/************************************************************************ SQL data field and tuple (c) 1994-1996 Innobase Oy Created 5/30/1994 Heikki Tuuri *************************************************************************/ #include "data0data.h" #ifdef UNIV_NONINL #include "data0data.ic" #endif #include "rem0rec.h" #include "rem0cmp.h" #include "page0page.h" #include "page0zip.h" #include "dict0dict.h" #include "btr0cur.h" #include #ifdef UNIV_DEBUG byte data_error; /* data pointers of tuple fields are initialized to point here for error checking */ ulint data_dummy; /* this is used to fool the compiler in dtuple_validate */ #endif /* UNIV_DEBUG */ /************************************************************************* Tests if dfield data length and content is equal to the given. */ ibool dfield_data_is_binary_equal( /*========================*/ /* out: TRUE if equal */ const dfield_t* field, /* in: field */ ulint len, /* in: data length or UNIV_SQL_NULL */ const byte* data) /* in: data */ { if (len != dfield_get_len(field)) { return(FALSE); } if (len == UNIV_SQL_NULL) { return(TRUE); } if (0 != memcmp(dfield_get_data(field), data, len)) { return(FALSE); } return(TRUE); } /**************************************************************** Compare two data tuples, respecting the collation of character fields. */ int dtuple_coll_cmp( /*============*/ /* out: 1, 0 , -1 if tuple1 is greater, equal, less, respectively, than tuple2 */ const dtuple_t* tuple1, /* in: tuple 1 */ const dtuple_t* tuple2) /* in: tuple 2 */ { ulint n_fields; ulint i; ut_ad(tuple1 && tuple2); ut_ad(tuple1->magic_n == DATA_TUPLE_MAGIC_N); ut_ad(tuple2->magic_n == DATA_TUPLE_MAGIC_N); ut_ad(dtuple_check_typed(tuple1)); ut_ad(dtuple_check_typed(tuple2)); n_fields = dtuple_get_n_fields(tuple1); if (n_fields != dtuple_get_n_fields(tuple2)) { return(n_fields < dtuple_get_n_fields(tuple2) ? -1 : 1); } for (i = 0; i < n_fields; i++) { int cmp; const dfield_t* field1 = dtuple_get_nth_field(tuple1, i); const dfield_t* field2 = dtuple_get_nth_field(tuple2, i); cmp = cmp_dfield_dfield(field1, field2); if (cmp) { return(cmp); } } return(0); } /************************************************************************* Sets number of fields used in a tuple. Normally this is set in dtuple_create, but if you want later to set it smaller, you can use this. */ void dtuple_set_n_fields( /*================*/ dtuple_t* tuple, /* in: tuple */ ulint n_fields) /* in: number of fields */ { ut_ad(tuple); tuple->n_fields = n_fields; tuple->n_fields_cmp = n_fields; } /************************************************************** Checks that a data field is typed. */ static ibool dfield_check_typed_no_assert( /*=========================*/ /* out: TRUE if ok */ const dfield_t* field) /* in: data field */ { if (dfield_get_type(field)->mtype > DATA_MYSQL || dfield_get_type(field)->mtype < DATA_VARCHAR) { fprintf(stderr, "InnoDB: Error: data field type %lu, len %lu\n", (ulong) dfield_get_type(field)->mtype, (ulong) dfield_get_len(field)); return(FALSE); } return(TRUE); } /************************************************************** Checks that a data tuple is typed. */ ibool dtuple_check_typed_no_assert( /*=========================*/ /* out: TRUE if ok */ const dtuple_t* tuple) /* in: tuple */ { const dfield_t* field; ulint i; if (dtuple_get_n_fields(tuple) > REC_MAX_N_FIELDS) { fprintf(stderr, "InnoDB: Error: index entry has %lu fields\n", (ulong) dtuple_get_n_fields(tuple)); dump: fputs("InnoDB: Tuple contents: ", stderr); dtuple_print(stderr, tuple); putc('\n', stderr); return(FALSE); } for (i = 0; i < dtuple_get_n_fields(tuple); i++) { field = dtuple_get_nth_field(tuple, i); if (!dfield_check_typed_no_assert(field)) { goto dump; } } return(TRUE); } /************************************************************** Checks that a data field is typed. Asserts an error if not. */ ibool dfield_check_typed( /*===============*/ /* out: TRUE if ok */ const dfield_t* field) /* in: data field */ { if (dfield_get_type(field)->mtype > DATA_MYSQL || dfield_get_type(field)->mtype < DATA_VARCHAR) { fprintf(stderr, "InnoDB: Error: data field type %lu, len %lu\n", (ulong) dfield_get_type(field)->mtype, (ulong) dfield_get_len(field)); ut_error; } return(TRUE); } /************************************************************** Checks that a data tuple is typed. Asserts an error if not. */ ibool dtuple_check_typed( /*===============*/ /* out: TRUE if ok */ const dtuple_t* tuple) /* in: tuple */ { const dfield_t* field; ulint i; for (i = 0; i < dtuple_get_n_fields(tuple); i++) { field = dtuple_get_nth_field(tuple, i); ut_a(dfield_check_typed(field)); } return(TRUE); } #ifdef UNIV_DEBUG /************************************************************** Validates the consistency of a tuple which must be complete, i.e, all fields must have been set. */ ibool dtuple_validate( /*============*/ /* out: TRUE if ok */ const dtuple_t* tuple) /* in: tuple */ { const dfield_t* field; const byte* data; ulint n_fields; ulint len; ulint i; ulint j; ut_ad(tuple->magic_n == DATA_TUPLE_MAGIC_N); n_fields = dtuple_get_n_fields(tuple); /* We dereference all the data of each field to test for memory traps */ for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(tuple, i); len = dfield_get_len(field); if (!dfield_is_null(field)) { data = dfield_get_data(field); UNIV_MEM_ASSERT_RW(data, len); for (j = 0; j < len; j++) { data_dummy += *data; /* fool the compiler not to optimize out this code */ data++; } } } ut_a(dtuple_check_typed(tuple)); return(TRUE); } #endif /* UNIV_DEBUG */ /***************************************************************** Pretty prints a dfield value according to its data type. */ void dfield_print( /*=========*/ const dfield_t* dfield) /* in: dfield */ { const byte* data; ulint len; ulint i; len = dfield_get_len(dfield); data = dfield_get_data(dfield); if (dfield_is_null(dfield)) { fputs("NULL", stderr); return; } switch (dtype_get_mtype(dfield_get_type(dfield))) { case DATA_CHAR: case DATA_VARCHAR: for (i = 0; i < len; i++) { int c = *data++; putc(isprint(c) ? c : ' ', stderr); } if (dfield_is_ext(dfield)) { fputs("(external)", stderr); } break; case DATA_INT: ut_a(len == 4); /* only works for 32-bit integers */ fprintf(stderr, "%d", (int)mach_read_from_4(data)); break; default: ut_error; } } /***************************************************************** Pretty prints a dfield value according to its data type. Also the hex string is printed if a string contains non-printable characters. */ void dfield_print_also_hex( /*==================*/ const dfield_t* dfield) /* in: dfield */ { const byte* data; ulint len; ulint prtype; ulint i; ibool print_also_hex; len = dfield_get_len(dfield); data = dfield_get_data(dfield); if (dfield_is_null(dfield)) { fputs("NULL", stderr); return; } prtype = dtype_get_prtype(dfield_get_type(dfield)); switch (dtype_get_mtype(dfield_get_type(dfield))) { dulint id; case DATA_INT: switch (len) { ulint val; case 1: val = mach_read_from_1(data); if (!(prtype & DATA_UNSIGNED)) { val &= ~0x80; fprintf(stderr, "%ld", (long) val); } else { fprintf(stderr, "%lu", (ulong) val); } break; case 2: val = mach_read_from_2(data); if (!(prtype & DATA_UNSIGNED)) { val &= ~0x8000; fprintf(stderr, "%ld", (long) val); } else { fprintf(stderr, "%lu", (ulong) val); } break; case 3: val = mach_read_from_3(data); if (!(prtype & DATA_UNSIGNED)) { val &= ~0x800000; fprintf(stderr, "%ld", (long) val); } else { fprintf(stderr, "%lu", (ulong) val); } break; case 4: val = mach_read_from_4(data); if (!(prtype & DATA_UNSIGNED)) { val &= ~0x80000000; fprintf(stderr, "%ld", (long) val); } else { fprintf(stderr, "%lu", (ulong) val); } break; case 6: id = mach_read_from_6(data); fprintf(stderr, "{%lu %lu}", ut_dulint_get_high(id), ut_dulint_get_low(id)); break; case 7: id = mach_read_from_7(data); fprintf(stderr, "{%lu %lu}", ut_dulint_get_high(id), ut_dulint_get_low(id)); break; case 8: id = mach_read_from_8(data); fprintf(stderr, "{%lu %lu}", ut_dulint_get_high(id), ut_dulint_get_low(id)); break; default: goto print_hex; } break; case DATA_SYS: switch (prtype & DATA_SYS_PRTYPE_MASK) { case DATA_TRX_ID: id = mach_read_from_6(data); fprintf(stderr, "trx_id {%lu %lu}", ut_dulint_get_high(id), ut_dulint_get_low(id)); break; case DATA_ROLL_PTR: id = mach_read_from_7(data); fprintf(stderr, "roll_ptr {%lu %lu}", ut_dulint_get_high(id), ut_dulint_get_low(id)); break; case DATA_ROW_ID: id = mach_read_from_6(data); fprintf(stderr, "row_id {%lu %lu}", ut_dulint_get_high(id), ut_dulint_get_low(id)); break; default: id = mach_dulint_read_compressed(data); fprintf(stderr, "mix_id {%lu %lu}", ut_dulint_get_high(id), ut_dulint_get_low(id)); } break; case DATA_CHAR: case DATA_VARCHAR: print_also_hex = FALSE; for (i = 0; i < len; i++) { int c = *data++; if (!isprint(c)) { print_also_hex = TRUE; fprintf(stderr, "\\x%02x", (unsigned char) c); } else { putc(c, stderr); } } if (dfield_is_ext(dfield)) { fputs("(external)", stderr); } if (!print_also_hex) { break; } data = dfield_get_data(dfield); /* fall through */ case DATA_BINARY: default: print_hex: fputs(" Hex: ",stderr); for (i = 0; i < len; i++) { fprintf(stderr, "%02lx", (ulint) *data++); } if (dfield_is_ext(dfield)) { fputs("(external)", stderr); } } } /***************************************************************** Print a dfield value using ut_print_buf. */ static void dfield_print_raw( /*=============*/ FILE* f, /* in: output stream */ const dfield_t* dfield) /* in: dfield */ { ulint len = dfield_get_len(dfield); if (!dfield_is_null(dfield)) { ulint print_len = ut_min(len, 1000); ut_print_buf(f, dfield_get_data(dfield), print_len); if (len != print_len) { fprintf(f, "(total %lu bytes%s)", (ulong) len, dfield_is_ext(dfield) ? ", external" : ""); } } else { fputs(" SQL NULL", f); } } /************************************************************** The following function prints the contents of a tuple. */ void dtuple_print( /*=========*/ FILE* f, /* in: output stream */ const dtuple_t* tuple) /* in: tuple */ { ulint n_fields; ulint i; n_fields = dtuple_get_n_fields(tuple); fprintf(f, "DATA TUPLE: %lu fields;\n", (ulong) n_fields); for (i = 0; i < n_fields; i++) { fprintf(f, " %lu:", (ulong) i); dfield_print_raw(f, dtuple_get_nth_field(tuple, i)); putc(';', f); } putc('\n', f); ut_ad(dtuple_validate(tuple)); } /****************************************************************** Moves parts of long fields in entry to the big record vector so that the size of tuple drops below the maximum record size allowed in the database. Moves data only from those fields which are not necessary to determine uniquely the insertion place of the tuple in the index. */ big_rec_t* dtuple_convert_big_rec( /*===================*/ /* out, own: created big record vector, NULL if we are not able to shorten the entry enough, i.e., if there are too many fixed-length or short fields in entry or the index is clustered */ dict_index_t* index, /* in: index */ dtuple_t* entry, /* in/out: index entry */ ulint* n_ext) /* in/out: number of externally stored columns */ { mem_heap_t* heap; big_rec_t* vector; dfield_t* dfield; dict_field_t* ifield; ulint size; ulint n_fields; if (UNIV_UNLIKELY(!dict_index_is_clust(index))) { return(NULL); } ut_a(dtuple_check_typed_no_assert(entry)); size = rec_get_converted_size(index, entry, *n_ext); if (UNIV_UNLIKELY(size > 1000000000)) { fprintf(stderr, "InnoDB: Warning: tuple size very big: %lu\n", (ulong) size); fputs("InnoDB: Tuple contents: ", stderr); dtuple_print(stderr, entry); putc('\n', stderr); } heap = mem_heap_create(size + dtuple_get_n_fields(entry) * sizeof(big_rec_field_t) + 1000); vector = mem_heap_alloc(heap, sizeof(big_rec_t)); vector->heap = heap; vector->fields = mem_heap_alloc(heap, dtuple_get_n_fields(entry) * sizeof(big_rec_field_t)); /* Decide which fields to shorten: the algorithm is to look for a variable-length field that yields the biggest savings when stored externally */ n_fields = 0; while (page_zip_rec_needs_ext(rec_get_converted_size(index, entry, *n_ext), dict_table_is_comp(index->table), dict_table_zip_size(index->table))) { ulint i; ulint longest = 0; ulint longest_i = ULINT_MAX; for (i = dict_index_get_n_unique_in_tree(index); i < dtuple_get_n_fields(entry); i++) { ulint savings; dfield = dtuple_get_nth_field(entry, i); ifield = dict_index_get_nth_field(index, i); /* Skip fixed-length, NULL, externally stored, or short columns */ if (ifield->fixed_len || dfield_is_null(dfield) || dfield_is_ext(dfield) || dfield_get_len(dfield) <= BTR_EXTERN_FIELD_REF_SIZE * 2) { goto skip_field; } savings = dfield_get_len(dfield) - BTR_EXTERN_FIELD_REF_SIZE; /* Check that there would be savings */ if (longest >= savings) { goto skip_field; } longest_i = i; longest = savings; skip_field: continue; } if (!longest) { /* Cannot shorten more */ mem_heap_free(heap); return(NULL); } /* Move data from field longest_i to big rec vector. We store the first bytes locally to the record. Then we can calculate all ordering fields in all indexes from locally stored data. */ dfield = dtuple_get_nth_field(entry, longest_i); ifield = dict_index_get_nth_field(index, longest_i); vector->fields[n_fields].field_no = longest_i; vector->fields[n_fields].len = dfield_get_len(dfield); vector->fields[n_fields].data = dfield_get_data(dfield); /* Set the extern field reference in dfield to zero */ dfield_set_data(dfield, mem_heap_zalloc(heap, BTR_EXTERN_FIELD_REF_SIZE), BTR_EXTERN_FIELD_REF_SIZE); dfield_set_ext(dfield); #if 0 /* The following would fail the Valgrind checks in page_cur_insert_rec_low() and page_cur_insert_rec_zip(). The BLOB pointers in the record will be initialized after the record and the BLOBs have been written. */ UNIV_MEM_ALLOC(dfield->data, BTR_EXTERN_FIELD_REF_SIZE); #endif n_fields++; (*n_ext)++; ut_ad(n_fields < dtuple_get_n_fields(entry)); } vector->n_fields = n_fields; return(vector); } /****************************************************************** Puts back to entry the data stored in vector. Note that to ensure the fields in entry can accommodate the data, vector must have been created from entry with dtuple_convert_big_rec. */ void dtuple_convert_back_big_rec( /*========================*/ dict_index_t* index __attribute__((unused)), /* in: index */ dtuple_t* entry, /* in: entry whose data was put to vector */ big_rec_t* vector) /* in, own: big rec vector; it is freed in this function */ { dfield_t* dfield; ulint i; for (i = 0; i < vector->n_fields; i++) { dfield = dtuple_get_nth_field(entry, vector->fields[i].field_no); ut_ad(dfield_is_ext(dfield)); dfield_set_data(dfield, vector->fields[i].data, vector->fields[i].len); } mem_heap_free(vector->heap); }