/***************************************************************************** Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2015, 2016, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0upd.cc Update of a row Created 12/27/1996 Heikki Tuuri *******************************************************/ #include "ha_prototypes.h" #include "row0upd.h" #include "dict0dict.h" #include "dict0mem.h" #include "trx0undo.h" #include "rem0rec.h" #include "dict0boot.h" #include "dict0crea.h" #include "mach0data.h" #include "btr0btr.h" #include "btr0cur.h" #include "que0que.h" #include "row0ext.h" #include "row0ins.h" #include "row0log.h" #include "row0row.h" #include "row0sel.h" #include "rem0cmp.h" #include "lock0lock.h" #include "log0log.h" #include "pars0sym.h" #include "eval0eval.h" #include "buf0lru.h" #include "trx0rec.h" #include "fts0fts.h" #include "fts0types.h" #include #include #include /* What kind of latch and lock can we assume when the control comes to ------------------------------------------------------------------- an update node? -------------- Efficiency of massive updates would require keeping an x-latch on a clustered index page through many updates, and not setting an explicit x-lock on clustered index records, as they anyway will get an implicit x-lock when they are updated. A problem is that the read nodes in the graph should know that they must keep the latch when passing the control up to the update node, and not set any record lock on the record which will be updated. Another problem occurs if the execution is stopped, as the kernel switches to another query thread, or the transaction must wait for a lock. Then we should be able to release the latch and, maybe, acquire an explicit x-lock on the record. Because this seems too complicated, we conclude that the less efficient solution of releasing all the latches when the control is transferred to another node, and acquiring explicit x-locks, is better. */ /* How is a delete performed? If there is a delete without an explicit cursor, i.e., a searched delete, there are at least two different situations: the implicit select cursor may run on (1) the clustered index or on (2) a secondary index. The delete is performed by setting the delete bit in the record and substituting the id of the deleting transaction for the original trx id, and substituting a new roll ptr for previous roll ptr. The old trx id and roll ptr are saved in the undo log record. Thus, no physical changes occur in the index tree structure at the time of the delete. Only when the undo log is purged, the index records will be physically deleted from the index trees. The query graph executing a searched delete would consist of a delete node which has as a subtree a select subgraph. The select subgraph should return a (persistent) cursor in the clustered index, placed on page which is x-latched. The delete node should look for all secondary index records for this clustered index entry and mark them as deleted. When is the x-latch freed? The most efficient way for performing a searched delete is obviously to keep the x-latch for several steps of query graph execution. */ /************************************************************************* IMPORTANT NOTE: Any operation that generates redo MUST check that there is enough space in the redo log before for that operation. This is done by calling log_free_check(). The reason for checking the availability of the redo log space before the start of the operation is that we MUST not hold any synchonization objects when performing the check. If you make a change in this module make sure that no codepath is introduced where a call to log_free_check() is bypassed. */ /***********************************************************//** Checks if an update vector changes some of the first ordering fields of an index record. This is only used in foreign key checks and we can assume that index does not contain column prefixes. @return TRUE if changes */ static ibool row_upd_changes_first_fields_binary( /*================================*/ dtuple_t* entry, /*!< in: old value of index entry */ dict_index_t* index, /*!< in: index of entry */ const upd_t* update, /*!< in: update vector for the row */ ulint n); /*!< in: how many first fields to check */ /*********************************************************************//** Checks if index currently is mentioned as a referenced index in a foreign key constraint. NOTE that since we do not hold dict_operation_lock when leaving the function, it may be that the referencing table has been dropped when we leave this function: this function is only for heuristic use! @return TRUE if referenced */ static ibool row_upd_index_is_referenced( /*========================*/ dict_index_t* index, /*!< in: index */ trx_t* trx) /*!< in: transaction */ { dict_table_t* table = index->table; ibool froze_data_dict = FALSE; ibool is_referenced = FALSE; if (table->referenced_set.empty()) { return(FALSE); } if (trx->dict_operation_lock_mode == 0) { row_mysql_freeze_data_dictionary(trx); froze_data_dict = TRUE; } dict_foreign_set::iterator it = std::find_if(table->referenced_set.begin(), table->referenced_set.end(), dict_foreign_with_index(index)); is_referenced = (it != table->referenced_set.end()); if (froze_data_dict) { row_mysql_unfreeze_data_dictionary(trx); } return(is_referenced); } #ifdef WITH_WSREP static ibool wsrep_row_upd_index_is_foreign( /*========================*/ dict_index_t* index, /*!< in: index */ trx_t* trx) /*!< in: transaction */ { dict_table_t* table = index->table; ibool froze_data_dict = FALSE; ibool is_referenced = FALSE; if (table->foreign_set.empty()) { return(FALSE); } if (trx->dict_operation_lock_mode == 0) { row_mysql_freeze_data_dictionary(trx); froze_data_dict = TRUE; } dict_foreign_set::iterator it = std::find_if(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_with_foreign_index(index)); is_referenced = (it != table->foreign_set.end()); if (froze_data_dict) { row_mysql_unfreeze_data_dictionary(trx); } return(is_referenced); } #endif /* WITH_WSREP */ /*********************************************************************//** Checks if possible foreign key constraints hold after a delete of the record under pcur. NOTE that this function will temporarily commit mtr and lose the pcur position! @return DB_SUCCESS or an error code */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_upd_check_references_constraints( /*=================================*/ upd_node_t* node, /*!< in: row update node */ btr_pcur_t* pcur, /*!< in: cursor positioned on a record; NOTE: the cursor position is lost in this function! */ dict_table_t* table, /*!< in: table in question */ dict_index_t* index, /*!< in: index of the cursor */ ulint* offsets,/*!< in/out: rec_get_offsets(pcur.rec, index) */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr) /*!< in: mtr */ { dict_foreign_t* foreign; mem_heap_t* heap; dtuple_t* entry; trx_t* trx; const rec_t* rec; ulint n_ext; dberr_t err; ibool got_s_lock = FALSE; DBUG_ENTER("row_upd_check_references_constraints"); if (table->referenced_set.empty()) { DBUG_RETURN(DB_SUCCESS); } trx = thr_get_trx(thr); rec = btr_pcur_get_rec(pcur); ut_ad(rec_offs_validate(rec, index, offsets)); heap = mem_heap_create(500); entry = row_rec_to_index_entry(rec, index, offsets, &n_ext, heap); mtr_commit(mtr); DEBUG_SYNC_C("foreign_constraint_check_for_update"); mtr_start_trx(mtr, trx); if (trx->dict_operation_lock_mode == 0) { got_s_lock = TRUE; row_mysql_freeze_data_dictionary(trx); } for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; /* Note that we may have an update which updates the index record, but does NOT update the first fields which are referenced in a foreign key constraint. Then the update does NOT break the constraint. */ if (foreign->referenced_index == index && (node->is_delete || row_upd_changes_first_fields_binary( entry, index, node->update, foreign->n_fields))) { dict_table_t* foreign_table = foreign->foreign_table; dict_table_t* ref_table = NULL; if (foreign_table == NULL) { ref_table = dict_table_open_on_name( foreign->foreign_table_name_lookup, FALSE, FALSE, DICT_ERR_IGNORE_NONE); } /* NOTE that if the thread ends up waiting for a lock we will release dict_operation_lock temporarily! But the counter on the table protects 'foreign' from being dropped while the check is running. */ err = row_ins_check_foreign_constraint( FALSE, foreign, table, entry, thr); if (ref_table != NULL) { dict_table_close(ref_table, FALSE, FALSE); } if (err != DB_SUCCESS) { goto func_exit; } } } err = DB_SUCCESS; func_exit: if (got_s_lock) { row_mysql_unfreeze_data_dictionary(trx); } mem_heap_free(heap); DEBUG_SYNC_C("foreign_constraint_check_for_update_done"); DBUG_EXECUTE_IF("row_upd_cascade_lock_wait_err", err = DB_LOCK_WAIT; DBUG_SET("-d,row_upd_cascade_lock_wait_err");); DBUG_RETURN(err); } #ifdef WITH_WSREP static dberr_t wsrep_row_upd_check_foreign_constraints( /*=================================*/ upd_node_t* node, /*!< in: row update node */ btr_pcur_t* pcur, /*!< in: cursor positioned on a record; NOTE: the cursor position is lost in this function! */ dict_table_t* table, /*!< in: table in question */ dict_index_t* index, /*!< in: index of the cursor */ ulint* offsets,/*!< in/out: rec_get_offsets(pcur.rec, index) */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr) /*!< in: mtr */ { dict_foreign_t* foreign; mem_heap_t* heap; dtuple_t* entry; trx_t* trx; const rec_t* rec; ulint n_ext; dberr_t err; ibool got_s_lock = FALSE; ibool opened = FALSE; if (table->foreign_set.empty()) { return(DB_SUCCESS); } trx = thr_get_trx(thr); /* TODO: make native slave thread bail out here */ rec = btr_pcur_get_rec(pcur); ut_ad(rec_offs_validate(rec, index, offsets)); heap = mem_heap_create(500); entry = row_rec_to_index_entry(rec, index, offsets, &n_ext, heap); mtr_commit(mtr); mtr_start(mtr); if (trx->dict_operation_lock_mode == 0) { got_s_lock = TRUE; row_mysql_freeze_data_dictionary(trx); } for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { foreign = *it; /* Note that we may have an update which updates the index record, but does NOT update the first fields which are referenced in a foreign key constraint. Then the update does NOT break the constraint. */ if (foreign->foreign_index == index && (node->is_delete || row_upd_changes_first_fields_binary( entry, index, node->update, foreign->n_fields))) { if (foreign->referenced_table == NULL) { foreign->referenced_table = dict_table_open_on_name( foreign->referenced_table_name_lookup, FALSE, FALSE, DICT_ERR_IGNORE_NONE); opened = (foreign->referenced_table) ? TRUE : FALSE; } /* NOTE that if the thread ends up waiting for a lock we will release dict_operation_lock temporarily! But the counter on the table protects 'foreign' from being dropped while the check is running. */ err = row_ins_check_foreign_constraint( TRUE, foreign, table, entry, thr); if (foreign->referenced_table) { if (opened == TRUE) { dict_table_close(foreign->referenced_table, FALSE, FALSE); opened = FALSE; } } if (err != DB_SUCCESS) { goto func_exit; } } } err = DB_SUCCESS; func_exit: if (got_s_lock) { row_mysql_unfreeze_data_dictionary(trx); } mem_heap_free(heap); return(err); } #endif /* WITH_WSREP */ /*********************************************************************//** Creates an update node for a query graph. @return own: update node */ upd_node_t* upd_node_create( /*============*/ mem_heap_t* heap) /*!< in: mem heap where created */ { upd_node_t* node; node = static_cast( mem_heap_zalloc(heap, sizeof(upd_node_t))); node->common.type = QUE_NODE_UPDATE; node->state = UPD_NODE_UPDATE_CLUSTERED; node->heap = mem_heap_create(128); node->magic_n = UPD_NODE_MAGIC_N; return(node); } /*********************************************************************//** Updates the trx id and roll ptr field in a clustered index record in database recovery. */ void row_upd_rec_sys_fields_in_recovery( /*===============================*/ rec_t* rec, /*!< in/out: record */ page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ ulint pos, /*!< in: TRX_ID position in rec */ trx_id_t trx_id, /*!< in: transaction id */ roll_ptr_t roll_ptr)/*!< in: roll ptr of the undo log record */ { ut_ad(rec_offs_validate(rec, NULL, offsets)); if (page_zip) { page_zip_write_trx_id_and_roll_ptr( page_zip, rec, offsets, pos, trx_id, roll_ptr); } else { byte* field; ulint len; field = rec_get_nth_field(rec, offsets, pos, &len); ut_ad(len == DATA_TRX_ID_LEN); #if DATA_TRX_ID + 1 != DATA_ROLL_PTR # error "DATA_TRX_ID + 1 != DATA_ROLL_PTR" #endif trx_write_trx_id(field, trx_id); trx_write_roll_ptr(field + DATA_TRX_ID_LEN, roll_ptr); } } /*********************************************************************//** Sets the trx id or roll ptr field of a clustered index entry. */ void row_upd_index_entry_sys_field( /*==========================*/ dtuple_t* entry, /*!< in/out: index entry, where the memory buffers for sys fields are already allocated: the function just copies the new values to them */ dict_index_t* index, /*!< in: clustered index */ ulint type, /*!< in: DATA_TRX_ID or DATA_ROLL_PTR */ ib_uint64_t val) /*!< in: value to write */ { dfield_t* dfield; byte* field; ulint pos; ut_ad(dict_index_is_clust(index)); pos = dict_index_get_sys_col_pos(index, type); dfield = dtuple_get_nth_field(entry, pos); field = static_cast(dfield_get_data(dfield)); if (type == DATA_TRX_ID) { ut_ad(val > 0); trx_write_trx_id(field, val); } else { ut_ad(type == DATA_ROLL_PTR); trx_write_roll_ptr(field, val); } } /***********************************************************//** Returns TRUE if row update changes size of some field in index or if some field to be updated is stored externally in rec or update. @return TRUE if the update changes the size of some field in index or the field is external in rec or update */ ibool row_upd_changes_field_size_or_external( /*===================================*/ dict_index_t* index, /*!< in: index */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ const upd_t* update) /*!< in: update vector */ { const upd_field_t* upd_field; const dfield_t* new_val; ulint old_len; ulint new_len; ulint n_fields; ulint i; ut_ad(rec_offs_validate(NULL, index, offsets)); n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { upd_field = upd_get_nth_field(update, i); /* We should ignore virtual field if the index is not a virtual index */ if (upd_fld_is_virtual_col(upd_field) && dict_index_has_virtual(index) != DICT_VIRTUAL) { continue; } new_val = &(upd_field->new_val); new_len = dfield_get_len(new_val); if (dfield_is_null(new_val) && !rec_offs_comp(offsets)) { /* A bug fixed on Dec 31st, 2004: we looked at the SQL NULL size from the wrong field! We may backport this fix also to 4.0. The merge to 5.0 will be made manually immediately after we commit this to 4.1. */ new_len = dict_col_get_sql_null_size( dict_index_get_nth_col(index, upd_field->field_no), 0); } old_len = rec_offs_nth_size(offsets, upd_field->field_no); if (rec_offs_comp(offsets) && rec_offs_nth_sql_null(offsets, upd_field->field_no)) { /* Note that in the compact table format, for a variable length field, an SQL NULL will use zero bytes in the offset array at the start of the physical record, but a zero-length value (empty string) will use one byte! Thus, we cannot use update-in-place if we update an SQL NULL varchar to an empty string! */ old_len = UNIV_SQL_NULL; } if (dfield_is_ext(new_val) || old_len != new_len || rec_offs_nth_extern(offsets, upd_field->field_no)) { return(TRUE); } } return(FALSE); } /***********************************************************//** Returns true if row update contains disowned external fields. @return true if the update contains disowned external fields. */ bool row_upd_changes_disowned_external( /*==============================*/ const upd_t* update) /*!< in: update vector */ { const upd_field_t* upd_field; const dfield_t* new_val; ulint new_len; ulint n_fields; ulint i; n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { const byte* field_ref; upd_field = upd_get_nth_field(update, i); new_val = &(upd_field->new_val); new_len = dfield_get_len(new_val); if (!dfield_is_ext(new_val)) { continue; } ut_ad(new_len >= BTR_EXTERN_FIELD_REF_SIZE); field_ref = static_cast(dfield_get_data(new_val)) + new_len - BTR_EXTERN_FIELD_REF_SIZE; if (field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG) { return(true); } } return(false); } /***********************************************************//** Replaces the new column values stored in the update vector to the record given. No field size changes are allowed. This function is usually invoked on a clustered index. The only use case for a secondary index is row_ins_sec_index_entry_by_modify() or its counterpart in ibuf_insert_to_index_page(). */ void row_upd_rec_in_place( /*=================*/ rec_t* rec, /*!< in/out: record where replaced */ dict_index_t* index, /*!< in: the index the record belongs to */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ const upd_t* update, /*!< in: update vector */ page_zip_des_t* page_zip)/*!< in: compressed page with enough space available, or NULL */ { const upd_field_t* upd_field; const dfield_t* new_val; ulint n_fields; ulint i; ut_ad(rec_offs_validate(rec, index, offsets)); if (rec_offs_comp(offsets)) { rec_set_info_bits_new(rec, update->info_bits); } else { rec_set_info_bits_old(rec, update->info_bits); } n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { upd_field = upd_get_nth_field(update, i); /* No need to update virtual columns for non-virtual index */ if (upd_fld_is_virtual_col(upd_field) && !dict_index_has_virtual(index)) { continue; } new_val = &(upd_field->new_val); ut_ad(!dfield_is_ext(new_val) == !rec_offs_nth_extern(offsets, upd_field->field_no)); rec_set_nth_field(rec, offsets, upd_field->field_no, dfield_get_data(new_val), dfield_get_len(new_val)); } if (page_zip) { page_zip_write_rec(page_zip, rec, index, offsets, 0); } } /*********************************************************************//** Writes into the redo log the values of trx id and roll ptr and enough info to determine their positions within a clustered index record. @return new pointer to mlog */ byte* row_upd_write_sys_vals_to_log( /*==========================*/ dict_index_t* index, /*!< in: clustered index */ trx_id_t trx_id, /*!< in: transaction id */ roll_ptr_t roll_ptr,/*!< in: roll ptr of the undo log record */ byte* log_ptr,/*!< pointer to a buffer of size > 20 opened in mlog */ mtr_t* mtr MY_ATTRIBUTE((unused))) /*!< in: mtr */ { ut_ad(dict_index_is_clust(index)); ut_ad(mtr); log_ptr += mach_write_compressed(log_ptr, dict_index_get_sys_col_pos( index, DATA_TRX_ID)); trx_write_roll_ptr(log_ptr, roll_ptr); log_ptr += DATA_ROLL_PTR_LEN; log_ptr += mach_u64_write_compressed(log_ptr, trx_id); return(log_ptr); } /*********************************************************************//** Parses the log data of system field values. @return log data end or NULL */ byte* row_upd_parse_sys_vals( /*===================*/ const byte* ptr, /*!< in: buffer */ const byte* end_ptr,/*!< in: buffer end */ ulint* pos, /*!< out: TRX_ID position in record */ trx_id_t* trx_id, /*!< out: trx id */ roll_ptr_t* roll_ptr)/*!< out: roll ptr */ { *pos = mach_parse_compressed(&ptr, end_ptr); if (ptr == NULL) { return(NULL); } if (end_ptr < ptr + DATA_ROLL_PTR_LEN) { return(NULL); } *roll_ptr = trx_read_roll_ptr(ptr); ptr += DATA_ROLL_PTR_LEN; *trx_id = mach_u64_parse_compressed(&ptr, end_ptr); return(const_cast(ptr)); } /***********************************************************//** Writes to the redo log the new values of the fields occurring in the index. */ void row_upd_index_write_log( /*====================*/ const upd_t* update, /*!< in: update vector */ byte* log_ptr,/*!< in: pointer to mlog buffer: must contain at least MLOG_BUF_MARGIN bytes of free space; the buffer is closed within this function */ mtr_t* mtr) /*!< in: mtr into whose log to write */ { const upd_field_t* upd_field; const dfield_t* new_val; ulint len; ulint n_fields; byte* buf_end; ulint i; n_fields = upd_get_n_fields(update); buf_end = log_ptr + MLOG_BUF_MARGIN; mach_write_to_1(log_ptr, update->info_bits); log_ptr++; log_ptr += mach_write_compressed(log_ptr, n_fields); for (i = 0; i < n_fields; i++) { #if MLOG_BUF_MARGIN <= 30 # error "MLOG_BUF_MARGIN <= 30" #endif if (log_ptr + 30 > buf_end) { mlog_close(mtr, log_ptr); log_ptr = mlog_open(mtr, MLOG_BUF_MARGIN); buf_end = log_ptr + MLOG_BUF_MARGIN; } upd_field = upd_get_nth_field(update, i); new_val = &(upd_field->new_val); len = dfield_get_len(new_val); /* If this is a virtual column, mark it using special field_no */ ulint field_no = upd_fld_is_virtual_col(upd_field) ? REC_MAX_N_FIELDS + upd_field->field_no : upd_field->field_no; log_ptr += mach_write_compressed(log_ptr, field_no); log_ptr += mach_write_compressed(log_ptr, len); if (len != UNIV_SQL_NULL) { if (log_ptr + len < buf_end) { memcpy(log_ptr, dfield_get_data(new_val), len); log_ptr += len; } else { mlog_close(mtr, log_ptr); mlog_catenate_string( mtr, static_cast( dfield_get_data(new_val)), len); log_ptr = mlog_open(mtr, MLOG_BUF_MARGIN); buf_end = log_ptr + MLOG_BUF_MARGIN; } } } mlog_close(mtr, log_ptr); } /*********************************************************************//** Parses the log data written by row_upd_index_write_log. @return log data end or NULL */ byte* row_upd_index_parse( /*================*/ const byte* ptr, /*!< in: buffer */ const byte* end_ptr,/*!< in: buffer end */ mem_heap_t* heap, /*!< in: memory heap where update vector is built */ upd_t** update_out)/*!< out: update vector */ { upd_t* update; upd_field_t* upd_field; dfield_t* new_val; ulint len; ulint n_fields; ulint info_bits; ulint i; if (end_ptr < ptr + 1) { return(NULL); } info_bits = mach_read_from_1(ptr); ptr++; n_fields = mach_parse_compressed(&ptr, end_ptr); if (ptr == NULL) { return(NULL); } update = upd_create(n_fields, heap); update->info_bits = info_bits; for (i = 0; i < n_fields; i++) { ulint field_no; upd_field = upd_get_nth_field(update, i); new_val = &(upd_field->new_val); field_no = mach_parse_compressed(&ptr, end_ptr); if (ptr == NULL) { return(NULL); } /* Check if this is a virtual column, mark the prtype if that is the case */ if (field_no >= REC_MAX_N_FIELDS) { new_val->type.prtype |= DATA_VIRTUAL; field_no -= REC_MAX_N_FIELDS; } upd_field->field_no = field_no; len = mach_parse_compressed(&ptr, end_ptr); if (ptr == NULL) { return(NULL); } if (len != UNIV_SQL_NULL) { if (end_ptr < ptr + len) { return(NULL); } dfield_set_data(new_val, mem_heap_dup(heap, ptr, len), len); ptr += len; } else { dfield_set_null(new_val); } } *update_out = update; return(const_cast(ptr)); } /***************************************************************//** Builds an update vector from those fields which in a secondary index entry differ from a record that has the equal ordering fields. NOTE: we compare the fields as binary strings! @return own: update vector of differing fields */ upd_t* row_upd_build_sec_rec_difference_binary( /*====================================*/ const rec_t* rec, /*!< in: secondary index record */ dict_index_t* index, /*!< in: index */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ const dtuple_t* entry, /*!< in: entry to insert */ mem_heap_t* heap) /*!< in: memory heap from which allocated */ { upd_field_t* upd_field; const dfield_t* dfield; const byte* data; ulint len; upd_t* update; ulint n_diff; ulint i; /* This function is used only for a secondary index */ ut_a(!dict_index_is_clust(index)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(rec_offs_n_fields(offsets) == dtuple_get_n_fields(entry)); ut_ad(!rec_offs_any_extern(offsets)); update = upd_create(dtuple_get_n_fields(entry), heap); n_diff = 0; for (i = 0; i < dtuple_get_n_fields(entry); i++) { data = rec_get_nth_field(rec, offsets, i, &len); dfield = dtuple_get_nth_field(entry, i); /* NOTE that it may be that len != dfield_get_len(dfield) if we are updating in a character set and collation where strings of different length can be equal in an alphabetical comparison, and also in the case where we have a column prefix index and the last characters in the index field are spaces; the latter case probably caused the assertion failures reported at row0upd.cc line 713 in versions 4.0.14 - 4.0.16. */ /* NOTE: we compare the fields as binary strings! (No collation) */ if (!dfield_data_is_binary_equal(dfield, len, data)) { upd_field = upd_get_nth_field(update, n_diff); dfield_copy(&(upd_field->new_val), dfield); upd_field_set_field_no(upd_field, i, index, NULL); n_diff++; } } update->n_fields = n_diff; return(update); } /** Builds an update vector from those fields, excluding the roll ptr and trx id fields, which in an index entry differ from a record that has the equal ordering fields. NOTE: we compare the fields as binary strings! @param[in] index clustered index @param[in] entry clustered index entry to insert @param[in] rec clustered index record @param[in] offsets rec_get_offsets(rec,index), or NULL @param[in] no_sys skip the system columns DB_TRX_ID and DB_ROLL_PTR @param[in] trx transaction (for diagnostics), or NULL @param[in] heap memory heap from which allocated @param[in] mysql_table NULL, or mysql table object when user thread invokes dml @return own: update vector of differing fields, excluding roll ptr and trx id */ upd_t* row_upd_build_difference_binary( dict_index_t* index, const dtuple_t* entry, const rec_t* rec, const ulint* offsets, bool no_sys, trx_t* trx, mem_heap_t* heap, TABLE* mysql_table) { upd_field_t* upd_field; dfield_t* dfield; const byte* data; ulint len; upd_t* update; ulint n_diff; ulint trx_id_pos; ulint i; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint n_fld = dtuple_get_n_fields(entry); ulint n_v_fld = dtuple_get_n_v_fields(entry); rec_offs_init(offsets_); /* This function is used only for a clustered index */ ut_a(dict_index_is_clust(index)); update = upd_create(n_fld + n_v_fld, heap); n_diff = 0; trx_id_pos = dict_index_get_sys_col_pos(index, DATA_TRX_ID); ut_ad(dict_index_get_sys_col_pos(index, DATA_ROLL_PTR) == trx_id_pos + 1); if (!offsets) { offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap); } else { ut_ad(rec_offs_validate(rec, index, offsets)); } for (i = 0; i < n_fld; i++) { data = rec_get_nth_field(rec, offsets, i, &len); dfield = dtuple_get_nth_field(entry, i); /* NOTE: we compare the fields as binary strings! (No collation) */ if (no_sys) { /* TRX_ID */ if (i == trx_id_pos) { continue; } /* DB_ROLL_PTR */ if (i == trx_id_pos + 1) { continue; } } if (!dfield_is_ext(dfield) != !rec_offs_nth_extern(offsets, i) || !dfield_data_is_binary_equal(dfield, len, data)) { upd_field = upd_get_nth_field(update, n_diff); dfield_copy(&(upd_field->new_val), dfield); upd_field_set_field_no(upd_field, i, index, trx); n_diff++; } } /* Check the virtual columns updates. Even if there is no non-virtual column (base columns) change, we will still need to build the indexed virtual column value so that undo log would log them ( for purge/mvcc purpose) */ if (n_v_fld > 0) { row_ext_t* ext; mem_heap_t* v_heap = NULL; THD* thd; if (trx == NULL) { thd = current_thd; } else { thd = trx->mysql_thd; } ut_ad(!update->old_vrow); for (i = 0; i < n_v_fld; i++) { const dict_v_col_t* col = dict_table_get_nth_v_col(index->table, i); if (!col->m_col.ord_part) { continue; } if (update->old_vrow == NULL) { update->old_vrow = row_build( ROW_COPY_POINTERS, index, rec, offsets, index->table, NULL, NULL, &ext, heap); } dfield = dtuple_get_nth_v_field(entry, i); dfield_t* vfield = innobase_get_computed_value( update->old_vrow, col, index, &v_heap, heap, NULL, thd, mysql_table, NULL, NULL, NULL); if (!dfield_data_is_binary_equal( dfield, vfield->len, static_cast(vfield->data))) { upd_field = upd_get_nth_field(update, n_diff); upd_field->old_v_val = static_cast( mem_heap_alloc( heap, sizeof *upd_field->old_v_val)); dfield_copy(upd_field->old_v_val, vfield); dfield_copy(&(upd_field->new_val), dfield); upd_field_set_v_field_no( upd_field, i, index); n_diff++; } } if (v_heap) { mem_heap_free(v_heap); } } update->n_fields = n_diff; ut_ad(update->validate()); return(update); } /** Fetch a prefix of an externally stored column. This is similar to row_ext_lookup(), but the row_ext_t holds the old values of the column and must not be poisoned with the new values. @param[in] data 'internally' stored part of the field containing also the reference to the external part @param[in] local_len length of data, in bytes @param[in] page_size BLOB page size @param[in,out] len input - length of prefix to fetch; output: fetched length of the prefix @param[in,out] heap heap where to allocate @return BLOB prefix */ static byte* row_upd_ext_fetch( const byte* data, ulint local_len, const page_size_t& page_size, ulint* len, mem_heap_t* heap) { byte* buf = static_cast(mem_heap_alloc(heap, *len)); *len = btr_copy_externally_stored_field_prefix( buf, *len, page_size, data, local_len); /* We should never update records containing a half-deleted BLOB. */ ut_a(*len); return(buf); } /** Replaces the new column value stored in the update vector in the given index entry field. @param[in,out] dfield data field of the index entry @param[in] field index field @param[in] col field->col @param[in] uf update field @param[in,out] heap memory heap for allocating and copying the new value @param[in] page_size page size */ static void row_upd_index_replace_new_col_val( dfield_t* dfield, const dict_field_t* field, const dict_col_t* col, const upd_field_t* uf, mem_heap_t* heap, const page_size_t& page_size) { ulint len; const byte* data; dfield_copy_data(dfield, &uf->new_val); if (dfield_is_null(dfield)) { return; } len = dfield_get_len(dfield); data = static_cast(dfield_get_data(dfield)); if (field->prefix_len > 0) { ibool fetch_ext = dfield_is_ext(dfield) && len < (ulint) field->prefix_len + BTR_EXTERN_FIELD_REF_SIZE; if (fetch_ext) { ulint l = len; len = field->prefix_len; data = row_upd_ext_fetch(data, l, page_size, &len, heap); } len = dtype_get_at_most_n_mbchars(col->prtype, col->mbminmaxlen, field->prefix_len, len, (const char*) data); dfield_set_data(dfield, data, len); if (!fetch_ext) { dfield_dup(dfield, heap); } return; } switch (uf->orig_len) { byte* buf; case BTR_EXTERN_FIELD_REF_SIZE: /* Restore the original locally stored part of the column. In the undo log, InnoDB writes a longer prefix of externally stored columns, so that column prefixes in secondary indexes can be reconstructed. */ dfield_set_data(dfield, data + len - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); dfield_set_ext(dfield); /* fall through */ case 0: dfield_dup(dfield, heap); break; default: /* Reconstruct the original locally stored part of the column. The data will have to be copied. */ ut_a(uf->orig_len > BTR_EXTERN_FIELD_REF_SIZE); buf = static_cast(mem_heap_alloc(heap, uf->orig_len)); /* Copy the locally stored prefix. */ memcpy(buf, data, uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE); /* Copy the BLOB pointer. */ memcpy(buf + uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE, data + len - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); dfield_set_data(dfield, buf, uf->orig_len); dfield_set_ext(dfield); break; } } /***********************************************************//** Replaces the new column values stored in the update vector to the index entry given. */ void row_upd_index_replace_new_col_vals_index_pos( /*=========================================*/ dtuple_t* entry, /*!< in/out: index entry where replaced; the clustered index record must be covered by a lock or a page latch to prevent deletion (rollback or purge) */ dict_index_t* index, /*!< in: index; NOTE that this may also be a non-clustered index */ const upd_t* update, /*!< in: an update vector built for the index so that the field number in an upd_field is the index position */ ibool order_only, /*!< in: if TRUE, limit the replacement to ordering fields of index; note that this does not work for non-clustered indexes. */ mem_heap_t* heap) /*!< in: memory heap for allocating and copying the new values */ { ulint i; ulint n_fields; const page_size_t& page_size = dict_table_page_size(index->table); dtuple_set_info_bits(entry, update->info_bits); if (order_only) { n_fields = dict_index_get_n_unique(index); } else { n_fields = dict_index_get_n_fields(index); } for (i = 0; i < n_fields; i++) { const dict_field_t* field; const dict_col_t* col; const upd_field_t* uf; field = dict_index_get_nth_field(index, i); col = dict_field_get_col(field); if (dict_col_is_virtual(col)) { const dict_v_col_t* vcol = reinterpret_cast< const dict_v_col_t*>( col); uf = upd_get_field_by_field_no( update, vcol->v_pos, true); } else { uf = upd_get_field_by_field_no( update, i, false); } if (uf) { row_upd_index_replace_new_col_val( dtuple_get_nth_field(entry, i), field, col, uf, heap, page_size); } } } /***********************************************************//** Replaces the new column values stored in the update vector to the index entry given. */ void row_upd_index_replace_new_col_vals( /*===============================*/ dtuple_t* entry, /*!< in/out: index entry where replaced; the clustered index record must be covered by a lock or a page latch to prevent deletion (rollback or purge) */ dict_index_t* index, /*!< in: index; NOTE that this may also be a non-clustered index */ const upd_t* update, /*!< in: an update vector built for the CLUSTERED index so that the field number in an upd_field is the clustered index position */ mem_heap_t* heap) /*!< in: memory heap for allocating and copying the new values */ { ulint i; const dict_index_t* clust_index = dict_table_get_first_index(index->table); const page_size_t& page_size = dict_table_page_size(index->table); dtuple_set_info_bits(entry, update->info_bits); for (i = 0; i < dict_index_get_n_fields(index); i++) { const dict_field_t* field; const dict_col_t* col; const upd_field_t* uf; field = dict_index_get_nth_field(index, i); col = dict_field_get_col(field); if (dict_col_is_virtual(col)) { const dict_v_col_t* vcol = reinterpret_cast< const dict_v_col_t*>( col); uf = upd_get_field_by_field_no( update, vcol->v_pos, true); } else { uf = upd_get_field_by_field_no( update, dict_col_get_clust_pos(col, clust_index), false); } if (uf) { row_upd_index_replace_new_col_val( dtuple_get_nth_field(entry, i), field, col, uf, heap, page_size); } } } /** Replaces the virtual column values stored in the update vector. @param[in,out] row row whose column to be set @param[in] field data to set @param[in] len data length @param[in] vcol virtual column info */ static void row_upd_set_vcol_data( dtuple_t* row, const byte* field, ulint len, dict_v_col_t* vcol) { dfield_t* dfield = dtuple_get_nth_v_field(row, vcol->v_pos); if (dfield_get_type(dfield)->mtype == DATA_MISSING) { dict_col_copy_type(&vcol->m_col, dfield_get_type(dfield)); dfield_set_data(dfield, field, len); } } /** Replaces the virtual column values stored in a dtuple with that of a update vector. @param[in,out] row row whose column to be updated @param[in] table table @param[in] update an update vector built for the clustered index @param[in] upd_new update to new or old value @param[in,out] undo_row undo row (if needs to be updated) @param[in] ptr remaining part in update undo log */ void row_upd_replace_vcol( dtuple_t* row, const dict_table_t* table, const upd_t* update, bool upd_new, dtuple_t* undo_row, const byte* ptr) { ulint col_no; ulint i; ulint n_cols; n_cols = dtuple_get_n_v_fields(row); for (col_no = 0; col_no < n_cols; col_no++) { dfield_t* dfield; const dict_v_col_t* col = dict_table_get_nth_v_col(table, col_no); /* If there is no index on the column, do not bother for value update */ if (!col->m_col.ord_part) { dict_index_t* clust_index = dict_table_get_first_index(table); /* Skip the column if there is no online alter table in progress or it is not being indexed in new table */ if (!dict_index_is_online_ddl(clust_index) || !row_log_col_is_indexed(clust_index, col_no)) { continue; } } dfield = dtuple_get_nth_v_field(row, col_no); for (i = 0; i < upd_get_n_fields(update); i++) { const upd_field_t* upd_field = upd_get_nth_field(update, i); if (!upd_fld_is_virtual_col(upd_field) || upd_field->field_no != col->v_pos) { continue; } if (upd_new) { dfield_copy_data(dfield, &upd_field->new_val); } else { dfield_copy_data(dfield, upd_field->old_v_val); } dfield_get_type(dfield)->mtype = upd_field->new_val.type.mtype; dfield_get_type(dfield)->prtype = upd_field->new_val.type.prtype; dfield_get_type(dfield)->mbminmaxlen = upd_field->new_val.type.mbminmaxlen; break; } } bool first_v_col = true; bool is_undo_log = true; /* We will read those unchanged (but indexed) virtual columns in */ if (ptr != NULL) { const byte* end_ptr; end_ptr = ptr + mach_read_from_2(ptr); ptr += 2; while (ptr != end_ptr) { const byte* field; ulint field_no; ulint len; ulint orig_len; bool is_v; field_no = mach_read_next_compressed(&ptr); is_v = (field_no >= REC_MAX_N_FIELDS); if (is_v) { ptr = trx_undo_read_v_idx( table, ptr, first_v_col, &is_undo_log, &field_no); first_v_col = false; } ptr = trx_undo_rec_get_col_val( ptr, &field, &len, &orig_len); if (field_no == ULINT_UNDEFINED) { ut_ad(is_v); continue; } if (is_v) { dict_v_col_t* vcol = dict_table_get_nth_v_col( table, field_no); row_upd_set_vcol_data(row, field, len, vcol); if (undo_row) { row_upd_set_vcol_data( undo_row, field, len, vcol); } } ut_ad(ptr<= end_ptr); } } } /***********************************************************//** Replaces the new column values stored in the update vector. */ void row_upd_replace( /*============*/ dtuple_t* row, /*!< in/out: row where replaced, indexed by col_no; the clustered index record must be covered by a lock or a page latch to prevent deletion (rollback or purge) */ row_ext_t** ext, /*!< out, own: NULL, or externally stored column prefixes */ const dict_index_t* index, /*!< in: clustered index */ const upd_t* update, /*!< in: an update vector built for the clustered index */ mem_heap_t* heap) /*!< in: memory heap */ { ulint col_no; ulint i; ulint n_cols; ulint n_ext_cols; ulint* ext_cols; const dict_table_t* table; ut_ad(row); ut_ad(ext); ut_ad(index); ut_ad(dict_index_is_clust(index)); ut_ad(update); ut_ad(heap); ut_ad(update->validate()); n_cols = dtuple_get_n_fields(row); table = index->table; ut_ad(n_cols == dict_table_get_n_cols(table)); ext_cols = static_cast( mem_heap_alloc(heap, n_cols * sizeof *ext_cols)); n_ext_cols = 0; dtuple_set_info_bits(row, update->info_bits); for (col_no = 0; col_no < n_cols; col_no++) { const dict_col_t* col = dict_table_get_nth_col(table, col_no); const ulint clust_pos = dict_col_get_clust_pos(col, index); dfield_t* dfield; if (UNIV_UNLIKELY(clust_pos == ULINT_UNDEFINED)) { continue; } dfield = dtuple_get_nth_field(row, col_no); for (i = 0; i < upd_get_n_fields(update); i++) { const upd_field_t* upd_field = upd_get_nth_field(update, i); if (upd_field->field_no != clust_pos || upd_fld_is_virtual_col(upd_field)) { continue; } dfield_copy_data(dfield, &upd_field->new_val); break; } if (dfield_is_ext(dfield) && col->ord_part) { ext_cols[n_ext_cols++] = col_no; } } if (n_ext_cols) { *ext = row_ext_create(n_ext_cols, ext_cols, table->flags, row, heap); } else { *ext = NULL; } row_upd_replace_vcol(row, table, update, true, NULL, NULL); } /***********************************************************//** Checks if an update vector changes an ordering field of an index record. This function is fast if the update vector is short or the number of ordering fields in the index is small. Otherwise, this can be quadratic. NOTE: we compare the fields as binary strings! @return TRUE if update vector changes an ordering field in the index record */ ibool row_upd_changes_ord_field_binary_func( /*==================================*/ dict_index_t* index, /*!< in: index of the record */ const upd_t* update, /*!< in: update vector for the row; NOTE: the field numbers in this MUST be clustered index positions! */ #ifdef UNIV_DEBUG const que_thr_t*thr, /*!< in: query thread */ #endif /* UNIV_DEBUG */ const dtuple_t* row, /*!< in: old value of row, or NULL if the row and the data values in update are not known when this function is called, e.g., at compile time */ const row_ext_t*ext, /*!< NULL, or prefixes of the externally stored columns in the old row */ ulint flag) /*!< in: ROW_BUILD_NORMAL, ROW_BUILD_FOR_PURGE or ROW_BUILD_FOR_UNDO */ { ulint n_unique; ulint i; const dict_index_t* clust_index; ut_ad(thr); ut_ad(thr->graph); ut_ad(thr->graph->trx); n_unique = dict_index_get_n_unique(index); clust_index = dict_table_get_first_index(index->table); for (i = 0; i < n_unique; i++) { const dict_field_t* ind_field; const dict_col_t* col; ulint col_no; const upd_field_t* upd_field; const dfield_t* dfield; dfield_t dfield_ext; ulint dfield_len= 0; const byte* buf; bool is_virtual; const dict_v_col_t* vcol = NULL; ind_field = dict_index_get_nth_field(index, i); col = dict_field_get_col(ind_field); col_no = dict_col_get_no(col); is_virtual = dict_col_is_virtual(col); if (is_virtual) { vcol = reinterpret_cast(col); upd_field = upd_get_field_by_field_no( update, vcol->v_pos, true); } else { upd_field = upd_get_field_by_field_no( update, dict_col_get_clust_pos(col, clust_index), false); } if (upd_field == NULL) { continue; } if (row == NULL) { ut_ad(ext == NULL); return(TRUE); } if (is_virtual) { dfield = dtuple_get_nth_v_field( row, vcol->v_pos); } else { dfield = dtuple_get_nth_field(row, col_no); } /* For spatial index update, since the different geometry data could generate same MBR, so, if the new index entry is same as old entry, which means the MBR is not changed, we don't need to do anything. */ if (dict_index_is_spatial(index) && i == 0) { double mbr1[SPDIMS * 2]; double mbr2[SPDIMS * 2]; rtr_mbr_t* old_mbr; rtr_mbr_t* new_mbr; uchar* dptr = NULL; ulint flen = 0; ulint dlen = 0; mem_heap_t* temp_heap = NULL; const dfield_t* new_field = &upd_field->new_val; const page_size_t page_size = (ext != NULL) ? ext->page_size : dict_table_page_size( index->table); ut_ad(dfield->data != NULL && dfield->len > GEO_DATA_HEADER_SIZE); ut_ad(dict_col_get_spatial_status(col) != SPATIAL_NONE); /* Get the old mbr. */ if (dfield_is_ext(dfield)) { /* For off-page stored data, we need to read the whole field data. */ flen = dfield_get_len(dfield); dptr = static_cast( dfield_get_data(dfield)); temp_heap = mem_heap_create(1000); dptr = btr_copy_externally_stored_field( &dlen, dptr, page_size, flen, temp_heap); } else { dptr = static_cast(dfield->data); dlen = dfield->len; } rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, static_cast(dlen - GEO_DATA_HEADER_SIZE), SPDIMS, mbr1); old_mbr = reinterpret_cast(mbr1); /* Get the new mbr. */ if (dfield_is_ext(new_field)) { if (flag == ROW_BUILD_FOR_UNDO && dict_table_get_format(index->table) >= UNIV_FORMAT_B) { /* For undo, and the table is Barrcuda, we need to skip the prefix data. */ flen = BTR_EXTERN_FIELD_REF_SIZE; ut_ad(dfield_get_len(new_field) >= BTR_EXTERN_FIELD_REF_SIZE); dptr = static_cast( dfield_get_data(new_field)) + dfield_get_len(new_field) - BTR_EXTERN_FIELD_REF_SIZE; } else { flen = dfield_get_len(new_field); dptr = static_cast( dfield_get_data(new_field)); } if (temp_heap == NULL) { temp_heap = mem_heap_create(1000); } dptr = btr_copy_externally_stored_field( &dlen, dptr, page_size, flen, temp_heap); } else { dptr = static_cast(upd_field->new_val.data); dlen = upd_field->new_val.len; } rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, static_cast(dlen - GEO_DATA_HEADER_SIZE), SPDIMS, mbr2); new_mbr = reinterpret_cast(mbr2); if (temp_heap) { mem_heap_free(temp_heap); } if (!MBR_EQUAL_CMP(old_mbr, new_mbr)) { return(TRUE); } else { continue; } } /* This treatment of column prefix indexes is loosely based on row_build_index_entry(). */ if (UNIV_LIKELY(ind_field->prefix_len == 0) || dfield_is_null(dfield)) { /* do nothing special */ } else if (ext) { /* Silence a compiler warning without silencing a Valgrind error. */ dfield_len = 0; UNIV_MEM_INVALID(&dfield_len, sizeof dfield_len); /* See if the column is stored externally. */ buf = row_ext_lookup(ext, col_no, &dfield_len); ut_ad(col->ord_part); if (UNIV_LIKELY_NULL(buf)) { if (UNIV_UNLIKELY(buf == field_ref_zero)) { /* The externally stored field was not written yet. This record should only be seen by recv_recovery_rollback_active(), when the server had crashed before storing the field. */ ut_ad(thr->graph->trx->is_recovered); ut_ad(trx_is_recv(thr->graph->trx)); return(TRUE); } goto copy_dfield; } } else if (dfield_is_ext(dfield)) { dfield_len = dfield_get_len(dfield); ut_a(dfield_len > BTR_EXTERN_FIELD_REF_SIZE); dfield_len -= BTR_EXTERN_FIELD_REF_SIZE; ut_a(dict_index_is_clust(index) || ind_field->prefix_len <= dfield_len); buf = static_cast(dfield_get_data(dfield)); copy_dfield: ut_a(dfield_len > 0); dfield_copy(&dfield_ext, dfield); dfield_set_data(&dfield_ext, buf, dfield_len); dfield = &dfield_ext; } if (!dfield_datas_are_binary_equal( dfield, &upd_field->new_val, ind_field->prefix_len)) { return(TRUE); } } return(FALSE); } /***********************************************************//** Checks if an update vector changes an ordering field of an index record. NOTE: we compare the fields as binary strings! @return TRUE if update vector may change an ordering field in an index record */ ibool row_upd_changes_some_index_ord_field_binary( /*========================================*/ const dict_table_t* table, /*!< in: table */ const upd_t* update) /*!< in: update vector for the row */ { upd_field_t* upd_field; dict_index_t* index; ulint i; index = dict_table_get_first_index(table); for (i = 0; i < upd_get_n_fields(update); i++) { upd_field = upd_get_nth_field(update, i); if (upd_fld_is_virtual_col(upd_field)) { if (dict_table_get_nth_v_col(index->table, upd_field->field_no) ->m_col.ord_part) { return(TRUE); } } else { if (dict_field_get_col(dict_index_get_nth_field( index, upd_field->field_no))->ord_part) { return(TRUE); } } } return(FALSE); } /***********************************************************//** Checks if an FTS Doc ID column is affected by an UPDATE. @return whether the Doc ID column is changed */ bool row_upd_changes_doc_id( /*===================*/ dict_table_t* table, /*!< in: table */ upd_field_t* upd_field) /*!< in: field to check */ { ulint col_no; dict_index_t* clust_index; fts_t* fts = table->fts; clust_index = dict_table_get_first_index(table); /* Convert from index-specific column number to table-global column number. */ col_no = dict_index_get_nth_col_no(clust_index, upd_field->field_no); return(col_no == fts->doc_col); } /***********************************************************//** Checks if an FTS indexed column is affected by an UPDATE. @return offset within fts_t::indexes if FTS indexed column updated else ULINT_UNDEFINED */ ulint row_upd_changes_fts_column( /*=======================*/ dict_table_t* table, /*!< in: table */ upd_field_t* upd_field) /*!< in: field to check */ { ulint col_no; dict_index_t* clust_index; fts_t* fts = table->fts; if (upd_fld_is_virtual_col(upd_field)) { col_no = upd_field->field_no; return(dict_table_is_fts_column(fts->indexes, col_no, true)); } else { clust_index = dict_table_get_first_index(table); /* Convert from index-specific column number to table-global column number. */ col_no = dict_index_get_nth_col_no(clust_index, upd_field->field_no); return(dict_table_is_fts_column(fts->indexes, col_no, false)); } } /***********************************************************//** Checks if an update vector changes some of the first ordering fields of an index record. This is only used in foreign key checks and we can assume that index does not contain column prefixes. @return TRUE if changes */ static ibool row_upd_changes_first_fields_binary( /*================================*/ dtuple_t* entry, /*!< in: index entry */ dict_index_t* index, /*!< in: index of entry */ const upd_t* update, /*!< in: update vector for the row */ ulint n) /*!< in: how many first fields to check */ { ulint n_upd_fields; ulint i, j; dict_index_t* clust_index; ut_ad(update && index); ut_ad(n <= dict_index_get_n_fields(index)); n_upd_fields = upd_get_n_fields(update); clust_index = dict_table_get_first_index(index->table); for (i = 0; i < n; i++) { const dict_field_t* ind_field; const dict_col_t* col; ulint col_pos; ind_field = dict_index_get_nth_field(index, i); col = dict_field_get_col(ind_field); col_pos = dict_col_get_clust_pos(col, clust_index); ut_a(ind_field->prefix_len == 0); for (j = 0; j < n_upd_fields; j++) { upd_field_t* upd_field = upd_get_nth_field(update, j); if (col_pos == upd_field->field_no && !dfield_datas_are_binary_equal( dtuple_get_nth_field(entry, i), &upd_field->new_val, 0)) { return(TRUE); } } } return(FALSE); } /*********************************************************************//** Copies the column values from a record. */ UNIV_INLINE void row_upd_copy_columns( /*=================*/ rec_t* rec, /*!< in: record in a clustered index */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ sym_node_t* column) /*!< in: first column in a column list, or NULL */ { byte* data; ulint len; while (column) { data = rec_get_nth_field(rec, offsets, column->field_nos[SYM_CLUST_FIELD_NO], &len); eval_node_copy_and_alloc_val(column, data, len); column = UT_LIST_GET_NEXT(col_var_list, column); } } /*********************************************************************//** Calculates the new values for fields to update. Note that row_upd_copy_columns must have been called first. */ UNIV_INLINE void row_upd_eval_new_vals( /*==================*/ upd_t* update) /*!< in/out: update vector */ { que_node_t* exp; upd_field_t* upd_field; ulint n_fields; ulint i; n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { upd_field = upd_get_nth_field(update, i); exp = upd_field->exp; eval_exp(exp); dfield_copy_data(&(upd_field->new_val), que_node_get_val(exp)); } } /** Stores to the heap the virtual columns that need for any indexes @param[in,out] node row update node @param[in] update an update vector if it is update @param[in] thd mysql thread handle @param[in,out] mysql_table mysql table object */ void row_upd_store_v_row( upd_node_t* node, const upd_t* update, THD* thd, TABLE* mysql_table) { mem_heap_t* heap = NULL; dict_index_t* index = dict_table_get_first_index(node->table); for (ulint col_no = 0; col_no < dict_table_get_n_v_cols(node->table); col_no++) { const dict_v_col_t* col = dict_table_get_nth_v_col(node->table, col_no); if (col->m_col.ord_part) { dfield_t* dfield = dtuple_get_nth_v_field(node->row, col_no); ulint n_upd = update ? upd_get_n_fields(update) : 0; ulint i = 0; /* Check if the value is already in update vector */ for (i = 0; i < n_upd; i++) { const upd_field_t* upd_field = upd_get_nth_field(update, i); if (!(upd_field->new_val.type.prtype & DATA_VIRTUAL) || upd_field->field_no != col->v_pos) { continue; } dfield_copy_data(dfield, upd_field->old_v_val); break; } /* Not updated */ if (i >= n_upd) { /* If this is an update, then the value should be in update->old_vrow */ if (update) { if (update->old_vrow == NULL) { /* This only happens in cascade update. And virtual column can't be affected, so it is Ok to set it to NULL */ ut_ad(!node->cascade_top); dfield_set_null(dfield); } else { dfield_t* vfield = dtuple_get_nth_v_field( update->old_vrow, col_no); dfield_copy_data(dfield, vfield); } } else { /* Need to compute, this happens when deleting row */ innobase_get_computed_value( node->row, col, index, &heap, node->heap, NULL, thd, mysql_table, NULL, NULL, NULL); } } } } if (heap) { mem_heap_free(heap); } } /** Stores to the heap the row on which the node->pcur is positioned. @param[in] node row update node @param[in] thd mysql thread handle @param[in,out] mysql_table NULL, or mysql table object when user thread invokes dml */ void row_upd_store_row( upd_node_t* node, THD* thd, TABLE* mysql_table) { dict_index_t* clust_index; rec_t* rec; mem_heap_t* heap = NULL; row_ext_t** ext; ulint offsets_[REC_OFFS_NORMAL_SIZE]; const ulint* offsets; rec_offs_init(offsets_); ut_ad(node->pcur->latch_mode != BTR_NO_LATCHES); if (node->row != NULL) { mem_heap_empty(node->heap); } clust_index = dict_table_get_first_index(node->table); rec = btr_pcur_get_rec(node->pcur); offsets = rec_get_offsets(rec, clust_index, offsets_, ULINT_UNDEFINED, &heap); if (dict_table_get_format(node->table) >= UNIV_FORMAT_B) { /* In DYNAMIC or COMPRESSED format, there is no prefix of externally stored columns in the clustered index record. Build a cache of column prefixes. */ ext = &node->ext; } else { /* REDUNDANT and COMPACT formats store a local 768-byte prefix of each externally stored column. No cache is needed. */ ext = NULL; node->ext = NULL; } node->row = row_build(ROW_COPY_DATA, clust_index, rec, offsets, NULL, NULL, NULL, ext, node->heap); if (node->table->n_v_cols) { row_upd_store_v_row(node, node->is_delete ? NULL : node->update, thd, mysql_table); } if (node->is_delete) { node->upd_row = NULL; node->upd_ext = NULL; } else { node->upd_row = dtuple_copy(node->row, node->heap); row_upd_replace(node->upd_row, &node->upd_ext, clust_index, node->update, node->heap); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /***********************************************************//** Print a MBR data from disk */ static void srv_mbr_print(const byte* data) { double a, b, c, d; a = mach_double_read(data); data += sizeof(double); b = mach_double_read(data); data += sizeof(double); c = mach_double_read(data); data += sizeof(double); d = mach_double_read(data); ib::info() << "GIS MBR INFO: " << a << " and " << b << ", " << c << ", " << d << "\n"; } /***********************************************************//** Updates a secondary index entry of a row. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_upd_sec_index_entry( /*====================*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { mtr_t mtr; const rec_t* rec; btr_pcur_t pcur; mem_heap_t* heap; dtuple_t* entry; dict_index_t* index; btr_cur_t* btr_cur; ibool referenced; dberr_t err = DB_SUCCESS; trx_t* trx = thr_get_trx(thr); ulint mode; ulint flags; enum row_search_result search_result; ut_ad(trx->id != 0); index = node->index; referenced = row_upd_index_is_referenced(index, trx); #ifdef WITH_WSREP bool foreign = wsrep_row_upd_index_is_foreign(index, trx); #endif /* WITH_WSREP */ heap = mem_heap_create(1024); /* Build old index entry */ entry = row_build_index_entry(node->row, node->ext, index, heap); ut_a(entry); log_free_check(); DEBUG_SYNC_C_IF_THD(trx->mysql_thd, "before_row_upd_sec_index_entry"); mtr_start_trx(&mtr, trx); mtr.set_named_space(index->space); /* Disable REDO logging as lifetime of temp-tables is limited to server or connection lifetime and so REDO information is not needed on restart for recovery. Disable locking as temp-tables are not shared across connection. */ if (dict_table_is_temporary(index->table)) { flags = BTR_NO_LOCKING_FLAG; mtr.set_log_mode(MTR_LOG_NO_REDO); } else { flags = 0; } if (!index->is_committed()) { /* The index->online_status may change if the index is or was being created online, but not committed yet. It is protected by index->lock. */ mtr_s_lock(dict_index_get_lock(index), &mtr); switch (dict_index_get_online_status(index)) { case ONLINE_INDEX_COMPLETE: /* This is a normal index. Do not log anything. Perform the update on the index tree directly. */ break; case ONLINE_INDEX_CREATION: /* Log a DELETE and optionally INSERT. */ row_log_online_op(index, entry, 0); if (!node->is_delete) { mem_heap_empty(heap); entry = row_build_index_entry( node->upd_row, node->upd_ext, index, heap); ut_a(entry); row_log_online_op(index, entry, trx->id); } /* fall through */ case ONLINE_INDEX_ABORTED: case ONLINE_INDEX_ABORTED_DROPPED: mtr_commit(&mtr); goto func_exit; } /* We can only buffer delete-mark operations if there are no foreign key constraints referring to the index. Change buffering is disabled for temporary tables and spatial index. */ mode = (referenced || dict_table_is_temporary(index->table) || dict_index_is_spatial(index)) ? BTR_MODIFY_LEAF_ALREADY_S_LATCHED : BTR_DELETE_MARK_LEAF_ALREADY_S_LATCHED; } else { /* For secondary indexes, index->online_status==ONLINE_INDEX_COMPLETE if index->is_committed(). */ ut_ad(!dict_index_is_online_ddl(index)); /* We can only buffer delete-mark operations if there are no foreign key constraints referring to the index. Change buffering is disabled for temporary tables and spatial index. */ mode = (referenced || dict_table_is_temporary(index->table) || dict_index_is_spatial(index)) ? BTR_MODIFY_LEAF : BTR_DELETE_MARK_LEAF; } if (dict_index_is_spatial(index)) { ut_ad(mode & BTR_MODIFY_LEAF); mode |= BTR_RTREE_DELETE_MARK; } /* Set the query thread, so that ibuf_insert_low() will be able to invoke thd_get_trx(). */ btr_pcur_get_btr_cur(&pcur)->thr = thr; search_result = row_search_index_entry(index, entry, mode, &pcur, &mtr); btr_cur = btr_pcur_get_btr_cur(&pcur); rec = btr_cur_get_rec(btr_cur); switch (search_result) { case ROW_NOT_DELETED_REF: /* should only occur for BTR_DELETE */ ut_error; break; case ROW_BUFFERED: /* Entry was delete marked already. */ break; case ROW_NOT_FOUND: if (!index->is_committed()) { /* When online CREATE INDEX copied the update that we already made to the clustered index, and completed the secondary index creation before we got here, the old secondary index record would not exist. The CREATE INDEX should be waiting for a MySQL meta-data lock upgrade at least until this UPDATE returns. After that point, set_committed(true) would be invoked by commit_inplace_alter_table(). */ break; } if (dict_index_is_spatial(index) && btr_cur->rtr_info->fd_del) { /* We found the record, but a delete marked */ break; } ib::error() << "Record in index " << index->name << " of table " << index->table->name << " was not found on update: " << *entry << " at: " << rec_index_print(rec, index); if (entry->fields[0].data) srv_mbr_print((unsigned char*)entry->fields[0].data); #ifdef UNIV_DEBUG mtr_commit(&mtr); mtr_start(&mtr); ut_ad(btr_validate_index(index, 0, false)); ut_ad(0); #endif /* UNIV_DEBUG */ break; case ROW_FOUND: ut_ad(err == DB_SUCCESS); /* Delete mark the old index record; it can already be delete marked if we return after a lock wait in row_ins_sec_index_entry() below */ if (!rec_get_deleted_flag( rec, dict_table_is_comp(index->table))) { #ifdef WITH_WSREP que_node_t *parent = que_node_get_parent(node); #endif err = btr_cur_del_mark_set_sec_rec( flags, btr_cur, TRUE, thr, &mtr); if (err != DB_SUCCESS) { break; } #ifdef WITH_WSREP if (err == DB_SUCCESS && !referenced && !(parent && que_node_get_type(parent) == QUE_NODE_UPDATE && (std::find(((upd_node_t*)parent)->cascade_upd_nodes->begin(), ((upd_node_t*)parent)->cascade_upd_nodes->end(), node) == ((upd_node_t*)parent)->cascade_upd_nodes->end())) && foreign ) { ulint* offsets = rec_get_offsets( rec, index, NULL, ULINT_UNDEFINED, &heap); err = wsrep_row_upd_check_foreign_constraints( node, &pcur, index->table, index, offsets, thr, &mtr); switch (err) { case DB_SUCCESS: case DB_NO_REFERENCED_ROW: err = DB_SUCCESS; break; case DB_DEADLOCK: if (wsrep_debug) { ib::warn() << "WSREP: sec index FK check fail for deadlock" << " index " << index->name() << " table " << index->table->name.m_name; } break; default: ib::error() << "WSREP: referenced FK check fail: " << err << " index " << index->name() << " table " << index->table->name.m_name; break; } } #endif /* WITH_WSREP */ } ut_ad(err == DB_SUCCESS); if (referenced) { ulint* offsets; offsets = rec_get_offsets( rec, index, NULL, ULINT_UNDEFINED, &heap); /* NOTE that the following call loses the position of pcur ! */ err = row_upd_check_references_constraints( node, &pcur, index->table, index, offsets, thr, &mtr); } } btr_pcur_close(&pcur); mtr_commit(&mtr); if (node->is_delete || err != DB_SUCCESS) { goto func_exit; } mem_heap_empty(heap); /* Build a new index entry */ entry = row_build_index_entry(node->upd_row, node->upd_ext, index, heap); ut_a(entry); /* Insert new index entry */ err = row_ins_sec_index_entry(index, entry, thr, false); func_exit: mem_heap_free(heap); return(err); } /***********************************************************//** Updates the secondary index record if it is changed in the row update or deletes it if this is a delete. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_upd_sec_step( /*=============*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { ut_ad((node->state == UPD_NODE_UPDATE_ALL_SEC) || (node->state == UPD_NODE_UPDATE_SOME_SEC)); ut_ad(!dict_index_is_clust(node->index)); if (node->state == UPD_NODE_UPDATE_ALL_SEC || row_upd_changes_ord_field_binary(node->index, node->update, thr, node->row, node->ext)) { return(row_upd_sec_index_entry(node, thr)); } return(DB_SUCCESS); } #ifdef UNIV_DEBUG # define row_upd_clust_rec_by_insert_inherit(rec,offsets,entry,update) \ row_upd_clust_rec_by_insert_inherit_func(rec,offsets,entry,update) #else /* UNIV_DEBUG */ # define row_upd_clust_rec_by_insert_inherit(rec,offsets,entry,update) \ row_upd_clust_rec_by_insert_inherit_func(rec,entry,update) #endif /* UNIV_DEBUG */ /*******************************************************************//** Mark non-updated off-page columns inherited when the primary key is updated. We must mark them as inherited in entry, so that they are not freed in a rollback. A limited version of this function used to be called btr_cur_mark_dtuple_inherited_extern(). @return whether any columns were inherited */ static bool row_upd_clust_rec_by_insert_inherit_func( /*=====================================*/ const rec_t* rec, /*!< in: old record, or NULL */ #ifdef UNIV_DEBUG const ulint* offsets,/*!< in: rec_get_offsets(rec), or NULL */ #endif /* UNIV_DEBUG */ dtuple_t* entry, /*!< in/out: updated entry to be inserted into the clustered index */ const upd_t* update) /*!< in: update vector */ { bool inherit = false; ulint i; ut_ad(!rec == !offsets); ut_ad(!rec || rec_offs_any_extern(offsets)); for (i = 0; i < dtuple_get_n_fields(entry); i++) { dfield_t* dfield = dtuple_get_nth_field(entry, i); byte* data; ulint len; ut_ad(!offsets || !rec_offs_nth_extern(offsets, i) == !dfield_is_ext(dfield) || upd_get_field_by_field_no(update, i, false)); if (!dfield_is_ext(dfield) || upd_get_field_by_field_no(update, i, false)) { continue; } #ifdef UNIV_DEBUG if (UNIV_LIKELY(rec != NULL)) { const byte* rec_data = rec_get_nth_field(rec, offsets, i, &len); ut_ad(len == dfield_get_len(dfield)); ut_ad(len != UNIV_SQL_NULL); ut_ad(len >= BTR_EXTERN_FIELD_REF_SIZE); rec_data += len - BTR_EXTERN_FIELD_REF_SIZE; /* The pointer must not be zero. */ ut_ad(memcmp(rec_data, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); /* The BLOB must be owned. */ ut_ad(!(rec_data[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG)); } #endif /* UNIV_DEBUG */ len = dfield_get_len(dfield); ut_a(len != UNIV_SQL_NULL); ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE); data = static_cast(dfield_get_data(dfield)); data += len - BTR_EXTERN_FIELD_REF_SIZE; /* The pointer must not be zero. */ ut_a(memcmp(data, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); /* The BLOB must be owned, unless we are resuming from a lock wait and we already had disowned the BLOB. */ ut_a(rec == NULL || !(data[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG)); data[BTR_EXTERN_LEN] &= ~BTR_EXTERN_OWNER_FLAG; data[BTR_EXTERN_LEN] |= BTR_EXTERN_INHERITED_FLAG; /* The BTR_EXTERN_INHERITED_FLAG only matters in rollback of a fresh insert (insert_undo log). Purge (operating on update_undo log) will always free the extern fields of a delete-marked row. */ inherit = true; } return(inherit); } /***********************************************************//** Marks the clustered index record deleted and inserts the updated version of the record to the index. This function should be used when the ordering fields of the clustered index record change. This should be quite rare in database applications. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_upd_clust_rec_by_insert( /*========================*/ upd_node_t* node, /*!< in/out: row update node */ dict_index_t* index, /*!< in: clustered index of the record */ que_thr_t* thr, /*!< in: query thread */ ibool referenced,/*!< in: TRUE if index may be referenced in a foreign key constraint */ ibool foreign, /*!< in: TRUE if index is foreign key index */ mtr_t* mtr) /*!< in/out: mtr; gets committed here */ { mem_heap_t* heap; btr_pcur_t* pcur; btr_cur_t* btr_cur; trx_t* trx; dict_table_t* table; dtuple_t* entry; dberr_t err; rec_t* rec; ulint* offsets = NULL; #ifdef WITH_WSREP que_node_t *parent = que_node_get_parent(node); #endif ut_ad(node); ut_ad(dict_index_is_clust(index)); trx = thr_get_trx(thr); table = node->table; pcur = node->pcur; btr_cur = btr_pcur_get_btr_cur(pcur); heap = mem_heap_create(1000); entry = row_build_index_entry_low(node->upd_row, node->upd_ext, index, heap, ROW_BUILD_FOR_INSERT); ut_ad(dtuple_get_info_bits(entry) == 0); row_upd_index_entry_sys_field(entry, index, DATA_TRX_ID, trx->id); switch (node->state) { default: ut_error; case UPD_NODE_INSERT_CLUSTERED: /* A lock wait occurred in row_ins_clust_index_entry() in the previous invocation of this function. */ row_upd_clust_rec_by_insert_inherit( NULL, NULL, entry, node->update); break; case UPD_NODE_UPDATE_CLUSTERED: /* This is the first invocation of the function where we update the primary key. Delete-mark the old record in the clustered index and prepare to insert a new entry. */ rec = btr_cur_get_rec(btr_cur); offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap); ut_ad(page_rec_is_user_rec(rec)); if (rec_get_deleted_flag(rec, rec_offs_comp(offsets))) { /* If the clustered index record is already delete marked, then we are here after a DB_LOCK_WAIT. Skip delete marking clustered index and disowning its blobs. */ ut_ad(rec_get_trx_id(rec, index) == trx->id); ut_ad(!trx_undo_roll_ptr_is_insert( row_get_rec_roll_ptr(rec, index, offsets))); goto check_fk; } err = btr_cur_del_mark_set_clust_rec( btr_cur_get_block(btr_cur), rec, index, offsets, thr, node->row, mtr); if (err != DB_SUCCESS) { err_exit: mtr_commit(mtr); mem_heap_free(heap); return(err); } /* If the the new row inherits externally stored fields (off-page columns a.k.a. BLOBs) from the delete-marked old record, mark them disowned by the old record and owned by the new entry. */ if (rec_offs_any_extern(offsets)) { if (row_upd_clust_rec_by_insert_inherit( rec, offsets, entry, node->update)) { /* The blobs are disowned here, expecting the insert down below to inherit them. But if the insert fails, then this disown will be undone when the operation is rolled back. */ btr_cur_disown_inherited_fields( btr_cur_get_page_zip(btr_cur), rec, index, offsets, node->update, mtr); } } check_fk: if (referenced) { /* NOTE that the following call loses the position of pcur ! */ err = row_upd_check_references_constraints( node, pcur, table, index, offsets, thr, mtr); if (err != DB_SUCCESS) { goto err_exit; } } #ifdef WITH_WSREP if (!referenced && !(parent && que_node_get_type(parent) == QUE_NODE_UPDATE && (std::find(((upd_node_t*)parent)->cascade_upd_nodes->begin(), ((upd_node_t*)parent)->cascade_upd_nodes->end(), node) == ((upd_node_t*)parent)->cascade_upd_nodes->end())) && foreign ) { err = wsrep_row_upd_check_foreign_constraints( node, pcur, table, index, offsets, thr, mtr); switch (err) { case DB_SUCCESS: case DB_NO_REFERENCED_ROW: err = DB_SUCCESS; break; case DB_DEADLOCK: if (wsrep_debug) { ib::warn() << "WSREP: sec index FK check fail for deadlock" << " index " << index->name() << " table " << index->table->name.m_name; } break; default: ib::error() << "WSREP: referenced FK check fail: " << err << " index " << index->name() << " table " << index->table->name.m_name; break; } if (err != DB_SUCCESS) { goto err_exit; } } #endif /* WITH_WSREP */ } mtr_commit(mtr); err = row_ins_clust_index_entry( index, entry, thr, node->upd_ext ? node->upd_ext->n_ext : 0, false); node->state = UPD_NODE_INSERT_CLUSTERED; mem_heap_free(heap); return(err); } /***********************************************************//** Updates a clustered index record of a row when the ordering fields do not change. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_upd_clust_rec( /*==============*/ ulint flags, /*!< in: undo logging and locking flags */ upd_node_t* node, /*!< in: row update node */ dict_index_t* index, /*!< in: clustered index */ ulint* offsets,/*!< in: rec_get_offsets() on node->pcur */ mem_heap_t** offsets_heap, /*!< in/out: memory heap, can be emptied */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr) /*!< in: mtr; gets committed here */ { mem_heap_t* heap = NULL; big_rec_t* big_rec = NULL; btr_pcur_t* pcur; btr_cur_t* btr_cur; dberr_t err; const dtuple_t* rebuilt_old_pk = NULL; ut_ad(node); ut_ad(dict_index_is_clust(index)); ut_ad(!thr_get_trx(thr)->in_rollback); pcur = node->pcur; btr_cur = btr_pcur_get_btr_cur(pcur); ut_ad(btr_cur_get_index(btr_cur) == index); ut_ad(!rec_get_deleted_flag(btr_cur_get_rec(btr_cur), dict_table_is_comp(index->table))); ut_ad(rec_offs_validate(btr_cur_get_rec(btr_cur), index, offsets)); if (dict_index_is_online_ddl(index)) { rebuilt_old_pk = row_log_table_get_pk( btr_cur_get_rec(btr_cur), index, offsets, NULL, &heap); } /* Try optimistic updating of the record, keeping changes within the page; we do not check locks because we assume the x-lock on the record to update */ if (node->cmpl_info & UPD_NODE_NO_SIZE_CHANGE) { err = btr_cur_update_in_place( flags | BTR_NO_LOCKING_FLAG, btr_cur, offsets, node->update, node->cmpl_info, thr, thr_get_trx(thr)->id, mtr); } else { err = btr_cur_optimistic_update( flags | BTR_NO_LOCKING_FLAG, btr_cur, &offsets, offsets_heap, node->update, node->cmpl_info, thr, thr_get_trx(thr)->id, mtr); } if (err == DB_SUCCESS) { goto success; } mtr_commit(mtr); if (buf_LRU_buf_pool_running_out()) { err = DB_LOCK_TABLE_FULL; goto func_exit; } /* We may have to modify the tree structure: do a pessimistic descent down the index tree */ mtr_start_trx(mtr, thr_get_trx(thr)); mtr->set_named_space(index->space); /* Disable REDO logging as lifetime of temp-tables is limited to server or connection lifetime and so REDO information is not needed on restart for recovery. Disable locking as temp-tables are not shared across connection. */ if (dict_table_is_temporary(index->table)) { flags |= BTR_NO_LOCKING_FLAG; mtr->set_log_mode(MTR_LOG_NO_REDO); } /* NOTE: this transaction has an s-lock or x-lock on the record and therefore other transactions cannot modify the record when we have no latch on the page. In addition, we assume that other query threads of the same transaction do not modify the record in the meantime. Therefore we can assert that the restoration of the cursor succeeds. */ ut_a(btr_pcur_restore_position(BTR_MODIFY_TREE, pcur, mtr)); ut_ad(!rec_get_deleted_flag(btr_pcur_get_rec(pcur), dict_table_is_comp(index->table))); if (!heap) { heap = mem_heap_create(1024); } err = btr_cur_pessimistic_update( flags | BTR_NO_LOCKING_FLAG | BTR_KEEP_POS_FLAG, btr_cur, &offsets, offsets_heap, heap, &big_rec, node->update, node->cmpl_info, thr, thr_get_trx(thr)->id, mtr); if (big_rec) { ut_a(err == DB_SUCCESS); DEBUG_SYNC_C("before_row_upd_extern"); err = btr_store_big_rec_extern_fields( pcur, node->update, offsets, big_rec, mtr, BTR_STORE_UPDATE); DEBUG_SYNC_C("after_row_upd_extern"); } if (err == DB_SUCCESS) { success: if (dict_index_is_online_ddl(index)) { dtuple_t* new_v_row = NULL; dtuple_t* old_v_row = NULL; if (!(node->cmpl_info & UPD_NODE_NO_ORD_CHANGE)) { new_v_row = node->upd_row; old_v_row = node->update->old_vrow; } row_log_table_update( btr_cur_get_rec(btr_cur), index, offsets, rebuilt_old_pk, new_v_row, old_v_row); } } mtr_commit(mtr); func_exit: if (heap) { mem_heap_free(heap); } if (big_rec) { dtuple_big_rec_free(big_rec); } return(err); } /***********************************************************//** Delete marks a clustered index record. @return DB_SUCCESS if operation successfully completed, else error code */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_upd_del_mark_clust_rec( /*=======================*/ upd_node_t* node, /*!< in: row update node */ dict_index_t* index, /*!< in: clustered index */ ulint* offsets,/*!< in/out: rec_get_offsets() for the record under the cursor */ que_thr_t* thr, /*!< in: query thread */ ibool referenced, /*!< in: TRUE if index may be referenced in a foreign key constraint */ ibool foreign,/*!< in: TRUE if index is foreign key index */ mtr_t* mtr) /*!< in: mtr; gets committed here */ { btr_pcur_t* pcur; btr_cur_t* btr_cur; dberr_t err; rec_t* rec; #ifdef WITH_WSREP que_node_t *parent = que_node_get_parent(node); #endif ut_ad(node); ut_ad(dict_index_is_clust(index)); ut_ad(node->is_delete); pcur = node->pcur; btr_cur = btr_pcur_get_btr_cur(pcur); /* Store row because we have to build also the secondary index entries */ row_upd_store_row(node, thr_get_trx(thr)->mysql_thd, thr->prebuilt ? thr->prebuilt->m_mysql_table : NULL); /* Mark the clustered index record deleted; we do not have to check locks, because we assume that we have an x-lock on the record */ rec = btr_cur_get_rec(btr_cur); err = btr_cur_del_mark_set_clust_rec( btr_cur_get_block(btr_cur), rec, index, offsets, thr, node->row, mtr); if (err == DB_SUCCESS && referenced) { /* NOTE that the following call loses the position of pcur ! */ err = row_upd_check_references_constraints( node, pcur, index->table, index, offsets, thr, mtr); } #ifdef WITH_WSREP if (err == DB_SUCCESS && !referenced && !(parent && que_node_get_type(parent) == QUE_NODE_UPDATE && (std::find(((upd_node_t*)parent)->cascade_upd_nodes->begin(), ((upd_node_t*)parent)->cascade_upd_nodes->end(), node) == ((upd_node_t*)parent)->cascade_upd_nodes->end())) && thr_get_trx(thr) && foreign ) { err = wsrep_row_upd_check_foreign_constraints( node, pcur, index->table, index, offsets, thr, mtr); switch (err) { case DB_SUCCESS: case DB_NO_REFERENCED_ROW: err = DB_SUCCESS; break; case DB_DEADLOCK: if (wsrep_debug) { ib::warn() << "WSREP: sec index FK check fail for deadlock" << " index " << index->name() << " table " << index->table->name.m_name; } break; default: ib::error() << "WSREP: referenced FK check fail: " << err << " index " << index->name() << " table " << index->table->name.m_name; break; } } #endif /* WITH_WSREP */ mtr_commit(mtr); return(err); } /***********************************************************//** Updates the clustered index record. @return DB_SUCCESS if operation successfully completed, DB_LOCK_WAIT in case of a lock wait, else error code */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) dberr_t row_upd_clust_step( /*===============*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { dict_index_t* index; btr_pcur_t* pcur; ibool success; dberr_t err; mtr_t mtr; rec_t* rec; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets; ibool referenced; ibool foreign = FALSE; trx_t* trx = thr_get_trx(thr); rec_offs_init(offsets_); index = dict_table_get_first_index(node->table); referenced = row_upd_index_is_referenced(index, trx); #ifdef WITH_WSREP foreign = wsrep_row_upd_index_is_foreign( index, thr_get_trx(thr)); #endif pcur = node->pcur; /* We have to restore the cursor to its position */ mtr_start_trx(&mtr, thr_get_trx(thr)); mtr.set_named_space(index->space); /* Disable REDO logging as lifetime of temp-tables is limited to server or connection lifetime and so REDO information is not needed on restart for recovery. Disable locking as temp-tables are not shared across connection. */ const ulint flags = dict_table_is_temporary(index->table) ? BTR_NO_LOCKING_FLAG : 0; if (flags) { mtr.set_log_mode(MTR_LOG_NO_REDO); } /* If the restoration does not succeed, then the same transaction has deleted the record on which the cursor was, and that is an SQL error. If the restoration succeeds, it may still be that the same transaction has successively deleted and inserted a record with the same ordering fields, but in that case we know that the transaction has at least an implicit x-lock on the record. */ ut_a(pcur->rel_pos == BTR_PCUR_ON); ulint mode; DEBUG_SYNC_C_IF_THD( thr_get_trx(thr)->mysql_thd, "innodb_row_upd_clust_step_enter"); if (dict_index_is_online_ddl(index)) { ut_ad(node->table->id != DICT_INDEXES_ID); mode = BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED; mtr_s_lock(dict_index_get_lock(index), &mtr); } else { mode = BTR_MODIFY_LEAF; } success = btr_pcur_restore_position(mode, pcur, &mtr); if (!success) { err = DB_RECORD_NOT_FOUND; mtr_commit(&mtr); return(err); } /* If this is a row in SYS_INDEXES table of the data dictionary, then we have to free the file segments of the index tree associated with the index */ if (node->is_delete && node->table->id == DICT_INDEXES_ID) { ut_ad(!dict_index_is_online_ddl(index)); dict_drop_index_tree( btr_pcur_get_rec(pcur), pcur, &mtr); mtr_commit(&mtr); mtr_start_trx(&mtr, thr_get_trx(thr)); mtr.set_named_space(index->space); success = btr_pcur_restore_position(BTR_MODIFY_LEAF, pcur, &mtr); if (!success) { err = DB_ERROR; mtr_commit(&mtr); return(err); } } rec = btr_pcur_get_rec(pcur); offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap); if (!flags && !node->has_clust_rec_x_lock) { err = lock_clust_rec_modify_check_and_lock( 0, btr_pcur_get_block(pcur), rec, index, offsets, thr); if (err != DB_SUCCESS) { mtr_commit(&mtr); goto exit_func; } } ut_ad(lock_trx_has_rec_x_lock(thr_get_trx(thr), index->table, btr_pcur_get_block(pcur), page_rec_get_heap_no(rec))); /* NOTE: the following function calls will also commit mtr */ if (node->is_delete) { err = row_upd_del_mark_clust_rec( node, index, offsets, thr, referenced, foreign, &mtr); if (err == DB_SUCCESS) { node->state = UPD_NODE_UPDATE_ALL_SEC; node->index = dict_table_get_next_index(index); } goto exit_func; } /* If the update is made for MySQL, we already have the update vector ready, else we have to do some evaluation: */ if (UNIV_UNLIKELY(!node->in_mysql_interface)) { /* Copy the necessary columns from clust_rec and calculate the new values to set */ row_upd_copy_columns(rec, offsets, UT_LIST_GET_FIRST(node->columns)); row_upd_eval_new_vals(node->update); } if (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE) { err = row_upd_clust_rec( flags, node, index, offsets, &heap, thr, &mtr); goto exit_func; } row_upd_store_row(node, trx->mysql_thd, thr->prebuilt ? thr->prebuilt->m_mysql_table : NULL); if (row_upd_changes_ord_field_binary(index, node->update, thr, node->row, node->ext)) { /* Update causes an ordering field (ordering fields within the B-tree) of the clustered index record to change: perform the update by delete marking and inserting. TODO! What to do to the 'Halloween problem', where an update moves the record forward in index so that it is again updated when the cursor arrives there? Solution: the read operation must check the undo record undo number when choosing records to update. MySQL solves now the problem externally! */ err = row_upd_clust_rec_by_insert( node, index, thr, referenced, foreign, &mtr); if (err != DB_SUCCESS) { goto exit_func; } node->state = UPD_NODE_UPDATE_ALL_SEC; } else { err = row_upd_clust_rec( flags, node, index, offsets, &heap, thr, &mtr); if (err != DB_SUCCESS) { goto exit_func; } node->state = UPD_NODE_UPDATE_SOME_SEC; } node->index = dict_table_get_next_index(index); exit_func: if (heap) { mem_heap_free(heap); } return(err); } /***********************************************************//** Updates the affected index records of a row. When the control is transferred to this node, we assume that we have a persistent cursor which was on a record, and the position of the cursor is stored in the cursor. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static dberr_t row_upd( /*====*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { dberr_t err = DB_SUCCESS; DBUG_ENTER("row_upd"); ut_ad(!thr_get_trx(thr)->in_rollback); DBUG_PRINT("row_upd", ("table: %s", node->table->name.m_name)); DBUG_PRINT("row_upd", ("info bits in update vector: 0x%lx", node->update ? node->update->info_bits: 0)); DBUG_PRINT("row_upd", ("foreign_id: %s", node->foreign ? node->foreign->id: "NULL")); if (UNIV_LIKELY(node->in_mysql_interface)) { /* We do not get the cmpl_info value from the MySQL interpreter: we must calculate it on the fly: */ if (node->is_delete || row_upd_changes_some_index_ord_field_binary( node->table, node->update)) { node->cmpl_info = 0; } else { node->cmpl_info = UPD_NODE_NO_ORD_CHANGE; } } switch (node->state) { case UPD_NODE_UPDATE_CLUSTERED: case UPD_NODE_INSERT_CLUSTERED: log_free_check(); err = row_upd_clust_step(node, thr); if (err != DB_SUCCESS) { DBUG_RETURN(err); } } DEBUG_SYNC_C_IF_THD(thr_get_trx(thr)->mysql_thd, "after_row_upd_clust"); if (node->index == NULL || (!node->is_delete && (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE))) { DBUG_RETURN(DB_SUCCESS); } DBUG_EXECUTE_IF("row_upd_skip_sec", node->index = NULL;); do { /* Skip corrupted index */ dict_table_skip_corrupt_index(node->index); if (!node->index) { break; } if (node->index->type != DICT_FTS) { err = row_upd_sec_step(node, thr); if (err != DB_SUCCESS) { DBUG_RETURN(err); } } node->index = dict_table_get_next_index(node->index); } while (node->index != NULL); ut_ad(err == DB_SUCCESS); /* Do some cleanup */ if (node->row != NULL) { node->row = NULL; node->ext = NULL; node->upd_row = NULL; node->upd_ext = NULL; mem_heap_empty(node->heap); } node->state = UPD_NODE_UPDATE_CLUSTERED; DBUG_RETURN(err); } /***********************************************************//** Updates a row in a table. This is a high-level function used in SQL execution graphs. @return query thread to run next or NULL */ que_thr_t* row_upd_step( /*=========*/ que_thr_t* thr) /*!< in: query thread */ { upd_node_t* node; sel_node_t* sel_node; que_node_t* parent; dberr_t err = DB_SUCCESS; trx_t* trx; DBUG_ENTER("row_upd_step"); ut_ad(thr); trx = thr_get_trx(thr); trx_start_if_not_started_xa(trx, true); node = static_cast(thr->run_node); sel_node = node->select; parent = que_node_get_parent(node); ut_ad(que_node_get_type(node) == QUE_NODE_UPDATE); if (thr->prev_node == parent) { node->state = UPD_NODE_SET_IX_LOCK; } if (node->state == UPD_NODE_SET_IX_LOCK) { if (!node->has_clust_rec_x_lock) { /* It may be that the current session has not yet started its transaction, or it has been committed: */ err = lock_table(0, node->table, LOCK_IX, thr); if (err != DB_SUCCESS) { goto error_handling; } } node->state = UPD_NODE_UPDATE_CLUSTERED; if (node->searched_update) { /* Reset the cursor */ sel_node->state = SEL_NODE_OPEN; /* Fetch a row to update */ thr->run_node = sel_node; DBUG_RETURN(thr); } } /* sel_node is NULL if we are in the MySQL interface */ if (sel_node && (sel_node->state != SEL_NODE_FETCH)) { if (!node->searched_update) { /* An explicit cursor should be positioned on a row to update */ ut_error; err = DB_ERROR; goto error_handling; } ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS); /* No more rows to update, or the select node performed the updates directly in-place */ thr->run_node = parent; DBUG_RETURN(thr); } /* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */ err = row_upd(node, thr); error_handling: trx->error_state = err; if (err != DB_SUCCESS) { DBUG_RETURN(NULL); } /* DO THE TRIGGER ACTIONS HERE */ if (node->searched_update) { /* Fetch next row to update */ thr->run_node = sel_node; } else { /* It was an explicit cursor update */ thr->run_node = parent; } node->state = UPD_NODE_UPDATE_CLUSTERED; DBUG_RETURN(thr); } #ifndef DBUG_OFF /** Ensure that the member cascade_upd_nodes has only one update node for each of the tables. This is useful for testing purposes. */ void upd_node_t::check_cascade_only_once() { DBUG_ENTER("upd_node_t::check_cascade_only_once"); dbug_trace(); for (upd_cascade_t::const_iterator i = cascade_upd_nodes->begin(); i != cascade_upd_nodes->end(); ++i) { const upd_node_t* update_node = *i; std::string table_name(update_node->table->name.m_name); ulint count = 0; for (upd_cascade_t::const_iterator j = cascade_upd_nodes->begin(); j != cascade_upd_nodes->end(); ++j) { const upd_node_t* node = *j; if (table_name == node->table->name.m_name) { DBUG_ASSERT(count++ == 0); } } } DBUG_VOID_RETURN; } /** Print information about this object into the trace log file. */ void upd_node_t::dbug_trace() { DBUG_ENTER("upd_node_t::dbug_trace"); for (upd_cascade_t::const_iterator i = cascade_upd_nodes->begin(); i != cascade_upd_nodes->end(); ++i) { DBUG_LOG("upd_node_t", "cascade_upd_nodes: Cascade to table: " << (*i)->table->name); } for (upd_cascade_t::const_iterator j = new_upd_nodes->begin(); j != new_upd_nodes->end(); ++j) { DBUG_LOG("upd_node_t", "new_upd_nodes: Cascade to table: " << (*j)->table->name); } DBUG_VOID_RETURN; } #endif /* !DBUG_OFF */