/* -*- mode: C; c-basic-offset: 4 -*- */ #ident "$Id$" #ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved." #include "test.h" #include "includes.h" #define MIN(x, y) (((x) < (y)) ? (x) : (y)) static int omt_int_cmp(OMTVALUE p, void *q) { LEAFENTRY a = p, b = q; void *ak, *bk; u_int32_t al, bl; ak = le_key_and_len(a, &al); bk = le_key_and_len(b, &bl); assert(al == 4 && bl == 4); int ai = *(int *) ak; int bi = *(int *) bk; int c = ai - bi; if (c < 0) { return -1; } if (c > 0) { return +1; } else { return 0; } } static int omt_cmp(OMTVALUE p, void *q) { LEAFENTRY a = p, b = q; void *ak, *bk; u_int32_t al, bl; ak = le_key_and_len(a, &al); bk = le_key_and_len(b, &bl); int l = MIN(al, bl); int c = memcmp(ak, bk, l); if (c < 0) { return -1; } if (c > 0) { return +1; } int d = al - bl; if (d < 0) { return -1; } if (d > 0) { return +1; } else { return 0; } } static LEAFENTRY le_fastmalloc(char *key, int keylen, char *val, int vallen) { LEAFENTRY r = toku_malloc(sizeof(r->type) + sizeof(r->keylen) + sizeof(r->u.clean.vallen) + keylen + vallen); resource_assert(r); r->type = LE_CLEAN; r->keylen = keylen; r->u.clean.vallen = vallen; memcpy(&r->u.clean.key_val[0], key, keylen); memcpy(&r->u.clean.key_val[keylen], val, vallen); return r; } static LEAFENTRY le_malloc(char *key, char *val) { int keylen = strlen(key) + 1; int vallen = strlen(val) + 1; return le_fastmalloc(key, keylen, val, vallen); } struct check_leafentries_struct { int nelts; LEAFENTRY *elts; int i; int (*cmp)(OMTVALUE, void *); }; static int check_leafentries(OMTVALUE v, u_int32_t UU(i), void *extra) { struct check_leafentries_struct *e = extra; assert(e->i < e->nelts); assert(e->cmp(v, e->elts[e->i]) == 0); e->i++; return 0; } enum brtnode_verify_type { read_all=1, read_compressed, read_none }; static int string_key_cmp(DB *UU(e), const DBT *a, const DBT *b) { char *s = a->data, *t = b->data; return strcmp(s, t); } static void setup_dn(enum brtnode_verify_type bft, int fd, struct brt_header *brt_h, BRTNODE *dn) { int r; if (bft == read_all) { struct brtnode_fetch_extra bfe; fill_bfe_for_full_read(&bfe, brt_h, NULL, string_key_cmp); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, &bfe); assert(r==0); } else if (bft == read_compressed || bft == read_none) { struct brtnode_fetch_extra bfe; fill_bfe_for_min_read(&bfe, brt_h, NULL, string_key_cmp); r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, &bfe); assert(r==0); // assert all bp's are compressed for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_COMPRESSED); } // if read_none, get rid of the compressed bp's if (bft == read_none) { if ((*dn)->height == 0) { long bytes_freed = 0; toku_brtnode_pe_callback(*dn, 0xffffffff, &bytes_freed, NULL); // assert all bp's are on disk for (int i = 0; i < (*dn)->n_children; i++) { if ((*dn)->height == 0) { assert(BP_STATE(*dn,i) == PT_ON_DISK); assert(is_BNULL(*dn, i)); } else { assert(BP_STATE(*dn,i) == PT_COMPRESSED); } } } else { // first decompress everything, and make sure // that it is available // then run partial eviction to get it compressed fill_bfe_for_full_read(&bfe, brt_h, NULL, string_key_cmp); assert(toku_brtnode_pf_req_callback(*dn, &bfe)); long size; r = toku_brtnode_pf_callback(*dn, &bfe, fd, &size); assert(r==0); // assert all bp's are available for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_AVAIL); } long bytes_freed = 0; toku_brtnode_pe_callback(*dn, 0xffffffff, &bytes_freed, NULL); for (int i = 0; i < (*dn)->n_children; i++) { // assert all bp's are still available, because we touched the clock assert(BP_STATE(*dn,i) == PT_AVAIL); // now assert all should be evicted assert(BP_SHOULD_EVICT(*dn, i)); } toku_brtnode_pe_callback(*dn, 0xffffffff, &bytes_freed, NULL); for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_COMPRESSED); } } } // now decompress them fill_bfe_for_full_read(&bfe, brt_h, NULL, string_key_cmp); assert(toku_brtnode_pf_req_callback(*dn, &bfe)); long size; r = toku_brtnode_pf_callback(*dn, &bfe, fd, &size); assert(r==0); // assert all bp's are available for (int i = 0; i < (*dn)->n_children; i++) { assert(BP_STATE(*dn,i) == PT_AVAIL); } // continue on with test } else { // if we get here, this is a test bug, NOT a bug in development code assert(FALSE); } } static void test_serialize_leaf_check_msn(enum brtnode_verify_type bft) { // struct brt source_brt; const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; #define PRESERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 42 }) #define POSTSERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 84 }) sn.max_msn_applied_to_node_on_disk = PRESERIALIZE_MSN_ON_DISK; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 2; sn.dirty = 1; LEAFENTRY elts[3]; elts[0] = le_malloc("a", "aval"); elts[1] = le_malloc("b", "bval"); elts[2] = le_malloc("x", "xval"); MALLOC_N(sn.n_children, sn.bp); MALLOC_N(1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc("b", 2, 0, 0); sn.totalchildkeylens = 2; BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0); BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0); BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; set_BLB(&sn, 0, toku_create_empty_bn()); set_BLB(&sn, 1, toku_create_empty_bn()); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); BLB_MAX_MSN_APPLIED(&sn, 0) = ((MSN) { MIN_MSN.msn + 73 }); BLB_MAX_MSN_APPLIED(&sn, 1) = POSTSERIALIZE_MSN_ON_DISK; for (int i = 0; i < 2; ++i) { BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); // // test that subtree estimates get set // rebalancing should make it 1 basement // assert(BP_SUBTREE_EST(&sn,0).nkeys == 3); assert(BP_SUBTREE_EST(dn,0).nkeys == 3); assert(BP_SUBTREE_EST(&sn,0).ndata == 3); assert(BP_SUBTREE_EST(dn,0).ndata == 3); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>=1); assert(dn->bp_offset > 0); assert(dn->max_msn_applied_to_node_on_disk.msn == POSTSERIALIZE_MSN_ON_DISK.msn); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(BLB_MAX_MSN_APPLIED(dn, i).msn == POSTSERIALIZE_MSN_ON_DISK.msn); assert(dn->bp[i].offset > 0); if (i > 0) { assert(dn->bp[i].offset > dn->bp[i-1].offset); } toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); u_int32_t keylen; if (i < npartitions-1) { assert(strcmp(kv_pair_key(dn->childkeys[i]), le_key_and_len(elts[extra.i-1], &keylen))==0); } assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 3); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < 3; ++i) { toku_free(elts[i]); } for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_large_pivots(enum brtnode_verify_type bft) { int r; struct brtnode sn, *dn; const int keylens = 256*1024, vallens = 0, nrows = 8; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.nodesize = 4*(1<<20); sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = nrows; sn.dirty = 1; LEAFENTRY les[nrows]; { char key[keylens], val[vallens]; key[keylens-1] = '\0'; for (int i = 0; i < nrows; ++i) { char c = 'a' + i; memset(key, c, keylens-1); les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val)); } } MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*sizeof(int); for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); set_BLB(&sn, i, toku_create_empty_bn()); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; } for (int i = 0; i < nrows; ++i) { r = toku_omt_insert(BLB_BUFFER(&sn, i), les[i], omt_cmp, les[i], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, i) = OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]); if (i < nrows-1) { u_int32_t keylen; char *key = le_key_and_len(les[i], &keylen); sn.childkeys[i] = kv_pair_malloc(key, keylen, 0, 0); } } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->bp_offset > 0); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(keylens*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(dn->bp[i].offset > 0); if (i > 0) { assert(dn->bp[i].offset > dn->bp[i-1].offset); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == nrows); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < nrows; ++i) { toku_free(les[i]); } toku_free(sn.childkeys); for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_many_rows(enum brtnode_verify_type bft) { int r; struct brtnode sn, *dn; const int keylens = sizeof(int), vallens = sizeof(int), nrows = 196*1024; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.nodesize = 4*(1<<20); sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 1; sn.dirty = 1; LEAFENTRY les[nrows]; { int key = 0, val = 0; for (int i = 0; i < nrows; ++i, key++, val++) { les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val)); } } MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*sizeof(int); for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); set_BLB(&sn, i, toku_create_empty_bn()); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; } BLB_NBYTESINBUF(&sn, 0) = 0; for (int i = 0; i < nrows; ++i) { r = toku_omt_insert(BLB_BUFFER(&sn, 0), les[i], omt_int_cmp, les[i], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) += OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]); } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->bp_offset > 0); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(sizeof(int)*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_int_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(dn->bp[i].offset > 0); if (i > 0) { assert(dn->bp[i].offset > dn->bp[i-1].offset); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i))); assert(BLB_NBYTESINBUF(dn, i) < 128*1024); // BN_MAX_SIZE, apt to change last_i = extra.i; } assert(extra.i == nrows); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < nrows; ++i) { toku_free(les[i]); } for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_large_rows(enum brtnode_verify_type bft) { int r; struct brtnode sn, *dn; const size_t val_size = 512*1024; // assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); sn.max_msn_applied_to_node_on_disk.msn = 0; sn.nodesize = 4*(1<<20); sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 1; sn.dirty = 1; LEAFENTRY les[7]; { char key[8], val[val_size]; key[7] = '\0'; val[val_size-1] = '\0'; for (int i = 0; i < 7; ++i) { char c = 'a' + i; memset(key, c, 7); memset(val, c, val_size-1); les[i] = le_fastmalloc(key, 8, val, val_size); } } MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.totalchildkeylens = (sn.n_children-1)*8; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); set_BLB(&sn, i, toku_create_empty_bn()); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; } BLB_NBYTESINBUF(&sn, 0) = 0; for (int i = 0; i < 7; ++i) { r = toku_omt_insert(BLB_BUFFER(&sn, 0), les[i], omt_cmp, les[i], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) += OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]); } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->bp_offset > 0); { const u_int32_t npartitions = dn->n_children; assert(npartitions == 7); assert(dn->totalchildkeylens==(8*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 7, .elts = les, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(dn->bp[i].offset > 0); if (i > 0) { assert(dn->bp[i].offset > dn->bp[i-1].offset); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+8+val_size) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 7); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < 7; ++i) { toku_free(les[i]); } for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_empty_basement_nodes(enum brtnode_verify_type bft) { const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 7; sn.dirty = 1; LEAFENTRY elts[3]; elts[0] = le_malloc("a", "aval"); elts[1] = le_malloc("b", "bval"); elts[2] = le_malloc("x", "xval"); MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc("A", 2, 0, 0); sn.childkeys[1] = kv_pair_malloc("a", 2, 0, 0); sn.childkeys[2] = kv_pair_malloc("a", 2, 0, 0); sn.childkeys[3] = kv_pair_malloc("b", 2, 0, 0); sn.childkeys[4] = kv_pair_malloc("b", 2, 0, 0); sn.childkeys[5] = kv_pair_malloc("x", 2, 0, 0); sn.totalchildkeylens = (sn.n_children-1)*2; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); set_BLB(&sn, i, toku_create_empty_bn()); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; BLB_SEQINSERT(&sn, i) = 0; } r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 3), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 5), elts[2], omt_cmp, elts[2], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2)); BLB_NBYTESINBUF(&sn, 3) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3)); BLB_NBYTESINBUF(&sn, 4) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 4)); BLB_NBYTESINBUF(&sn, 5) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 5)); BLB_NBYTESINBUF(&sn, 6) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 6)); struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>0); assert(dn->bp_offset > 0); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(dn->bp[i].offset > 0); if (i > 0) { assert(dn->bp[i].offset > dn->bp[i-1].offset); } assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 3); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < 3; ++i) { toku_free(elts[i]); } for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf_with_multiple_empty_basement_nodes(enum brtnode_verify_type bft) { const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 4; sn.dirty = 1; MALLOC_N(sn.n_children, sn.bp); MALLOC_N(sn.n_children-1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc("A", 2, 0, 0); sn.childkeys[1] = kv_pair_malloc("A", 2, 0, 0); sn.childkeys[2] = kv_pair_malloc("A", 2, 0, 0); sn.totalchildkeylens = (sn.n_children-1)*2; for (int i = 0; i < sn.n_children; ++i) { BP_STATE(&sn,i) = PT_AVAIL; BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0); set_BLB(&sn, i, toku_create_empty_bn()); BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; } BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2)); BLB_NBYTESINBUF(&sn, 3) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3)); struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children == 1); assert(dn->bp_offset > 0); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 0, .elts = NULL, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(dn->bp[i].offset > 0); if (i > 0) { assert(dn->bp[i].offset > dn->bp[i-1].offset); } assert(toku_omt_size(BLB_BUFFER(dn, i)) == 0); toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 0); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_leaf(enum brtnode_verify_type bft) { // struct brt source_brt; const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; sn.max_msn_applied_to_node_on_disk.msn = 0; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 0; sn.n_children = 2; sn.dirty = 1; LEAFENTRY elts[3]; elts[0] = le_malloc("a", "aval"); elts[1] = le_malloc("b", "bval"); elts[2] = le_malloc("x", "xval"); MALLOC_N(sn.n_children, sn.bp); MALLOC_N(1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc("b", 2, 0, 0); sn.totalchildkeylens = 2; BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0); BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0); BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; set_BLB(&sn, 0, toku_create_empty_bn()); set_BLB(&sn, 1, toku_create_empty_bn()); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0); r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0); BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0)); BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1)); for (int i = 0; i < 2; ++i) { BLB_OPTIMIZEDFORUPGRADE(&sn, i) = BRT_LAYOUT_VERSION; } struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 0); assert(dn->n_children>=1); assert(dn->bp_offset > 0); { const u_int32_t npartitions = dn->n_children; assert(dn->totalchildkeylens==(2*(npartitions-1))); struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp }; u_int32_t last_i = 0; for (u_int32_t i = 0; i < npartitions; ++i) { assert(dn->bp[i].offset > 0); if (i > 0) { assert(dn->bp[i].offset > dn->bp[i-1].offset); } toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra); u_int32_t keylen; if (i < npartitions-1) { assert(strcmp(kv_pair_key(dn->childkeys[i]), le_key_and_len(elts[extra.i-1], &keylen))==0); } assert(BLB_OPTIMIZEDFORUPGRADE(dn, i) == BRT_LAYOUT_VERSION); // don't check soft_copy_is_up_to_date or seqinsert assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i))); last_i = extra.i; } assert(extra.i == 3); } toku_brtnode_free(&dn); for (int i = 0; i < sn.n_children-1; ++i) { kv_pair_free(sn.childkeys[i]); } for (int i = 0; i < 3; ++i) { toku_free(elts[i]); } for (int i = 0; i < sn.n_children; i++) { destroy_basement_node(BLB(&sn, i)); } toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } static void test_serialize_nonleaf(enum brtnode_verify_type bft) { // struct brt source_brt; const int nodesize = 1024; struct brtnode sn, *dn; int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; // source_brt.fd=fd; sn.max_msn_applied_to_node_on_disk.msn = 0; char *hello_string; sn.nodesize = nodesize; sn.flags = 0x11223344; sn.thisnodename.b = 20; sn.layout_version = BRT_LAYOUT_VERSION; sn.layout_version_original = BRT_LAYOUT_VERSION; sn.height = 1; sn.n_children = 2; sn.dirty = 1; hello_string = toku_strdup("hello"); MALLOC_N(2, sn.bp); MALLOC_N(1, sn.childkeys); sn.childkeys[0] = kv_pair_malloc(hello_string, 6, 0, 0); sn.totalchildkeylens = 6; BP_BLOCKNUM(&sn, 0).b = 30; BP_BLOCKNUM(&sn, 1).b = 35; BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32); BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0); BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0); BP_STATE(&sn,0) = PT_AVAIL; BP_STATE(&sn,1) = PT_AVAIL; set_BNC(&sn, 0, toku_create_empty_nl()); set_BNC(&sn, 1, toku_create_empty_nl()); //Create XIDS XIDS xids_0 = xids_get_root_xids(); XIDS xids_123; XIDS xids_234; r = xids_create_child(xids_0, &xids_123, (TXNID)123); CKERR(r); r = xids_create_child(xids_123, &xids_234, (TXNID)234); CKERR(r); r = toku_fifo_enq(BNC_BUFFER(&sn,0), "a", 2, "aval", 5, BRT_NONE, next_dummymsn(), xids_0, NULL); assert(r==0); r = toku_fifo_enq(BNC_BUFFER(&sn,0), "b", 2, "bval", 5, BRT_NONE, next_dummymsn(), xids_123, NULL); assert(r==0); r = toku_fifo_enq(BNC_BUFFER(&sn,1), "x", 2, "xval", 5, BRT_NONE, next_dummymsn(), xids_234, NULL); assert(r==0); BNC_NBYTESINBUF(&sn, 0) = 2*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_0) + xids_get_serialize_size(xids_123); BNC_NBYTESINBUF(&sn, 1) = 1*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_234); //Cleanup: xids_destroy(&xids_0); xids_destroy(&xids_123); xids_destroy(&xids_234); struct brt *XMALLOC(brt); struct brt_header *XCALLOC(brt_h); brt->h = brt_h; brt_h->type = BRTHEADER_CURRENT; brt_h->panic = 0; brt_h->panic_string = 0; brt_h->basementnodesize = 128*1024; toku_blocktable_create_new(&brt_h->blocktable); //Want to use block #20 BLOCKNUM b = make_blocknum(0); while (b.b < 20) { toku_allocate_blocknum(brt_h->blocktable, &b, brt_h); } assert(b.b == 20); { DISKOFF offset; DISKOFF size; toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE); assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size); assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); assert(size == 100); } r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE); assert(r==0); setup_dn(bft, fd, brt_h, &dn); assert(dn->thisnodename.b==20); assert(dn->layout_version ==BRT_LAYOUT_VERSION); assert(dn->layout_version_original ==BRT_LAYOUT_VERSION); assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION); assert(dn->height == 1); assert(dn->n_children==2); assert(strcmp(kv_pair_key(dn->childkeys[0]), "hello")==0); assert(toku_brt_pivot_key_len(dn->childkeys[0])==6); assert(dn->totalchildkeylens==6); assert(BP_BLOCKNUM(dn,0).b==30); assert(BP_BLOCKNUM(dn,1).b==35); FIFO src_fifo_1 = BNC_BUFFER(&sn, 0); FIFO src_fifo_2 = BNC_BUFFER(&sn, 1); FIFO dest_fifo_1 = BNC_BUFFER(dn, 0); FIFO dest_fifo_2 = BNC_BUFFER(dn, 1); bytevec src_key,src_val, dest_key, dest_val; ITEMLEN src_keylen, src_vallen; u_int32_t src_type; MSN src_msn; XIDS src_xids; ITEMLEN dest_keylen, dest_vallen; u_int32_t dest_type; MSN dest_msn; XIDS dest_xids; r = toku_fifo_peek(src_fifo_1, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids); assert(r==0); r = toku_fifo_peek(dest_fifo_1, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids); assert(r==0); assert(src_keylen == dest_keylen); assert(src_keylen == 2); assert(src_vallen == dest_vallen); assert(src_vallen == 5); assert(src_type == dest_type); assert(src_msn.msn == dest_msn.msn); assert(strcmp(src_key, "a") == 0); assert(strcmp(dest_key, "a") == 0); assert(strcmp(src_val, "aval") == 0); assert(strcmp(dest_val, "aval") == 0); r = toku_fifo_deq(src_fifo_1); assert(r==0); r = toku_fifo_deq(dest_fifo_1); assert(r==0); r = toku_fifo_peek(src_fifo_1, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids); assert(r==0); r = toku_fifo_peek(dest_fifo_1, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids); assert(r==0); assert(src_keylen == dest_keylen); assert(src_keylen == 2); assert(src_vallen == dest_vallen); assert(src_vallen == 5); assert(src_type == dest_type); assert(src_msn.msn == dest_msn.msn); assert(strcmp(src_key, "b") == 0); assert(strcmp(dest_key, "b") == 0); assert(strcmp(src_val, "bval") == 0); assert(strcmp(dest_val, "bval") == 0); r = toku_fifo_deq(src_fifo_1); assert(r==0); r = toku_fifo_deq(dest_fifo_1); assert(r==0); r = toku_fifo_peek(src_fifo_1, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids); assert(r!=0); r = toku_fifo_peek(dest_fifo_1, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids); assert(r!=0); r = toku_fifo_peek(src_fifo_2, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids); assert(r==0); r = toku_fifo_peek(dest_fifo_2, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids); assert(r==0); assert(src_keylen == dest_keylen); assert(src_keylen == 2); assert(src_vallen == dest_vallen); assert(src_vallen == 5); assert(src_type == dest_type); assert(src_msn.msn == dest_msn.msn); assert(strcmp(src_key, "x") == 0); assert(strcmp(dest_key, "x") == 0); assert(strcmp(src_val, "xval") == 0); assert(strcmp(dest_val, "xval") == 0); r = toku_fifo_deq(src_fifo_2); assert(r==0); r = toku_fifo_deq(dest_fifo_2); assert(r==0); r = toku_fifo_peek(src_fifo_2, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids); assert(r!=0); r = toku_fifo_peek(dest_fifo_2, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids); assert(r!=0); toku_brtnode_free(&dn); kv_pair_free(sn.childkeys[0]); toku_free(hello_string); destroy_nonleaf_childinfo(BNC(&sn, 0)); destroy_nonleaf_childinfo(BNC(&sn, 1)); toku_free(sn.bp); toku_free(sn.childkeys); toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE); toku_blocktable_destroy(&brt_h->blocktable); toku_free(brt_h); toku_free(brt); r = close(fd); assert(r != -1); } int test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) { toku_memory_check = 1; test_serialize_leaf(read_none); test_serialize_leaf(read_all); test_serialize_leaf(read_compressed); test_serialize_leaf_with_empty_basement_nodes(read_none); test_serialize_leaf_with_empty_basement_nodes(read_all); test_serialize_leaf_with_empty_basement_nodes(read_compressed); test_serialize_leaf_with_multiple_empty_basement_nodes(read_none); test_serialize_leaf_with_multiple_empty_basement_nodes(read_all); test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed); test_serialize_leaf_with_large_rows(read_none); test_serialize_leaf_with_large_rows(read_all); test_serialize_leaf_with_large_rows(read_compressed); test_serialize_leaf_with_many_rows(read_none); test_serialize_leaf_with_many_rows(read_all); test_serialize_leaf_with_many_rows(read_compressed); test_serialize_leaf_with_large_pivots(read_none); test_serialize_leaf_with_large_pivots(read_all); test_serialize_leaf_with_large_pivots(read_compressed); test_serialize_leaf_check_msn(read_none); test_serialize_leaf_check_msn(read_all); test_serialize_leaf_check_msn(read_compressed); test_serialize_nonleaf(read_none); test_serialize_nonleaf(read_all); test_serialize_nonleaf(read_compressed); return 0; }