/*****************************************************************************

Copyright (C) 2013, 2014, Fusion-io. All Rights Reserved.
Copyright (C) 2013, 2017, MariaDB Corporation. All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

*****************************************************************************/

/******************************************************************//**
@file buf/buf0mtflu.cc
Multi-threaded flush method implementation

Created  06/11/2013 Dhananjoy Das DDas@fusionio.com
Modified 12/12/2013 Jan Lindström jan.lindstrom@skysql.com
Modified 03/02/2014 Dhananjoy Das DDas@fusionio.com
Modified 06/02/2014 Jan Lindström jan.lindstrom@skysql.com
***********************************************************************/

#include "buf0buf.h"
#include "buf0flu.h"
#include "buf0mtflu.h"
#include "buf0checksum.h"
#include "srv0start.h"
#include "srv0srv.h"
#include "page0zip.h"
#include "ut0byte.h"
#include "ut0lst.h"
#include "page0page.h"
#include "fil0fil.h"
#include "buf0lru.h"
#include "buf0rea.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "os0file.h"
#include "trx0sys.h"
#include "srv0mon.h"
#include "mysql/plugin.h"
#include "mysql/service_thd_wait.h"
#include "fil0pagecompress.h"

#define	MT_COMP_WATER_MARK	50
/** Time to wait for a message. */
#define MT_WAIT_IN_USECS 5000000

/* Work item status */
typedef enum wrk_status {
	WRK_ITEM_UNSET=0,	/*!< Work item is not set */
	WRK_ITEM_START=1,	/*!< Processing of work item has started */
	WRK_ITEM_DONE=2,	/*!< Processing is done usually set to
				SUCCESS/FAILED */
	WRK_ITEM_SUCCESS=2,	/*!< Work item successfully processed */
	WRK_ITEM_FAILED=3,	/*!< Work item process failed */
	WRK_ITEM_EXIT=4,	/*!< Exiting */
	WRK_ITEM_SET=5,		/*!< Work item is set */
	WRK_ITEM_STATUS_UNDEFINED
} wrk_status_t;

/* Work item task type */
typedef enum mt_wrk_tsk {
	MT_WRK_NONE=0,		/*!< Exit queue-wait */
	MT_WRK_WRITE=1,		/*!< Flush operation */
	MT_WRK_READ=2,		/*!< Read operation  */
	MT_WRK_UNDEFINED
} mt_wrk_tsk_t;

/* Work thread status */
typedef enum wthr_status {
	WTHR_NOT_INIT=0,	/*!< Work thread not initialized */
	WTHR_INITIALIZED=1,	/*!< Work thread initialized */
	WTHR_SIG_WAITING=2,	/*!< Work thread wating signal */
	WTHR_RUNNING=3,		/*!< Work thread running */
	WTHR_NO_WORK=4,		/*!< Work thread has no work */
	WTHR_KILL_IT=5,		/*!< Work thread should exit */
	WTHR_STATUS_UNDEFINED
} wthr_status_t;

/* Write work task */
typedef struct wr_tsk {
	buf_pool_t	*buf_pool;	/*!< buffer-pool instance */
	buf_flush_t	flush_type;	/*!< flush-type for buffer-pool
					flush operation */
	ulint		min;		/*!< minimum number of pages
					requested to be flushed */
	lsn_t		lsn_limit;	/*!< lsn limit for the buffer-pool
					flush operation */
} wr_tsk_t;

/* Read work task */
typedef struct rd_tsk {
	buf_pool_t	*page_pool;	/*!< list of pages to decompress; */
} rd_tsk_t;

/* Work item */
typedef struct wrk_itm
{
	mt_wrk_tsk_t	tsk;		/*!< Task type. Based on task-type
					one of the entries wr_tsk/rd_tsk
					will be used */
	wr_tsk_t	wr;		/*!< Flush page list */
	rd_tsk_t	rd;		/*!< Decompress page list */
        ulint		n_flushed; 	/*!< Number of flushed pages */
	ulint		n_evicted;	/*!< Number of evicted pages */
 	os_thread_id_t	id_usr;		/*!< Thread-id currently working */
    	wrk_status_t    wi_status;	/*!< Work item status */
	mem_heap_t      *wheap;         /*!< Heap were to allocate memory
					for queue nodes */
	mem_heap_t      *rheap;
} wrk_t;

struct thread_data_t
{
	os_thread_id_t	wthread_id;	/*!< Identifier */
	wthr_status_t   wt_status;	/*!< Worker thread status */
};

/** Flush dirty pages when multi-threaded flush is used. */
extern "C" UNIV_INTERN
os_thread_ret_t
DECLARE_THREAD(mtflush_io_thread)(void* arg);

/** Thread syncronization data */
struct thread_sync_t
{
	/** Constructor */
	thread_sync_t(ulint n_threads, mem_heap_t* wheap, mem_heap_t* rheap) :
		thread_global_mtx(), n_threads(n_threads),
		wq(ib_wqueue_create()),
		wr_cq(ib_wqueue_create()),
		rd_cq(ib_wqueue_create()),
		wheap(wheap), rheap(rheap), gwt_status(),
		thread_data(static_cast<thread_data_t*>(
				    mem_heap_zalloc(wheap, n_threads
						    * sizeof *thread_data)))
	{
		ut_a(wq);
		ut_a(wr_cq);
		ut_a(rd_cq);
		ut_a(thread_data);

		mutex_create(LATCH_ID_MTFLUSH_THREAD_MUTEX,
			     &thread_global_mtx);

		/* Create threads for page-compression-flush */
		for(ulint i = 0; i < n_threads; i++) {
			thread_data[i].wt_status = WTHR_INITIALIZED;
			os_thread_create(mtflush_io_thread, this,
					 &thread_data[i].wthread_id);
		}
	}

	/** Destructor */
	~thread_sync_t()
	{
		ut_a(ib_wqueue_is_empty(wq));
		ut_a(ib_wqueue_is_empty(wr_cq));
		ut_a(ib_wqueue_is_empty(rd_cq));

		/* Free all queues */
		ib_wqueue_free(wq);
		ib_wqueue_free(wr_cq);
		ib_wqueue_free(rd_cq);

		mutex_free(&thread_global_mtx);

		mem_heap_free(rheap);
		mem_heap_free(wheap);
	}

	/* Global variables used by all threads */
	ib_mutex_t	thread_global_mtx; /*!< Mutex used protecting below
					   variables */
	ulint           n_threads;	/*!< Number of threads */
	ib_wqueue_t	*wq;		/*!< Work Queue */
	ib_wqueue_t     *wr_cq;		/*!< Write Completion Queue */
	ib_wqueue_t     *rd_cq;		/*!< Read Completion Queue */
	mem_heap_t*     wheap;		/*!< Work heap where memory
					is allocated */
	mem_heap_t*     rheap;		/*!< Work heap where memory
					is allocated */
	wthr_status_t   gwt_status;     /*!< Global thread status */

	/* Variables used by only one thread at a time */
        thread_data_t*  thread_data;    /*!< Thread specific data */
};

static thread_sync_t*   mtflush_ctx;
static ib_mutex_t       mtflush_mtx;

/******************************************************************//**
Return true if multi-threaded flush is initialized
@return true if initialized */
bool
buf_mtflu_init_done(void)
/*=====================*/
{
	return(mtflush_ctx != NULL);
}

/******************************************************************//**
Fush buffer pool instance.
@return number of flushed pages, or 0 if error happened
*/
static
ulint
buf_mtflu_flush_pool_instance(
/*==========================*/
	wrk_t	*work_item)	/*!< inout: work item to be flushed */
{
	flush_counters_t	n;
	ut_a(work_item != NULL);
	ut_a(work_item->wr.buf_pool != NULL);

	if (!buf_flush_start(work_item->wr.buf_pool, work_item->wr.flush_type)) {
		/* We have two choices here. If lsn_limit was
		specified then skipping an instance of buffer
		pool means we cannot guarantee that all pages
		up to lsn_limit has been flushed. We can
		return right now with failure or we can try
		to flush remaining buffer pools up to the
		lsn_limit. We attempt to flush other buffer
		pools based on the assumption that it will
		help in the retry which will follow the
		failure. */
#ifdef UNIV_MTFLUSH_DEBUG
		fprintf(stderr, "InnoDB: Note: buf flush start failed there is already active flush for this buffer pool.\n");
#endif
		return 0;
	}

	memset(&n, 0, sizeof(flush_counters_t));

    	if (work_item->wr.flush_type == BUF_FLUSH_LRU) {
        	/* srv_LRU_scan_depth can be arbitrarily large value.
        	 * We cap it with current LRU size.
        	 */
        	buf_pool_mutex_enter(work_item->wr.buf_pool);
        	work_item->wr.min = UT_LIST_GET_LEN(work_item->wr.buf_pool->LRU);
        	buf_pool_mutex_exit(work_item->wr.buf_pool);
        	work_item->wr.min = ut_min((ulint)srv_LRU_scan_depth,(ulint)work_item->wr.min);
    	}

	buf_flush_batch(work_item->wr.buf_pool,
		work_item->wr.flush_type,
		work_item->wr.min,
		work_item->wr.lsn_limit,
		&n);

	buf_flush_end(work_item->wr.buf_pool, work_item->wr.flush_type);
	buf_flush_common(work_item->wr.flush_type, n.flushed);
	work_item->n_flushed = n.flushed;
	work_item->n_evicted = n.evicted;

	return work_item->n_flushed;
}

/******************************************************************//**
Worker function to wait for work items and processing them and
sending reply back.
*/
static
void
mtflush_service_io(
/*===============*/
	thread_sync_t*	mtflush_io,	/*!< inout: multi-threaded flush
					syncronization data */
	thread_data_t*  thread_data)    /* Thread status data */
{
	wrk_t		*work_item = NULL;
	ulint		n_flushed=0;

	ut_a(mtflush_io != NULL);
	ut_a(thread_data != NULL);

   	thread_data->wt_status = WTHR_SIG_WAITING;

	work_item = (wrk_t *)ib_wqueue_nowait(mtflush_io->wq);

	if (work_item == NULL) {
		work_item = (wrk_t *)ib_wqueue_wait(mtflush_io->wq);
	}

	if (work_item) {
		thread_data->wt_status = WTHR_RUNNING;
	} else {
		/* Thread did not get any work */
		thread_data->wt_status = WTHR_NO_WORK;
		return;
	}

	if (work_item->wi_status != WRK_ITEM_EXIT) {
		work_item->wi_status = WRK_ITEM_SET;
	}

#ifdef UNIV_MTFLUSH_DEBUG
	ut_a(work_item->id_usr == 0);
#endif
	work_item->id_usr = os_thread_get_curr_id();

	/*  This works as a producer/consumer model, where in tasks are
         *  inserted into the work-queue (wq) and completions are based
         *  on the type of operations performed and as a result the WRITE/
         *  compression/flush operation completions get posted to wr_cq.
         *  And READ/decompress operations completions get posted to rd_cq.
         *  in future we may have others.
	*/

	switch(work_item->tsk) {
	case MT_WRK_NONE:
		ut_a(work_item->wi_status == WRK_ITEM_EXIT);
		work_item->wi_status = WRK_ITEM_EXIT;
		ib_wqueue_add(mtflush_io->wr_cq, work_item, work_item->rheap);
		thread_data->wt_status = WTHR_KILL_IT;
		break;

	case MT_WRK_WRITE:
		ut_a(work_item->wi_status == WRK_ITEM_SET);
		work_item->wi_status = WRK_ITEM_START;
		/* Process work item */
		if (0 == (n_flushed = buf_mtflu_flush_pool_instance(work_item))) {
			work_item->wi_status = WRK_ITEM_FAILED;
		}
		work_item->wi_status = WRK_ITEM_SUCCESS;
		ib_wqueue_add(mtflush_io->wr_cq, work_item, work_item->rheap);
		break;

	case MT_WRK_READ:
		ut_a(0);
		break;

	default:
		/* None other than Write/Read handling planned */
		ut_a(0);
		break;
	}
}

/** Flush dirty pages when multi-threaded flush is used. */
extern "C" UNIV_INTERN
os_thread_ret_t
DECLARE_THREAD(mtflush_io_thread)(void* arg)
{
	thread_sync_t *mtflush_io = ((thread_sync_t *)arg);
	thread_data_t *this_thread_data = NULL;
	ulint i;

	/* Find correct slot for this thread */
	mutex_enter(&(mtflush_io->thread_global_mtx));
	for(i=0; i < mtflush_io->n_threads; i ++) {
		if (mtflush_io->thread_data[i].wthread_id == os_thread_get_curr_id()) {
			break;
		}
	}

	ut_a(i <= mtflush_io->n_threads);
	this_thread_data = &mtflush_io->thread_data[i];
	mutex_exit(&(mtflush_io->thread_global_mtx));

	while (TRUE) {

#ifdef UNIV_MTFLUSH_DEBUG
 		fprintf(stderr, "InnoDB: Note. Thread %lu work queue len %lu return queue len %lu\n",
 					os_thread_get_curr_id(),
 					ib_wqueue_len(mtflush_io->wq),
 					ib_wqueue_len(mtflush_io->wr_cq));
#endif /* UNIV_MTFLUSH_DEBUG */

		mtflush_service_io(mtflush_io, this_thread_data);


		if (this_thread_data->wt_status == WTHR_KILL_IT) {
			break;
		}
	}

	os_thread_exit();
	OS_THREAD_DUMMY_RETURN;
}

/******************************************************************//**
Add exit work item to work queue to signal multi-threded flush
threads that they should exit.
*/
void
buf_mtflu_io_thread_exit(void)
/*==========================*/
{
	ulint i;
	thread_sync_t* mtflush_io = mtflush_ctx;
	wrk_t* work_item = NULL;

	ut_a(mtflush_io != NULL);

	/* Allocate work items for shutdown message */
	work_item = (wrk_t*)mem_heap_alloc(mtflush_io->wheap, sizeof(wrk_t)*srv_mtflush_threads);

	/* Confirm if the io-thread KILL is in progress, bailout */
	if (mtflush_io->gwt_status == WTHR_KILL_IT) {
		return;
	}

	mtflush_io->gwt_status = WTHR_KILL_IT;

	/* This lock is to safequard against timing bug: flush request take
	this mutex before sending work items to be processed by flush
	threads. Inside flush thread we assume that work queue contains only
	a constant number of items. Thus, we may not install new work items
	below before all previous ones are processed. This mutex is released
	by flush request after all work items sent to flush threads have
	been processed. Thus, we can get this mutex if and only if work
	queue is empty. */

	mutex_enter(&mtflush_mtx);

	/* Make sure the work queue is empty */
	ut_a(ib_wqueue_is_empty(mtflush_io->wq));

	/* Send one exit work item/thread */
	for (i=0; i < (ulint)srv_mtflush_threads; i++) {
		work_item[i].tsk = MT_WRK_NONE;
		work_item[i].wi_status = WRK_ITEM_EXIT;
		work_item[i].wheap = mtflush_io->wheap;
		work_item[i].rheap = mtflush_io->rheap;
		work_item[i].id_usr = 0;

		ib_wqueue_add(mtflush_io->wq,
			(void *)&(work_item[i]),
			mtflush_io->wheap);
	}

	/* Requests sent */
	mutex_exit(&mtflush_mtx);

	/* Wait until all work items on a work queue are processed */
	while(!ib_wqueue_is_empty(mtflush_io->wq)) {
		/* Wait */
		os_thread_sleep(MT_WAIT_IN_USECS);
	}

	ut_a(ib_wqueue_is_empty(mtflush_io->wq));

	/* Collect all work done items */
	for (i=0; i < (ulint)srv_mtflush_threads;) {
		wrk_t* work_item = NULL;

		work_item = (wrk_t *)ib_wqueue_timedwait(mtflush_io->wr_cq, MT_WAIT_IN_USECS);

		/* If we receive reply to work item and it's status is exit,
		thead has processed this message and existed */
		if (work_item && work_item->wi_status == WRK_ITEM_EXIT) {
			i++;
		}
	}

	/* Wait about 1/2 sec to allow threads really exit */
	os_thread_sleep(MT_WAIT_IN_USECS);

	/* Make sure that work queue is empty */
	while(!ib_wqueue_is_empty(mtflush_io->wq))
	{
		ib_wqueue_nowait(mtflush_io->wq);
	}

	mtflush_ctx->~thread_sync_t();
	mtflush_ctx = NULL;

	mutex_free(&mtflush_mtx);
}

/******************************************************************//**
Initialize multi-threaded flush thread syncronization data.
@return Initialized multi-threaded flush thread syncroniztion data. */
void*
buf_mtflu_handler_init(
/*===================*/
	ulint n_threads,	/*!< in: Number of threads to create */
	ulint wrk_cnt)		/*!< in: Number of work items */
{
	mem_heap_t*	mtflush_heap;
	mem_heap_t*	mtflush_heap2;

	/* Create heap, work queue, write completion queue, read
	completion queue for multi-threaded flush, and init
	handler. */
	mtflush_heap = mem_heap_create(0);
	ut_a(mtflush_heap != NULL);
	mtflush_heap2 = mem_heap_create(0);
	ut_a(mtflush_heap2 != NULL);

	mutex_create(LATCH_ID_MTFLUSH_MUTEX, &mtflush_mtx);

	mtflush_ctx = new (mem_heap_zalloc(mtflush_heap, sizeof *mtflush_ctx))
		thread_sync_t(n_threads, mtflush_heap, mtflush_heap2);

	return((void *)mtflush_ctx);
}

/******************************************************************//**
Flush buffer pool instances.
@return number of pages flushed. */
ulint
buf_mtflu_flush_work_items(
/*=======================*/
	ulint buf_pool_inst,		/*!< in: Number of buffer pool instances */
	flush_counters_t *per_pool_cnt,	/*!< out: Number of pages
					flushed or evicted /instance */
	buf_flush_t flush_type,		/*!< in: Type of flush */
	ulint min_n,			/*!< in: Wished minimum number of
					blocks to be flushed */
	lsn_t lsn_limit)		/*!< in: All blocks whose
					oldest_modification is smaller than
					this should be flushed (if their
					number does not exceed min_n) */
{
	ulint n_flushed=0, i;
	mem_heap_t* work_heap;
	mem_heap_t* reply_heap;
	wrk_t work_item[MTFLUSH_MAX_WORKER];

	if (mtflush_ctx->gwt_status == WTHR_KILL_IT) {
		return 0;
	}

	/* Allocate heap where all work items used and queue
	node items areallocated */
	work_heap = mem_heap_create(0);
	reply_heap = mem_heap_create(0);


	for(i=0;i<buf_pool_inst; i++) {
		work_item[i].tsk = MT_WRK_WRITE;
		work_item[i].wr.buf_pool = buf_pool_from_array(i);
		work_item[i].wr.flush_type = flush_type;
		work_item[i].wr.min = min_n;
		work_item[i].wr.lsn_limit = lsn_limit;
		work_item[i].wi_status = WRK_ITEM_UNSET;
		work_item[i].wheap = work_heap;
		work_item[i].rheap = reply_heap;
		work_item[i].n_flushed = 0;
		work_item[i].n_evicted = 0;
		work_item[i].id_usr = 0;

		ib_wqueue_add(mtflush_ctx->wq,
			(void *)(work_item + i),
			work_heap);
	}

	/* wait on the completion to arrive */
   	for(i=0; i< buf_pool_inst;) {
		wrk_t *done_wi = NULL;
		done_wi = (wrk_t *)ib_wqueue_wait(mtflush_ctx->wr_cq);

		if (done_wi != NULL) {
			per_pool_cnt[i].flushed = done_wi->n_flushed;
			per_pool_cnt[i].evicted = done_wi->n_evicted;

#ifdef UNIV_MTFLUSH_DEBUG
			if((int)done_wi->id_usr == 0 &&
				(done_wi->wi_status == WRK_ITEM_SET ||
					done_wi->wi_status == WRK_ITEM_UNSET)) {
				fprintf(stderr,
					"**Set/Unused work_item[%lu] flush_type=%d\n",
					i,
					done_wi->wr.flush_type);
				ut_a(0);
			}
#endif

			n_flushed+= done_wi->n_flushed+done_wi->n_evicted;
			i++;
		}
	}

	/* Release used work_items and queue nodes */
	mem_heap_free(work_heap);
	mem_heap_free(reply_heap);

	return(n_flushed);
}

/*******************************************************************//**
Multi-threaded version of buf_flush_list
*/
bool
buf_mtflu_flush_list(
/*=================*/
	ulint		min_n,		/*!< in: wished minimum mumber of blocks
					flushed (it is not guaranteed that the
					actual number is that big, though) */
	lsn_t		lsn_limit,	/*!< in the case BUF_FLUSH_LIST all
					blocks whose oldest_modification is
					smaller than this should be flushed
					(if their number does not exceed
					min_n), otherwise ignored */
	ulint*		n_processed)	/*!< out: the number of pages
					which were processed is passed
					back to caller. Ignored if NULL */

{
	ulint				i;
	bool				success = true;
	flush_counters_t		cnt[MTFLUSH_MAX_WORKER];

	if (n_processed) {
		*n_processed = 0;
	}

	if (min_n != ULINT_MAX) {
		/* Ensure that flushing is spread evenly amongst the
		buffer pool instances. When min_n is ULINT_MAX
		we need to flush everything up to the lsn limit
		so no limit here. */
		min_n = (min_n + srv_buf_pool_instances - 1)
			 / srv_buf_pool_instances;
	}

	/* This lock is to safequard against re-entry if any. */
	mutex_enter(&mtflush_mtx);
	buf_mtflu_flush_work_items(srv_buf_pool_instances,
                cnt, BUF_FLUSH_LIST,
                min_n, lsn_limit);
	mutex_exit(&mtflush_mtx);

	for (i = 0; i < srv_buf_pool_instances; i++) {
		if (n_processed) {
			*n_processed += cnt[i].flushed+cnt[i].evicted;
		}

		if (cnt[i].flushed) {
			MONITOR_INC_VALUE_CUMULATIVE(
				MONITOR_FLUSH_BATCH_TOTAL_PAGE,
				MONITOR_FLUSH_BATCH_COUNT,
				MONITOR_FLUSH_BATCH_PAGES,
				cnt[i].flushed);
		}

		if(cnt[i].evicted) {
				MONITOR_INC_VALUE_CUMULATIVE(
				MONITOR_LRU_BATCH_EVICT_TOTAL_PAGE,
				MONITOR_LRU_BATCH_EVICT_COUNT,
				MONITOR_LRU_BATCH_EVICT_PAGES,
				cnt[i].evicted);
		}
	}
#ifdef UNIV_MTFLUSH_DEBUG
	fprintf(stderr, "%s: [1] [*n_processed: (min:%lu)%lu ]\n",
		__FUNCTION__, (min_n * srv_buf_pool_instances), *n_processed);
#endif
	return(success);
}

/*********************************************************************//**
Clears up tail of the LRU lists:
* Put replaceable pages at the tail of LRU to the free list
* Flush dirty pages at the tail of LRU to the disk
The depth to which we scan each buffer pool is controlled by dynamic
config parameter innodb_LRU_scan_depth.
@return total pages flushed */
UNIV_INTERN
ulint
buf_mtflu_flush_LRU_tail(void)
/*==========================*/
{
	ulint	total_flushed=0, i;
	flush_counters_t	cnt[MTFLUSH_MAX_WORKER];

	ut_a(buf_mtflu_init_done());

	/* At shutdown do not send requests anymore */
	if (!mtflush_ctx || mtflush_ctx->gwt_status == WTHR_KILL_IT) {
		return (total_flushed);
	}

	/* This lock is to safeguard against re-entry if any */
	mutex_enter(&mtflush_mtx);
	buf_mtflu_flush_work_items(srv_buf_pool_instances,
		cnt, BUF_FLUSH_LRU, srv_LRU_scan_depth, 0);
	mutex_exit(&mtflush_mtx);

	for (i = 0; i < srv_buf_pool_instances; i++) {
		total_flushed += cnt[i].flushed+cnt[i].evicted;

		if (cnt[i].flushed) {
			MONITOR_INC_VALUE_CUMULATIVE(
			        MONITOR_LRU_BATCH_FLUSH_TOTAL_PAGE,
			        MONITOR_LRU_BATCH_FLUSH_COUNT,
			        MONITOR_LRU_BATCH_FLUSH_PAGES,
			        cnt[i].flushed);
		}

		if(cnt[i].evicted) {
				MONITOR_INC_VALUE_CUMULATIVE(
				MONITOR_LRU_BATCH_EVICT_TOTAL_PAGE,
				MONITOR_LRU_BATCH_EVICT_COUNT,
				MONITOR_LRU_BATCH_EVICT_PAGES,
				cnt[i].evicted);
		}
	}

#if UNIV_MTFLUSH_DEBUG
	fprintf(stderr, "[1] [*n_processed: (min:%lu)%lu ]\n", (
			srv_LRU_scan_depth * srv_buf_pool_instances), total_flushed);
#endif

	return(total_flushed);
}

/*********************************************************************//**
Set correct thread identifiers to io thread array based on
information we have. */
void
buf_mtflu_set_thread_ids(
/*=====================*/
	ulint		n_threads,	/*!<in: Number of threads to fill */
        void*		ctx,		/*!<in: thread context */
	os_thread_id_t*	thread_ids)	/*!<in: thread id array */
{
	thread_sync_t *mtflush_io = ((thread_sync_t *)ctx);
	ulint i;
	ut_a(mtflush_io != NULL);
	ut_a(thread_ids != NULL);

	for(i = 0; i < n_threads; i++) {
		thread_ids[i] = mtflush_io->thread_data[i].wthread_id;
	}
}