_signal(&thread->suspend); unlink_from_queue(&keycache->waiting_for_block, thread); block->requests++; } } while (thread != last_thread); hash_link->block= block; KEYCACHE_THREAD_TRACE("link_block: after signaling"); #if defined(KEYCACHE_DEBUG) KEYCACHE_DBUG_PRINT("link_block", ("linked,unlinked block %u status=%x #requests=%u #available=%u", BLOCK_NUMBER(block), block->status, block->requests, keycache->blocks_available)); #endif return; } #else /* THREAD */ KEYCACHE_DBUG_ASSERT(! (!hot && keycache->waiting_for_block.last_thread)); /* Condition not transformed using DeMorgan, to keep the text identical */ #endif /* THREAD */ pins= hot ? &keycache->used_ins : &keycache->used_last; ins= *pins; if (ins) { ins->next_used->prev_used= &block->next_used; block->next_used= ins->next_used; block->prev_used= &ins->next_used; ins->next_used= block; if (at_end) *pins= block; } else { /* The LRU chain is empty */ keycache->used_last= keycache->used_ins= block->next_used= block; block->prev_used= &block->next_used; } KEYCACHE_THREAD_TRACE("link_block"); #if defined(KEYCACHE_DEBUG) keycache->blocks_available++; KEYCACHE_DBUG_PRINT("link_block", ("linked block %u:%1u status=%x #requests=%u #available=%u", BLOCK_NUMBER(block), at_end, block->status, block->requests, keycache->blocks_available)); KEYCACHE_DBUG_ASSERT((ulong) keycache->blocks_available <= keycache->blocks_used); #endif } /* Unlink a block from the LRU chain SYNOPSIS unlink_block() keycache pointer to a key cache data structure block pointer to the block to unlink from the LRU chain RETURN VALUE none NOTES. See NOTES for link_block */ static void unlink_block(KEY_CACHE *keycache, BLOCK_LINK *block) { if (block->next_used == block) /* The list contains only one member */ keycache->used_last= keycache->used_ins= NULL; else { block->next_used->prev_used= block->prev_used; *block->prev_used= block->next_used; if (keycache->used_last == block) keycache->used_last= STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used); if (keycache->used_ins == block) keycache->used_ins=STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used); } block->next_used= NULL; KEYCACHE_THREAD_TRACE("unlink_block"); #if defined(KEYCACHE_DEBUG) keycache->blocks_available--; KEYCACHE_DBUG_PRINT("unlink_block", ("unlinked block %u status=%x #requests=%u #available=%u", BLOCK_NUMBER(block), block->status, block->requests, keycache->blocks_available)); KEYCACHE_DBUG_ASSERT(keycache->blocks_available >= 0); #endif } /* Register requests for a block */ static void reg_requests(KEY_CACHE *keycache, BLOCK_LINK *block, int count) { if (! block->requests) /* First request for the block unlinks it */ unlink_block(keycache, block); block->requests+=count; } /* Unregister request for a block linking it to the LRU chain if it's the last request SYNOPSIS unreg_request() keycache pointer to a key cache data structure block pointer to the block to link to the LRU chain at_end <-> to link the block at the end of the LRU chain RETURN VALUE none NOTES. Every linking to the LRU chain decrements by one a special block counter (if it's positive). If the at_end parameter is TRUE the block is added either at the end of warm sub-chain or at the end of hot sub-chain. It is added to the hot subchain if its counter is zero and number of blocks in warm sub-chain is not less than some low limit (determined by the division_limit parameter). Otherwise the block is added to the warm sub-chain. If the at_end parameter is FALSE the block is always added at beginning of the warm sub-chain. Thus a warm block can be promoted to the hot sub-chain when its counter becomes zero for the first time. At the same time the block at the very beginning of the hot subchain might be moved to the beginning of the warm subchain if it stays untouched for a too long time (this time is determined by parameter age_threshold). */ static void unreg_request(KEY_CACHE *keycache, BLOCK_LINK *block, int at_end) { if (! --block->requests) { my_bool hot; if (block->hits_left) block->hits_left--; hot= !block->hits_left && at_end && keycache->warm_blocks > keycache->min_warm_blocks; if (hot) { if (block->temperature == BLOCK_WARM) keycache->warm_blocks--; block->temperature= BLOCK_HOT; KEYCACHE_DBUG_PRINT("unreg_request", ("#warm_blocks: %lu", keycache->warm_blocks)); } link_block(keycache, block, hot, (my_bool)at_end); block->last_hit_time= keycache->keycache_time; keycache->keycache_time++; block= keycache->used_ins; /* Check if we should link a hot block to the warm block */ if (block && keycache->keycache_time - block->last_hit_time > keycache->age_threshold) { unlink_block(keycache, block); link_block(keycache, block, 0, 0); if (block->temperature != BLOCK_WARM) { keycache->warm_blocks++; block->temperature= BLOCK_WARM; } KEYCACHE_DBUG_PRINT("unreg_request", ("#warm_blocks: %lu", keycache->warm_blocks)); } } } /* Remove a reader of the page in block */ static inline void remove_reader(BLOCK_LINK *block) { #ifdef THREAD if (! --block->hash_link->requests && block->condvar) keycache_pthread_cond_signal(block->condvar); #else --block->hash_link->requests; #endif } /* Wait until the last reader of the page in block signals on its termination */ static inline void wait_for_readers(KEY_CACHE *keycache __attribute__((unused)), BLOCK_LINK *block) { #ifdef THREAD struct st_my_thread_var *thread= my_thread_var; while (block->hash_link->requests) { KEYCACHE_DBUG_PRINT("wait_for_readers: wait", ("suspend thread %ld block %u", thread->id, BLOCK_NUMBER(block))); block->condvar= &thread->suspend; keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); block->condvar= NULL; } #else KEYCACHE_DBUG_ASSERT(block->hash_link->requests == 0); #endif } /* Add a hash link to a bucket in the hash_table */ static inline void link_hash(HASH_LINK **start, HASH_LINK *hash_link) { if (*start) (*start)->prev= &hash_link->next; hash_link->next= *start; hash_link->prev= start; *start= hash_link; } /* Remove a hash link from the hash table */ static void unlink_hash(KEY_CACHE *keycache, HASH_LINK *hash_link) { KEYCACHE_DBUG_PRINT("unlink_hash", ("fd: %u pos_ %lu #requests=%u", (uint) hash_link->file,(ulong) hash_link->diskpos, hash_link->requests)); KEYCACHE_DBUG_ASSERT(hash_link->requests == 0); if ((*hash_link->prev= hash_link->next)) hash_link->next->prev= hash_link->prev; hash_link->block= NULL; #ifdef THREAD if (keycache->waiting_for_hash_link.last_thread) { /* Signal that a free hash link has appeared */ struct st_my_thread_var *last_thread= keycache->waiting_for_hash_link.last_thread; struct st_my_thread_var *first_thread= last_thread->next; struct st_my_thread_var *next_thread= first_thread; KEYCACHE_PAGE *first_page= (KEYCACHE_PAGE *) (first_thread->opt_info); struct st_my_thread_var *thread; hash_link->file= first_page->file; hash_link->diskpos= first_page->filepos; do { KEYCACHE_PAGE *page; thread= next_thread; page= (KEYCACHE_PAGE *) thread->opt_info; next_thread= thread->next; /* We notify about the event all threads that ask for the same page as the first thread in the queue */ if (page->file == hash_link->file && page->filepos == hash_link->diskpos) { KEYCACHE_DBUG_PRINT("unlink_hash: signal", ("thread %ld", thread->id)); keycache_pthread_cond_signal(&thread->suspend); unlink_from_queue(&keycache->waiting_for_hash_link, thread); } } while (thread != last_thread); link_hash(&keycache->hash_root[KEYCACHE_HASH(hash_link->file, hash_link->diskpos)], hash_link); return; } #else /* THREAD */ KEYCACHE_DBUG_ASSERT(! (keycache->waiting_for_hash_link.last_thread)); #endif /* THREAD */ hash_link->next= keycache->free_hash_list; keycache->free_hash_list= hash_link; } /* Get the hash link for a page */ static HASH_LINK *get_hash_link(KEY_CACHE *keycache, int file, my_off_t filepos) { reg1 HASH_LINK *hash_link, **start; #if defined(KEYCACHE_DEBUG) int cnt; #endif KEYCACHE_DBUG_PRINT("get_hash_link", ("fd: %u pos: %lu", (uint) file,(ulong) filepos)); restart: /* Find the bucket in the hash table for the pair (file, filepos); start contains the head of the bucket list, hash_link points to the first member of the list */ hash_link= *(start= &keycache->hash_root[KEYCACHE_HASH(file, filepos)]); #if defined(KEYCACHE_DEBUG) cnt= 0; #endif /* Look for an element for the pair (file, filepos) in the bucket chain */ while (hash_link && (hash_link->diskpos != filepos || hash_link->file != file)) { hash_link= hash_link->next; #if defined(KEYCACHE_DEBUG) cnt++; if (! (cnt <= keycache->hash_links_used)) { int i; for (i=0, hash_link= *start ; i < cnt ; i++, hash_link= hash_link->next) { KEYCACHE_DBUG_PRINT("get_hash_link", ("fd: %u pos: %lu", (uint) hash_link->file,(ulong) hash_link->diskpos)); } } KEYCACHE_DBUG_ASSERT(cnt <= keycache->hash_links_used); #endif } if (! hash_link) { /* There is no hash link in the hash table for the pair (file, filepos) */ if (keycache->free_hash_list) { hash_link= keycache->free_hash_list; keycache->free_hash_list= hash_link->next; } else if (keycache->hash_links_used < keycache->hash_links) { hash_link= &keycache->hash_link_root[keycache->hash_links_used++]; } else { #ifdef THREAD /* Wait for a free hash link */ struct st_my_thread_var *thread= my_thread_var; KEYCACHE_PAGE page; KEYCACHE_DBUG_PRINT("get_hash_link", ("waiting")); page.file= file; page.filepos= filepos; thread->opt_info= (void *) &page; link_into_queue(&keycache->waiting_for_hash_link, thread); KEYCACHE_DBUG_PRINT("get_hash_link: wait", ("suspend thread %ld", thread->id)); keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); thread->opt_info= NULL; #else KEYCACHE_DBUG_ASSERT(0); #endif goto restart; } hash_link->file= file; hash_link->diskpos= filepos; link_hash(start, hash_link); } /* Register the request for the page */ hash_link->requests++; return hash_link; } /* Get a block for the file page requested by a keycache read/write operation; If the page is not in the cache return a free block, if there is none return the lru block after saving its buffer if the page is dirty. SYNOPSIS find_key_block() keycache pointer to a key cache data structure file handler for the file to read page from filepos position of the page in the file init_hits_left how initialize the block counter for the page wrmode <-> get for writing page_st out {PAGE_READ,PAGE_TO_BE_READ,PAGE_WAIT_TO_BE_READ} RETURN VALUE Pointer to the found block if successful, 0 - otherwise NOTES. For the page from file positioned at filepos the function checks whether the page is in the key cache specified by the first parameter. If this is the case it immediately returns the block. If not, the function first chooses a block for this page. If there is no not used blocks in the key cache yet, the function takes the block at the very beginning of the warm sub-chain. It saves the page in that block if it's dirty before returning the pointer to it. The function returns in the page_st parameter the following values: PAGE_READ - if page already in the block, PAGE_TO_BE_READ - if it is to be read yet by the current thread WAIT_TO_BE_READ - if it is to be read by another thread If an error occurs THE BLOCK_ERROR bit is set in the block status. It might happen that there are no blocks in LRU chain (in warm part) - all blocks are unlinked for some read/write operations. Then the function waits until first of this operations links any block back. */ static BLOCK_LINK *find_key_block(KEY_CACHE *keycache, File file, my_off_t filepos, int init_hits_left, int wrmode, int *page_st) { HASH_LINK *hash_link; BLOCK_LINK *block; int error= 0; int page_status; DBUG_ENTER("find_key_block"); KEYCACHE_THREAD_TRACE("find_key_block:begin"); DBUG_PRINT("enter", ("fd: %d pos: %lu wrmode: %d", file, (ulong) filepos, wrmode)); KEYCACHE_DBUG_PRINT("find_key_block", ("fd: %d pos: %lu wrmode: %d", file, (ulong) filepos, wrmode)); #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) DBUG_EXECUTE("check_keycache2", test_key_cache(keycache, "start of find_key_block", 0);); #endif restart: /* Find the hash link for the requested page (file, filepos) */ hash_link= get_hash_link(keycache, file, filepos); page_status= -1; if ((block= hash_link->block) && block->hash_link == hash_link && (block->status & BLOCK_READ)) page_status= PAGE_READ; if (wrmode && keycache->resize_in_flush) { /* This is a write request during the flush phase of a resize operation */ if (page_status != PAGE_READ) { /* We don't need the page in the cache: we are going to write on disk */ hash_link->requests--; unlink_hash(keycache, hash_link); return 0; } if (!(block->status & BLOCK_IN_FLUSH)) { hash_link->requests--; /* Remove block to invalidate the page in the block buffer as we are going to write directly on disk. Although we have an exlusive lock for the updated key part the control can be yieded by the current thread as we might have unfinished readers of other key parts in the block buffer. Still we are guaranteed not to have any readers of the key part we are writing into until the block is removed from the cache as we set the BLOCL_REASSIGNED flag (see the code below that handles reading requests). */ free_block(keycache, block); return 0; } /* Wait intil the page is flushed on disk */ hash_link->requests--; { #ifdef THREAD struct st_my_thread_var *thread= my_thread_var; add_to_queue(&block->wqueue[COND_FOR_SAVED], thread); do { KEYCACHE_DBUG_PRINT("find_key_block: wait", ("suspend thread %ld", thread->id)); keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); } while(thread->next); #else KEYCACHE_DBUG_ASSERT(0); /* Given the use of "resize_in_flush", it seems impossible that this whole branch is ever entered in single-threaded case because "(wrmode && keycache->resize_in_flush)" cannot be true. TODO: Check this, and then put the whole branch into the "#ifdef THREAD" guard. */ #endif } /* Invalidate page in the block if it has not been done yet */ if (block->status) free_block(keycache, block); return 0; } if (page_status == PAGE_READ && (block->status & (BLOCK_IN_SWITCH | BLOCK_REASSIGNED))) { /* This is a request for a page to be removed from cache */ KEYCACHE_DBUG_PRINT("find_key_block", ("request for old page in block %u " "wrmode: %d block->status: %d", BLOCK_NUMBER(block), wrmode, block->status)); /* Only reading requests can proceed until the old dirty page is flushed, all others are to be suspended, then resubmitted */ if (!wrmode && !(block->status & BLOCK_REASSIGNED)) reg_requests(keycache, block, 1); else { hash_link->requests--; KEYCACHE_DBUG_PRINT("find_key_block", ("request waiting for old page to be saved")); { #ifdef THREAD struct st_my_thread_var *thread= my_thread_var; /* Put the request into the queue of those waiting for the old page */ add_to_queue(&block->wqueue[COND_FOR_SAVED], thread); /* Wait until the request can be resubmitted */ do { KEYCACHE_DBUG_PRINT("find_key_block: wait", ("suspend thread %ld", thread->id)); keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); } while(thread->next); #else KEYCACHE_DBUG_ASSERT(0); /* No parallel requests in single-threaded case */ #endif } KEYCACHE_DBUG_PRINT("find_key_block", ("request for old page resubmitted")); /* Resubmit the request */ goto restart; } } else { /* This is a request for a new page or for a page not to be removed */ if (! block) { /* No block is assigned for the page yet */ if (keycache->blocks_unused) { if (keycache->free_block_list) { /* There is a block in the free list. */ block= keycache->free_block_list; keycache->free_block_list= block->next_used; block->next_used= NULL; } else { /* There are some never used blocks, take first of them */ block= &keycache->block_root[keycache->blocks_used]; block->buffer= ADD_TO_PTR(keycache->block_mem, ((ulong) keycache->blocks_used* keycache->key_cache_block_size), byte*); keycache->blocks_used++; } keycache->blocks_unused--; block->status= 0; block->length= 0; block->offset= keycache->key_cache_block_size; block->requests= 1; block->temperature= BLOCK_COLD; block->hits_left= init_hits_left; block->last_hit_time= 0; link_to_file_list(keycache, block, file, 0); block->hash_link= hash_link; hash_link->block= block; page_status= PAGE_TO_BE_READ; KEYCACHE_DBUG_PRINT("find_key_block", ("got free or never used block %u", BLOCK_NUMBER(block))); } else { /* There are no never used blocks, use a block from the LRU chain */ /* Wait until a new block is added to the LRU chain; several threads might wait here for the same page, all of them must get the same block */ #ifdef THREAD if (! keycache->used_last) { struct st_my_thread_var *thread= my_thread_var; thread->opt_info= (void *) hash_link; link_into_queue(&keycache->waiting_for_block, thread); do { KEYCACHE_DBUG_PRINT("find_key_block: wait", ("suspend thread %ld", thread->id)); keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); } while (thread->next); thread->opt_info= NULL; } #else KEYCACHE_DBUG_ASSERT(keycache->used_last); #endif block= hash_link->block; if (! block) { /* Take the first block from the LRU chain unlinking it from the chain */ block= keycache->used_last->next_used; block->hits_left= init_hits_left; block->last_hit_time= 0; reg_requests(keycache, block,1); hash_link->block= block; } if (block->hash_link != hash_link && ! (block->status & BLOCK_IN_SWITCH) ) { /* this is a primary request for a new page */ block->status|= BLOCK_IN_SWITCH; KEYCACHE_DBUG_PRINT("find_key_block", ("got block %u for new page", BLOCK_NUMBER(block))); if (block->status & BLOCK_CHANGED) { /* The block contains a dirty page - push it out of the cache */ KEYCACHE_DBUG_PRINT("find_key_block", ("block is dirty")); keycache_pthread_mutex_unlock(&keycache->cache_lock); /* The call is thread safe because only the current thread might change the block->hash_link value */ error= my_pwrite(block->hash_link->file, block->buffer+block->offset, block->length - block->offset, block->hash_link->diskpos+ block->offset, MYF(MY_NABP | MY_WAIT_IF_FULL)); keycache_pthread_mutex_lock(&keycache->cache_lock); keycache->global_cache_write++; } block->status|= BLOCK_REASSIGNED; if (block->hash_link) { /* Wait until all pending read requests for this page are executed (we could have avoided this waiting, if we had read a page in the cache in a sweep, without yielding control) */ wait_for_readers(keycache, block); /* Remove the hash link for this page from the hash table */ unlink_hash(keycache, block->hash_link); /* All pending requests for this page must be resubmitted */ #ifdef THREAD if (block->wqueue[COND_FOR_SAVED].last_thread) release_queue(&block->wqueue[COND_FOR_SAVED]); #endif } link_to_file_list(keycache, block, file, (my_bool)(block->hash_link ? 1 : 0)); block->status= error? BLOCK_ERROR : 0; block->length= 0; block->offset= keycache->key_cache_block_size; block->hash_link= hash_link; page_status= PAGE_TO_BE_READ; KEYCACHE_DBUG_ASSERT(block->hash_link->block == block); KEYCACHE_DBUG_ASSERT(hash_link->block->hash_link == hash_link); } else { /* This is for secondary requests for a new page only */ KEYCACHE_DBUG_PRINT("find_key_block", ("block->hash_link: %p hash_link: %p " "block->status: %u", block->hash_link, hash_link, block->status )); page_status= (((block->hash_link == hash_link) && (block->status & BLOCK_READ)) ? PAGE_READ : PAGE_WAIT_TO_BE_READ); } } keycache->global_cache_read++; } else { reg_requests(keycache, block, 1); KEYCACHE_DBUG_PRINT("find_key_block", ("block->hash_link: %p hash_link: %p " "block->status: %u", block->hash_link, hash_link, block->status )); page_status= (((block->hash_link == hash_link) && (block->status & BLOCK_READ)) ? PAGE_READ : PAGE_WAIT_TO_BE_READ); } } KEYCACHE_DBUG_ASSERT(page_status != -1); *page_st=page_status; KEYCACHE_DBUG_PRINT("find_key_block", ("fd: %d pos: %lu block->status: %u page_status: %u", file, (ulong) filepos, block->status, (uint) page_status)); #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) DBUG_EXECUTE("check_keycache2", test_key_cache(keycache, "end of find_key_block",0);); #endif KEYCACHE_THREAD_TRACE("find_key_block:end"); DBUG_RETURN(block); } /* Read into a key cache block buffer from disk. SYNOPSIS read_block() keycache pointer to a key cache data structure block block to which buffer the data is to be read read_length size of data to be read min_length at least so much data must be read primary <-> the current thread will read the data RETURN VALUE None NOTES. The function either reads a page data from file to the block buffer, or waits until another thread reads it. What page to read is determined by a block parameter - reference to a hash link for this page. If an error occurs THE BLOCK_ERROR bit is set in the block status. We do not report error when the size of successfully read portion is less than read_length, but not less than min_length. */ static void read_block(KEY_CACHE *keycache __attribute__((unused)), BLOCK_LINK *block, uint read_length, uint min_length, my_bool primary) { uint got_length; /* On entry cache_lock is locked */ KEYCACHE_THREAD_TRACE("read_block"); if (primary) { /* This code is executed only by threads that submitted primary requests */ KEYCACHE_DBUG_PRINT("read_block", ("page to be read by primary request")); /* Page is not in buffer yet, is to be read from disk */ keycache_pthread_mutex_unlock(&keycache->cache_lock); /* Here other threads may step in and register as secondary readers. They will register in block->wqueue[COND_FOR_REQUESTED]. */ got_length= my_pread(block->hash_link->file, block->buffer, read_length, block->hash_link->diskpos, MYF(0)); keycache_pthread_mutex_lock(&keycache->cache_lock); if (got_length < min_length) block->status|= BLOCK_ERROR; else { block->status= BLOCK_READ; block->length= got_length; } KEYCACHE_DBUG_PRINT("read_block", ("primary request: new page in cache")); /* Signal that all pending requests for this page now can be processed */ #ifdef THREAD if (block->wqueue[COND_FOR_REQUESTED].last_thread) release_queue(&block->wqueue[COND_FOR_REQUESTED]); #endif } else { /* This code is executed only by threads that submitted secondary requests */ KEYCACHE_DBUG_PRINT("read_block", ("secondary request waiting for new page to be read")); { #ifdef THREAD struct st_my_thread_var *thread= my_thread_var; /* Put the request into a queue and wait until it can be processed */ add_to_queue(&block->wqueue[COND_FOR_REQUESTED], thread); do { KEYCACHE_DBUG_PRINT("read_block: wait", ("suspend thread %ld", thread->id)); keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); } while (thread->next); #else KEYCACHE_DBUG_ASSERT(0); /* No parallel requests in single-threaded case */ #endif } KEYCACHE_DBUG_PRINT("read_block", ("secondary request: new page in cache")); } } /* Read a block of data from a cached file into a buffer; SYNOPSIS key_cache_read() keycache pointer to a key cache data structure file handler for the file for the block of data to be read filepos position of the block of data in the file level determines the weight of the data buff buffer to where the data must be placed length length of the buffer block_length length of the block in the key cache buffer return_buffer return pointer to the key cache buffer with the data RETURN VALUE Returns address from where the data is placed if sucessful, 0 - otherwise. NOTES. The function ensures that a block of data of size length from file positioned at filepos is in the buffers for some key cache blocks. Then the function either copies the data into the buffer buff, or, if return_buffer is TRUE, it just returns the pointer to the key cache buffer with the data. Filepos must be a multiple of 'block_length', but it doesn't have to be a multiple of key_cache_block_size; */ byte *key_cache_read(KEY_CACHE *keycache, File file, my_off_t filepos, int level, byte *buff, uint length, uint block_length __attribute__((unused)), int return_buffer __attribute__((unused))) { int error=0; uint offset= 0; byte *start= buff; DBUG_ENTER("key_cache_read"); DBUG_PRINT("enter", ("fd: %u pos: %lu length: %u", (uint) file, (ulong) filepos, length)); if (keycache->can_be_used) { /* Key cache is used */ reg1 BLOCK_LINK *block; uint read_length; uint status; int page_st; offset= (uint) (filepos & (keycache->key_cache_block_size-1)); /* Read data in key_cache_block_size increments */ do { keycache_pthread_mutex_lock(&keycache->cache_lock); if (!keycache->can_be_used) { keycache_pthread_mutex_unlock(&keycache->cache_lock); goto no_key_cache; } filepos-= offset; read_length= length; set_if_smaller(read_length, keycache->key_cache_block_size-offset); KEYCACHE_DBUG_ASSERT(read_length > 0); #ifndef THREAD if (block_length > keycache->key_cache_block_size || offset) return_buffer=0; #endif inc_counter_for_resize_op(keycache); keycache->global_cache_r_requests++; block=find_key_block(keycache, file, filepos, level, 0, &page_st); if (block->status != BLOCK_ERROR && page_st != PAGE_READ) { /* The requested page is to be read into the block buffer */ read_block(keycache, block, keycache->key_cache_block_size, read_length+offset, (my_bool)(page_st == PAGE_TO_BE_READ)); } else if (! (block->status & BLOCK_ERROR) && block->length < read_length + offset) { /* Impossible if nothing goes wrong: this could only happen if we are using a file with small key blocks and are trying to read outside the file */ my_errno= -1; block->status|= BLOCK_ERROR; } if (! ((status= block->status) & BLOCK_ERROR)) { #ifndef THREAD if (! return_buffer) #endif { #if !defined(SERIALIZED_READ_FROM_CACHE) keycache_pthread_mutex_unlock(&keycache->cache_lock); #endif /* Copy data from the cache buffer */ if (!(read_length & 511)) bmove512(buff, block->buffer+offset, read_length); else memcpy(buff, block->buffer+offset, (size_t) read_length); #if !defined(SERIALIZED_READ_FROM_CACHE) keycache_pthread_mutex_lock(&keycache->cache_lock); #endif } } remove_reader(block); /* Link the block into the LRU chain if it's the last submitted request for the block */ unreg_request(keycache, block, 1); dec_counter_for_resize_op(keycache); keycache_pthread_mutex_unlock(&keycache->cache_lock); if (status & BLOCK_ERROR) DBUG_RETURN((byte *) 0); #ifndef THREAD /* This is only true if we where able to read everything in one block */ if (return_buffer) DBUG_RETURN(block->buffer); #endif buff+= read_length; filepos+= read_length+offset; offset= 0; } while ((length-= read_length)); DBUG_RETURN(start); } no_key_cache: /* Key cache is not used */ /* We can't use mutex here as the key cache may not be initialized */ keycache->global_cache_r_requests++; keycache->global_cache_read++; if (my_pread(file, (byte*) buff, length, filepos+offset, MYF(MY_NABP))) error= 1; DBUG_RETURN(error ? (byte*) 0 : start); } /* Insert a block of file data from a buffer into key cache SYNOPSIS key_cache_insert() keycache pointer to a key cache data structure file handler for the file to insert data from filepos position of the block of data in the file to insert level determines the weight of the data buff buffer to read data from length length of the data in the buffer NOTES This is used by MyISAM to move all blocks from a index file to the key cache RETURN VALUE 0 if a success, 1 - otherwise. */ int key_cache_insert(KEY_CACHE *keycache, File file, my_off_t filepos, int level, byte *buff, uint length) { DBUG_ENTER("key_cache_insert"); DBUG_PRINT("enter", ("fd: %u pos: %lu length: %u", (uint) file,(ulong) filepos, length)); if (keycache->can_be_used) { /* Key cache is used */ reg1 BLOCK_LINK *block; uint read_length; int page_st; int error; uint offset; offset= (uint) (filepos & (keycache->key_cache_block_size-1)); do { keycache_pthread_mutex_lock(&keycache->cache_lock); if (!keycache->can_be_used) { keycache_pthread_mutex_unlock(&keycache->cache_lock); DBUG_RETURN(0); } /* Read data into key cache from buff in key_cache_block_size incr. */ filepos-= offset; read_length= length; set_if_smaller(read_length, keycache->key_cache_block_size-offset); KEYCACHE_DBUG_ASSERT(read_length > 0); inc_counter_for_resize_op(keycache); keycache->global_cache_r_requests++; block= find_key_block(keycache, file, filepos, level, 0, &page_st); if (block->status != BLOCK_ERROR && page_st != PAGE_READ) { /* The requested page is to be read into the block buffer */ #if !defined(SERIALIZED_READ_FROM_CACHE) keycache_pthread_mutex_unlock(&keycache->cache_lock); /* Here other threads may step in and register as secondary readers. They will register in block->wqueue[COND_FOR_REQUESTED]. */ #endif /* Copy data from buff */ if (!(read_length & 511)) bmove512(block->buffer+offset, buff, read_length); else memcpy(block->buffer+offset, buff, (size_t) read_length); #if !defined(SERIALIZED_READ_FROM_CACHE) keycache_pthread_mutex_lock(&keycache->cache_lock); /* Here we are alone again. */ #endif block->status= BLOCK_READ; block->length= read_length+offset; KEYCACHE_DBUG_PRINT("key_cache_insert", ("primary request: new page in cache")); #ifdef THREAD /* Signal that all pending requests for this now can be processed. */ if (block->wqueue[COND_FOR_REQUESTED].last_thread) release_queue(&block->wqueue[COND_FOR_REQUESTED]); #endif } remove_reader(block); /* Link the block into the LRU chain if it's the last submitted request for the block */ unreg_request(keycache, block, 1); error= (block->status & BLOCK_ERROR); dec_counter_for_resize_op(keycache); keycache_pthread_mutex_unlock(&keycache->cache_lock); if (error) DBUG_RETURN(1); buff+= read_length; filepos+= read_length+offset; offset= 0; } while ((length-= read_length)); } DBUG_RETURN(0); } /* Write a buffer into a cached file. SYNOPSIS key_cache_write() keycache pointer to a key cache data structure file handler for the file to write data to filepos position in the file to write data to level determines the weight of the data buff buffer with the data length length of the buffer dont_write if is 0 then all dirty pages involved in writing should have been flushed from key cache RETURN VALUE 0 if a success, 1 - otherwise. NOTES. The function copies the data of size length from buff into buffers for key cache blocks that are assigned to contain the portion of the file starting with position filepos. It ensures that this data is flushed to the file if dont_write is FALSE. Filepos must be a multiple of 'block_length', but it doesn't have to be a multiple of key_cache_block_size; */ int key_cache_write(KEY_CACHE *keycache, File file, my_off_t filepos, int level, byte *buff, uint length, uint block_length __attribute__((unused)), int dont_write) { reg1 BLOCK_LINK *block; int error=0; DBUG_ENTER("key_cache_write"); DBUG_PRINT("enter", ("fd: %u pos: %lu length: %u block_length: %u key_block_length: %u", (uint) file, (ulong) filepos, length, block_length, keycache ? keycache->key_cache_block_size : 0)); if (!dont_write) { /* Force writing from buff into disk */ keycache->global_cache_write++; if (my_pwrite(file, buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL))) DBUG_RETURN(1); } #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) DBUG_EXECUTE("check_keycache", test_key_cache(keycache, "start of key_cache_write", 1);); #endif if (keycache->can_be_used) { /* Key cache is used */ uint read_length; int page_st; uint offset; offset= (uint) (filepos & (keycache->key_cache_block_size-1)); do { keycache_pthread_mutex_lock(&keycache->cache_lock); if (!keycache->can_be_used) { keycache_pthread_mutex_unlock(&keycache->cache_lock); goto no_key_cache; } /* Write data in key_cache_block_size increments */ filepos-= offset; read_length= length; set_if_smaller(read_length, keycache->key_cache_block_size-offset); KEYCACHE_DBUG_ASSERT(read_length > 0); inc_counter_for_resize_op(keycache); keycache->global_cache_w_requests++; block= find_key_block(keycache, file, filepos, level, 1, &page_st); if (!block) { /* It happens only for requests submitted during resize operation */ dec_counter_for_resize_op(keycache); keycache_pthread_mutex_unlock(&keycache->cache_lock); if (dont_write) { keycache->global_cache_w_requests++; keycache->global_cache_write++; if (my_pwrite(file, (byte*) buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL))) error=1; } goto next_block; } if (block->status != BLOCK_ERROR && page_st != PAGE_READ && (offset || read_length < keycache->key_cache_block_size)) read_block(keycache, block, offset + read_length >= keycache->key_cache_block_size? offset : keycache->key_cache_block_size, offset,(my_bool)(page_st == PAGE_TO_BE_READ)); if (!dont_write) { /* buff has been written to disk at start */ if ((block->status & BLOCK_CHANGED) && (!offset && read_length >= keycache->key_cache_block_size)) link_to_file_list(keycache, block, block->hash_link->file, 1); } else if (! (block->status & BLOCK_CHANGED)) link_to_changed_list(keycache, block); set_if_smaller(block->offset, offset); set_if_bigger(block->length, read_length+offset); if (! (block->status & BLOCK_ERROR)) { if (!(read_length & 511)) bmove512(block->buffer+offset, buff, read_length); else memcpy(block->buffer+offset, buff, (size_t) read_length); } block->status|=BLOCK_READ; /* Unregister the request */ block->hash_link->requests--; unreg_request(keycache, block, 1); if (block->status & BLOCK_ERROR) { keycache_pthread_mutex_unlock(&keycache->cache_lock); error= 1; break; } dec_counter_for_resize_op(keycache); keycache_pthread_mutex_unlock(&keycache->cache_lock); next_block: buff+= read_length; filepos+= read_length+offset; offset= 0; } while ((length-= read_length)); goto end; } no_key_cache: /* Key cache is not used */ if (dont_write) { keycache->global_cache_w_requests++; keycache->global_cache_write++; if (my_pwrite(file, (byte*) buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL))) error=1; } end: #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) DBUG_EXECUTE("exec", test_key_cache(keycache, "end of key_cache_write", 1);); #endif DBUG_RETURN(error); } /* Free block: remove reference to it from hash table, remove it from the chain file of dirty/clean blocks and add it to the free list. */ static void free_block(KEY_CACHE *keycache, BLOCK_LINK *block) { KEYCACHE_THREAD_TRACE("free block"); KEYCACHE_DBUG_PRINT("free_block", ("block %u to be freed, hash_link %p", BLOCK_NUMBER(block), block->hash_link)); if (block->hash_link) { /* While waiting for readers to finish, new readers might request the block. But since we set block->status|= BLOCK_REASSIGNED, they will wait on block->wqueue[COND_FOR_SAVED]. They must be signalled later. */ block->status|= BLOCK_REASSIGNED; wait_for_readers(keycache, block); unlink_hash(keycache, block->hash_link); } unlink_changed(block); block->status= 0; block->length= 0; block->offset= keycache->key_cache_block_size; KEYCACHE_THREAD_TRACE("free block"); KEYCACHE_DBUG_PRINT("free_block", ("block is freed")); unreg_request(keycache, block, 0); block->hash_link= NULL; /* Remove the free block from the LRU ring. */ unlink_block(keycache, block); if (block->temperature == BLOCK_WARM) keycache->warm_blocks--; block->temperature= BLOCK_COLD; /* Insert the free block in the free list. */ block->next_used= keycache->free_block_list; keycache->free_block_list= block; /* Keep track of the number of currently unused blocks. */ keycache->blocks_unused++; #ifdef THREAD /* All pending requests for this page must be resubmitted. */ if (block->wqueue[COND_FOR_SAVED].last_thread) release_queue(&block->wqueue[COND_FOR_SAVED]); #endif } static int cmp_sec_link(BLOCK_LINK **a, BLOCK_LINK **b) { return (((*a)->hash_link->diskpos < (*b)->hash_link->diskpos) ? -1 : ((*a)->hash_link->diskpos > (*b)->hash_link->diskpos) ? 1 : 0); } /* Flush a portion of changed blocks to disk, free used blocks if requested */ static int flush_cached_blocks(KEY_CACHE *keycache, File file, BLOCK_LINK **cache, BLOCK_LINK **end, enum flush_type type) { int error; int last_errno= 0; uint count= (uint) (end-cache); /* Don't lock the cache during the flush */ keycache_pthread_mutex_unlock(&keycache->cache_lock); /* As all blocks referred in 'cache' are marked by BLOCK_IN_FLUSH we are guarunteed no thread will change them */ qsort((byte*) cache, count, sizeof(*cache), (qsort_cmp) cmp_sec_link); keycache_pthread_mutex_lock(&keycache->cache_lock); for ( ; cache != end ; cache++) { BLOCK_LINK *block= *cache; KEYCACHE_DBUG_PRINT("flush_cached_blocks", ("block %u to be flushed", BLOCK_NUMBER(block))); keycache_pthread_mutex_unlock(&keycache->cache_lock); error= my_pwrite(file, block->buffer+block->offset, block->length - block->offset, block->hash_link->diskpos+ block->offset, MYF(MY_NABP | MY_WAIT_IF_FULL)); keycache_pthread_mutex_lock(&keycache->cache_lock); keycache->global_cache_write++; if (error) { block->status|= BLOCK_ERROR; if (!last_errno) last_errno= errno ? errno : -1; } #ifdef THREAD /* Let to proceed for possible waiting requests to write to the block page. It might happen only during an operation to resize the key cache. */ if (block->wqueue[COND_FOR_SAVED].last_thread) release_queue(&block->wqueue[COND_FOR_SAVED]); #endif /* type will never be FLUSH_IGNORE_CHANGED here */ if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE)) { keycache->blocks_changed--; keycache->global_blocks_changed--; free_block(keycache, block); } else { block->status&= ~BLOCK_IN_FLUSH; link_to_file_list(keycache, block, file, 1); unreg_request(keycache, block, 1); } } return last_errno; } /* flush all key blocks for a file to disk, but don't do any mutex locks flush_key_blocks_int() keycache pointer to a key cache data structure file handler for the file to flush to flush_type type of the flush NOTES This function doesn't do any mutex locks because it needs to be called both from flush_key_blocks and flush_all_key_blocks (the later one does the mutex lock in the resize_key_cache() function). RETURN 0 ok 1 error */ static int flush_key_blocks_int(KEY_CACHE *keycache, File file, enum flush_type type) { BLOCK_LINK *cache_buff[FLUSH_CACHE],**cache; int last_errno= 0; DBUG_ENTER("flush_key_blocks_int"); DBUG_PRINT("enter",("file: %d blocks_used: %lu blocks_changed: %lu", file, keycache->blocks_used, keycache->blocks_changed)); #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) DBUG_EXECUTE("check_keycache", test_key_cache(keycache, "start of flush_key_blocks", 0);); #endif cache= cache_buff; if (keycache->disk_blocks > 0 && (!my_disable_flush_key_blocks || type != FLUSH_KEEP)) { /* Key cache exists and flush is not disabled */ int error= 0; uint count= 0; BLOCK_LINK **pos,**end; BLOCK_LINK *first_in_switch= NULL; BLOCK_LINK *block, *next; #if defined(KEYCACHE_DEBUG) uint cnt=0; #endif if (type != FLUSH_IGNORE_CHANGED) { /* Count how many key blocks we have to cache to be able to flush all dirty pages with minimum seek moves */ for (block= keycache->changed_blocks[FILE_HASH(file)] ; block ; block= block->next_changed) { if (block->hash_link->file == file) { count++; KEYCACHE_DBUG_ASSERT(count<= keycache->blocks_used); } } /* Allocate a new buffer only if its bigger than the one we have */ if (count > FLUSH_CACHE && !(cache= (BLOCK_LINK**) my_malloc(sizeof(BLOCK_LINK*)*count, MYF(0)))) { cache= cache_buff; count= FLUSH_CACHE; } } /* Retrieve the blocks and write them to a buffer to be flushed */ restart: end= (pos= cache)+count; for (block= keycache->changed_blocks[FILE_HASH(file)] ; block ; block= next) { #if defined(KEYCACHE_DEBUG) cnt++; KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); #endif next= block->next_changed; if (block->hash_link->file == file) { /* Mark the block with BLOCK_IN_FLUSH in order not to let other threads to use it for new pages and interfere with our sequence ot flushing dirty file pages */ block->status|= BLOCK_IN_FLUSH; if (! (block->status & BLOCK_IN_SWITCH)) { /* We care only for the blocks for which flushing was not initiated by other threads as a result of page swapping */ reg_requests(keycache, block, 1); if (type != FLUSH_IGNORE_CHANGED) { /* It's not a temporary file */ if (pos == end) { /* This happens only if there is not enough memory for the big block */ if ((error= flush_cached_blocks(keycache, file, cache, end,type))) last_errno=error; /* Restart the scan as some other thread might have changed the changed blocks chain: the blocks that were in switch state before the flush started have to be excluded */ goto restart; } *pos++= block; } else { /* It's a temporary file */ keycache->blocks_changed--; keycache->global_blocks_changed--; free_block(keycache, block); } } else { /* Link the block into a list of blocks 'in switch' */ unlink_changed(block); link_changed(block, &first_in_switch); } } } if (pos != cache) { if ((error= flush_cached_blocks(keycache, file, cache, pos, type))) last_errno= error; } /* Wait until list of blocks in switch is empty */ while (first_in_switch) { #if defined(KEYCACHE_DEBUG) cnt= 0; #endif block= first_in_switch; { #ifdef THREAD struct st_my_thread_var *thread= my_thread_var; add_to_queue(&block->wqueue[COND_FOR_SAVED], thread); do { KEYCACHE_DBUG_PRINT("flush_key_blocks_int: wait", ("suspend thread %ld", thread->id)); keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); } while (thread->next); #else KEYCACHE_DBUG_ASSERT(0); /* No parallel requests in single-threaded case */ #endif } #if defined(KEYCACHE_DEBUG) cnt++; KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); #endif } /* The following happens very seldom */ if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE)) { #if defined(KEYCACHE_DEBUG) cnt=0; #endif for (block= keycache->file_blocks[FILE_HASH(file)] ; block ; block= next) { #if defined(KEYCACHE_DEBUG) cnt++; KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); #endif next= block->next_changed; if (block->hash_link->file == file && (! (block->status & BLOCK_CHANGED) || type == FLUSH_IGNORE_CHANGED)) { reg_requests(keycache, block, 1); free_block(keycache, block); } } } } #ifndef DBUG_OFF DBUG_EXECUTE("check_keycache", test_key_cache(keycache, "end of flush_key_blocks", 0);); #endif if (cache != cache_buff) my_free((gptr) cache, MYF(0)); if (last_errno) errno=last_errno; /* Return first error */ DBUG_RETURN(last_errno != 0); } /* Flush all blocks for a file to disk SYNOPSIS flush_key_blocks() keycache pointer to a key cache data structure file handler for the file to flush to flush_type type of the flush RETURN 0 ok 1 error */ int flush_key_blocks(KEY_CACHE *keycache, File file, enum flush_type type) { int res; DBUG_ENTER("flush_key_blocks"); DBUG_PRINT("enter", ("keycache: 0x%lx", (long) keycache)); if (keycache->disk_blocks <= 0) DBUG_RETURN(0); keycache_pthread_mutex_lock(&keycache->cache_lock); inc_counter_for_resize_op(keycache); res= flush_key_blocks_int(keycache, file, type); dec_counter_for_resize_op(keycache); keycache_pthread_mutex_unlock(&keycache->cache_lock); DBUG_RETURN(res); } /* Flush all blocks in the key cache to disk */ static int flush_all_key_blocks(KEY_CACHE *keycache) { #if defined(KEYCACHE_DEBUG) uint cnt=0; #endif while (keycache->blocks_changed > 0) { BLOCK_LINK *block; for (block= keycache->used_last->next_used ; ; block=block->next_used) { if (block->hash_link) { #if defined(KEYCACHE_DEBUG) cnt++; KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); #endif if (flush_key_blocks_int(keycache, block->hash_link->file, FLUSH_RELEASE)) return 1; break; } if (block == keycache->used_last) break; } } return 0; } /* Reset the counters of a key cache. SYNOPSIS reset_key_cache_counters() name the name of a key cache key_cache pointer to the key kache to be reset DESCRIPTION This procedure is used by process_key_caches() to reset the counters of all currently used key caches, both the default one and the named ones. RETURN 0 on success (always because it can't fail) */ int reset_key_cache_counters(const char *name __attribute__((unused)), KEY_CACHE *key_cache) { DBUG_ENTER("reset_key_cache_counters"); if (!key_cache->key_cache_inited) { DBUG_PRINT("info", ("Key cache %s not initialized.", name)); DBUG_RETURN(0); } DBUG_PRINT("info", ("Resetting counters for key cache %s.", name)); key_cache->global_blocks_changed= 0; /* Key_blocks_not_flushed */ key_cache->global_cache_r_requests= 0; /* Key_read_requests */ key_cache->global_cache_read= 0; /* Key_reads */ key_cache->global_cache_w_requests= 0; /* Key_write_requests */ key_cache->global_cache_write= 0; /* Key_writes */ DBUG_RETURN(0); } #ifndef DBUG_OFF /* Test if disk-cache is ok */ static void test_key_cache(KEY_CACHE *keycache __attribute__((unused)), const char *where __attribute__((unused)), my_bool lock __attribute__((unused))) { /* TODO */ } #endif #if defined(KEYCACHE_TIMEOUT) #define KEYCACHE_DUMP_FILE "keycache_dump.txt" #define MAX_QUEUE_LEN 100 static void keycache_dump(KEY_CACHE *keycache) { FILE *keycache_dump_file=fopen(KEYCACHE_DUMP_FILE, "w"); struct st_my_thread_var *last; struct st_my_thread_var *thread; BLOCK_LINK *block; HASH_LINK *hash_link; KEYCACHE_PAGE *page; uint i; fprintf(keycache_dump_file, "thread:%u\n", thread->id); i=0; thread=last=waiting_for_hash_link.last_thread; fprintf(keycache_dump_file, "queue of threads waiting for hash link\n"); if (thread) do { thread=thread->next; page= (KEYCACHE_PAGE *) thread->opt_info; fprintf(keycache_dump_file, "thread:%u, (file,filepos)=(%u,%lu)\n", thread->id,(uint) page->file,(ulong) page->filepos); if (++i == MAX_QUEUE_LEN) break; } while (thread != last); i=0; thread=last=waiting_for_block.last_thread; fprintf(keycache_dump_file, "queue of threads waiting for block\n"); if (thread) do { thread=thread->next; hash_link= (HASH_LINK *) thread->opt_info; fprintf(keycache_dump_file, "thread:%u hash_link:%u (file,filepos)=(%u,%lu)\n", thread->id, (uint) HASH_LINK_NUMBER(hash_link), (uint) hash_link->file,(ulong) hash_link->diskpos); if (++i == MAX_QUEUE_LEN) break; } while (thread != last); for (i=0 ; i< keycache->blocks_used ; i++) { int j; block= &keycache->block_root[i]; hash_link= block->hash_link; fprintf(keycache_dump_file, "block:%u hash_link:%d status:%x #requests=%u waiting_for_readers:%d\n", i, (int) (hash_link ? HASH_LINK_NUMBER(hash_link) : -1), block->status, block->requests, block->condvar ? 1 : 0); for (j=0 ; j < 2; j++) { KEYCACHE_WQUEUE *wqueue=&block->wqueue[j]; thread= last= wqueue->last_thread; fprintf(keycache_dump_file, "queue #%d\n", j); if (thread) { do { thread=thread->next; fprintf(keycache_dump_file, "thread:%u\n", thread->id); if (++i == MAX_QUEUE_LEN) break; } while (thread != last); } } } fprintf(keycache_dump_file, "LRU chain:"); block= keycache= used_last; if (block) { do { block= block->next_used; fprintf(keycache_dump_file, "block:%u, ", BLOCK_NUMBER(block)); } while (block != keycache->used_last); } fprintf(keycache_dump_file, "\n"); fclose(keycache_dump_file); } #endif /* defined(KEYCACHE_TIMEOUT) */ #if defined(KEYCACHE_TIMEOUT) && !defined(__WIN__) static int keycache_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) { int rc; struct timeval now; /* time when we started waiting */ struct timespec timeout; /* timeout value for the wait function */ struct timezone tz; #if defined(KEYCACHE_DEBUG) int cnt=0; #endif /* Get current time */ gettimeofday(&now, &tz); /* Prepare timeout value */ timeout.tv_sec= now.tv_sec + KEYCACHE_TIMEOUT; /* timeval uses microseconds. timespec uses nanoseconds. 1 nanosecond = 1000 micro seconds */ timeout.tv_nsec= now.tv_usec * 1000; KEYCACHE_THREAD_TRACE_END("started waiting"); #if defined(KEYCACHE_DEBUG) cnt++; if (cnt % 100 == 0) fprintf(keycache_debug_log, "waiting...\n"); fflush(keycache_debug_log); #endif rc= pthread_cond_timedwait(cond, mutex, &timeout); KEYCACHE_THREAD_TRACE_BEGIN("finished waiting"); if (rc == ETIMEDOUT || rc == ETIME) { #if defined(KEYCACHE_DEBUG) fprintf(keycache_debug_log,"aborted by keycache timeout\n"); fclose(keycache_debug_log); abort(); #endif keycache_dump(); } #if defined(KEYCACHE_DEBUG) KEYCACHE_DBUG_ASSERT(rc != ETIMEDOUT); #else assert(rc != ETIMEDOUT); #endif return rc; } #else #if defined(KEYCACHE_DEBUG) static int keycache_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) { int rc; KEYCACHE_THREAD_TRACE_END("started waiting"); rc= pthread_cond_wait(cond, mutex); KEYCACHE_THREAD_TRACE_BEGIN("finished waiting"); return rc; } #endif #endif /* defined(KEYCACHE_TIMEOUT) && !defined(__WIN__) */ #if defined(KEYCACHE_DEBUG) static int keycache_pthread_mutex_lock(pthread_mutex_t *mutex) { int rc; rc= pthread_mutex_lock(mutex); KEYCACHE_THREAD_TRACE_BEGIN(""); return rc; } static void keycache_pthread_mutex_unlock(pthread_mutex_t *mutex) { KEYCACHE_THREAD_TRACE_END(""); pthread_mutex_unlock(mutex); } static int keycache_pthread_cond_signal(pthread_cond_t *cond) { int rc; KEYCACHE_THREAD_TRACE("signal"); rc= pthread_cond_signal(cond); return rc; } #if defined(KEYCACHE_DEBUG_LOG) static void keycache_debug_print(const char * fmt,...) { va_list args; va_start(args,fmt); if (keycache_debug_log) { VOID(vfprintf(keycache_debug_log, fmt, args)); VOID(fputc('\n',keycache_debug_log)); } va_end(args); } #endif /* defined(KEYCACHE_DEBUG_LOG) */ #if defined(KEYCACHE_DEBUG_LOG) void keycache_debug_log_close(void) { if (keycache_debug_log) fclose(keycache_debug_log); } #endif /* defined(KEYCACHE_DEBUG_LOG) */ #endif /* defined(KEYCACHE_DEBUG) */