/***************************************************************************** Copyright (c) 2005, 2013, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0merge.cc New index creation routines using a merge sort Created 12/4/2005 Jan Lindstrom Completed by Sunny Bains and Marko Makela *******************************************************/ #include #include #include "row0merge.h" #include "row0ext.h" #include "row0log.h" #include "row0ins.h" #include "row0sel.h" #include "dict0crea.h" #include "trx0purge.h" #include "lock0lock.h" #include "pars0pars.h" #include "ut0sort.h" #include "row0ftsort.h" #include "row0import.h" #include "handler0alter.h" #include "ha_prototypes.h" #include "math.h" /* log() */ float my_log2f(float n) { /* log(n) / log(2) is log2. */ return (float)(log((double)n) / log((double)2)); } /* Ignore posix_fadvise() on those platforms where it does not exist */ #if defined __WIN__ # define posix_fadvise(fd, offset, len, advice) /* nothing */ #endif /* __WIN__ */ #ifdef UNIV_DEBUG /** Set these in order ot enable debug printout. */ /* @{ */ /** Log each record read from temporary file. */ static ibool row_merge_print_read; /** Log each record write to temporary file. */ static ibool row_merge_print_write; /** Log each row_merge_blocks() call, merging two blocks of records to a bigger one. */ static ibool row_merge_print_block; /** Log each block read from temporary file. */ static ibool row_merge_print_block_read; /** Log each block read from temporary file. */ static ibool row_merge_print_block_write; /* @} */ #endif /* UNIV_DEBUG */ /* Whether to disable file system cache */ UNIV_INTERN char srv_disable_sort_file_cache; /* Maximum pending doc memory limit in bytes for a fts tokenization thread */ #define FTS_PENDING_DOC_MEMORY_LIMIT 1000000 #ifdef UNIV_DEBUG /******************************************************//** Display a merge tuple. */ static __attribute__((nonnull)) void row_merge_tuple_print( /*==================*/ FILE* f, /*!< in: output stream */ const mtuple_t* entry, /*!< in: tuple to print */ ulint n_fields)/*!< in: number of fields in the tuple */ { ulint j; for (j = 0; j < n_fields; j++) { const dfield_t* field = &entry->fields[j]; if (dfield_is_null(field)) { fputs("\n NULL;", f); } else { ulint field_len = dfield_get_len(field); ulint len = ut_min(field_len, 20); if (dfield_is_ext(field)) { fputs("\nE", f); } else { fputs("\n ", f); } ut_print_buf(f, dfield_get_data(field), len); if (len != field_len) { fprintf(f, " (total %lu bytes)", field_len); } } } putc('\n', f); } #endif /* UNIV_DEBUG */ /******************************************************//** Encode an index record. */ static __attribute__((nonnull)) void row_merge_buf_encode( /*=================*/ byte** b, /*!< in/out: pointer to current end of output buffer */ const dict_index_t* index, /*!< in: index */ const mtuple_t* entry, /*!< in: index fields of the record to encode */ ulint n_fields) /*!< in: number of fields in the entry */ { ulint size; ulint extra_size; size = rec_get_converted_size_temp( index, entry->fields, n_fields, &extra_size); ut_ad(size >= extra_size); /* Encode extra_size + 1 */ if (extra_size + 1 < 0x80) { *(*b)++ = (byte) (extra_size + 1); } else { ut_ad((extra_size + 1) < 0x8000); *(*b)++ = (byte) (0x80 | ((extra_size + 1) >> 8)); *(*b)++ = (byte) (extra_size + 1); } rec_convert_dtuple_to_temp(*b + extra_size, index, entry->fields, n_fields); *b += size; } /******************************************************//** Allocate a sort buffer. @return own: sort buffer */ static __attribute__((malloc, nonnull)) row_merge_buf_t* row_merge_buf_create_low( /*=====================*/ mem_heap_t* heap, /*!< in: heap where allocated */ dict_index_t* index, /*!< in: secondary index */ ulint max_tuples, /*!< in: maximum number of data tuples */ ulint buf_size) /*!< in: size of the buffer, in bytes */ { row_merge_buf_t* buf; ut_ad(max_tuples > 0); ut_ad(max_tuples <= srv_sort_buf_size); buf = static_cast(mem_heap_zalloc(heap, buf_size)); buf->heap = heap; buf->index = index; buf->max_tuples = max_tuples; buf->tuples = static_cast( ut_malloc(2 * max_tuples * sizeof *buf->tuples)); buf->tmp_tuples = buf->tuples + max_tuples; return(buf); } /******************************************************//** Allocate a sort buffer. @return own: sort buffer */ UNIV_INTERN row_merge_buf_t* row_merge_buf_create( /*=================*/ dict_index_t* index) /*!< in: secondary index */ { row_merge_buf_t* buf; ulint max_tuples; ulint buf_size; mem_heap_t* heap; max_tuples = srv_sort_buf_size / ut_max(1, dict_index_get_min_size(index)); buf_size = (sizeof *buf); heap = mem_heap_create(buf_size); buf = row_merge_buf_create_low(heap, index, max_tuples, buf_size); return(buf); } /******************************************************//** Empty a sort buffer. @return sort buffer */ UNIV_INTERN row_merge_buf_t* row_merge_buf_empty( /*================*/ row_merge_buf_t* buf) /*!< in,own: sort buffer */ { ulint buf_size = sizeof *buf; ulint max_tuples = buf->max_tuples; mem_heap_t* heap = buf->heap; dict_index_t* index = buf->index; mtuple_t* tuples = buf->tuples; mem_heap_empty(heap); buf = static_cast(mem_heap_zalloc(heap, buf_size)); buf->heap = heap; buf->index = index; buf->max_tuples = max_tuples; buf->tuples = tuples; buf->tmp_tuples = buf->tuples + max_tuples; return(buf); } /******************************************************//** Deallocate a sort buffer. */ UNIV_INTERN void row_merge_buf_free( /*===============*/ row_merge_buf_t* buf) /*!< in,own: sort buffer to be freed */ { ut_free(buf->tuples); mem_heap_free(buf->heap); } /******************************************************//** Insert a data tuple into a sort buffer. @return number of rows added, 0 if out of space */ static ulint row_merge_buf_add( /*==============*/ row_merge_buf_t* buf, /*!< in/out: sort buffer */ dict_index_t* fts_index,/*!< in: fts index to be created */ const dict_table_t* old_table,/*!< in: original table */ fts_psort_t* psort_info, /*!< in: parallel sort info */ const dtuple_t* row, /*!< in: table row */ const row_ext_t* ext, /*!< in: cache of externally stored column prefixes, or NULL */ doc_id_t* doc_id) /*!< in/out: Doc ID if we are creating FTS index */ { ulint i; const dict_index_t* index; mtuple_t* entry; dfield_t* field; const dict_field_t* ifield; ulint n_fields; ulint data_size; ulint extra_size; ulint bucket = 0; doc_id_t write_doc_id; ulint n_row_added = 0; DBUG_ENTER("row_merge_buf_add"); if (buf->n_tuples >= buf->max_tuples) { DBUG_RETURN(0); } DBUG_EXECUTE_IF( "ib_row_merge_buf_add_two", if (buf->n_tuples >= 2) DBUG_RETURN(0);); UNIV_PREFETCH_R(row->fields); /* If we are building FTS index, buf->index points to the 'fts_sort_idx', and real FTS index is stored in fts_index */ index = (buf->index->type & DICT_FTS) ? fts_index : buf->index; n_fields = dict_index_get_n_fields(index); entry = &buf->tuples[buf->n_tuples]; field = entry->fields = static_cast( mem_heap_alloc(buf->heap, n_fields * sizeof *entry->fields)); data_size = 0; extra_size = UT_BITS_IN_BYTES(index->n_nullable); ifield = dict_index_get_nth_field(index, 0); for (i = 0; i < n_fields; i++, field++, ifield++) { ulint len; const dict_col_t* col; ulint col_no; ulint fixed_len; const dfield_t* row_field; col = ifield->col; col_no = dict_col_get_no(col); /* Process the Doc ID column */ if (*doc_id > 0 && col_no == index->table->fts->doc_col) { fts_write_doc_id((byte*) &write_doc_id, *doc_id); /* Note: field->data now points to a value on the stack: &write_doc_id after dfield_set_data(). Because there is only one doc_id per row, it shouldn't matter. We allocate a new buffer before we leave the function later below. */ dfield_set_data( field, &write_doc_id, sizeof(write_doc_id)); field->type.mtype = ifield->col->mtype; field->type.prtype = ifield->col->prtype; field->type.mbminmaxlen = DATA_MBMINMAXLEN(0, 0); field->type.len = ifield->col->len; } else { row_field = dtuple_get_nth_field(row, col_no); dfield_copy(field, row_field); /* Tokenize and process data for FTS */ if (index->type & DICT_FTS) { fts_doc_item_t* doc_item; byte* value; void* ptr; const ulint max_trial_count = 10000; ulint trial_count = 0; /* fetch Doc ID if it already exists in the row, and not supplied by the caller. Even if the value column is NULL, we still need to get the Doc ID so to maintain the correct max Doc ID */ if (*doc_id == 0) { const dfield_t* doc_field; doc_field = dtuple_get_nth_field( row, index->table->fts->doc_col); *doc_id = (doc_id_t) mach_read_from_8( static_cast( dfield_get_data(doc_field))); if (*doc_id == 0) { ib_logf(IB_LOG_LEVEL_WARN, "FTS Doc ID is zero. " "Record Skipped"); DBUG_RETURN(0); } } if (dfield_is_null(field)) { n_row_added = 1; continue; } ptr = ut_malloc(sizeof(*doc_item) + field->len); doc_item = static_cast(ptr); value = static_cast(ptr) + sizeof(*doc_item); memcpy(value, field->data, field->len); field->data = value; doc_item->field = field; doc_item->doc_id = *doc_id; bucket = *doc_id % fts_sort_pll_degree; /* Add doc item to fts_doc_list */ mutex_enter(&psort_info[bucket].mutex); if (psort_info[bucket].error == DB_SUCCESS) { UT_LIST_ADD_LAST( doc_list, psort_info[bucket].fts_doc_list, doc_item); psort_info[bucket].memory_used += sizeof(*doc_item) + field->len; } else { ut_free(doc_item); } mutex_exit(&psort_info[bucket].mutex); /* Sleep when memory used exceeds limit*/ while (psort_info[bucket].memory_used > FTS_PENDING_DOC_MEMORY_LIMIT && trial_count++ < max_trial_count) { os_thread_sleep(1000); } n_row_added = 1; continue; } } len = dfield_get_len(field); if (dfield_is_null(field)) { ut_ad(!(col->prtype & DATA_NOT_NULL)); continue; } else if (!ext) { } else if (dict_index_is_clust(index)) { /* Flag externally stored fields. */ const byte* buf = row_ext_lookup(ext, col_no, &len); if (UNIV_LIKELY_NULL(buf)) { ut_a(buf != field_ref_zero); if (i < dict_index_get_n_unique(index)) { dfield_set_data(field, buf, len); } else { dfield_set_ext(field); len = dfield_get_len(field); } } } else { const byte* buf = row_ext_lookup(ext, col_no, &len); if (UNIV_LIKELY_NULL(buf)) { ut_a(buf != field_ref_zero); dfield_set_data(field, buf, len); } } /* If a column prefix index, take only the prefix */ if (ifield->prefix_len) { len = dtype_get_at_most_n_mbchars( col->prtype, col->mbminmaxlen, ifield->prefix_len, len, static_cast(dfield_get_data(field))); dfield_set_len(field, len); } ut_ad(len <= col->len || col->mtype == DATA_BLOB); fixed_len = ifield->fixed_len; if (fixed_len && !dict_table_is_comp(index->table) && DATA_MBMINLEN(col->mbminmaxlen) != DATA_MBMAXLEN(col->mbminmaxlen)) { /* CHAR in ROW_FORMAT=REDUNDANT is always fixed-length, but in the temporary file it is variable-length for variable-length character sets. */ fixed_len = 0; } if (fixed_len) { #ifdef UNIV_DEBUG ulint mbminlen = DATA_MBMINLEN(col->mbminmaxlen); ulint mbmaxlen = DATA_MBMAXLEN(col->mbminmaxlen); /* len should be between size calcualted base on mbmaxlen and mbminlen */ ut_ad(len <= fixed_len); ut_ad(!mbmaxlen || len >= mbminlen * (fixed_len / mbmaxlen)); ut_ad(!dfield_is_ext(field)); #endif /* UNIV_DEBUG */ } else if (dfield_is_ext(field)) { extra_size += 2; } else if (len < 128 || (col->len < 256 && col->mtype != DATA_BLOB)) { extra_size++; } else { /* For variable-length columns, we look up the maximum length from the column itself. If this is a prefix index column shorter than 256 bytes, this will waste one byte. */ extra_size += 2; } data_size += len; } /* If this is FTS index, we already populated the sort buffer, return here */ if (index->type & DICT_FTS) { DBUG_RETURN(n_row_added); } #ifdef UNIV_DEBUG { ulint size; ulint extra; size = rec_get_converted_size_temp( index, entry->fields, n_fields, &extra); ut_ad(data_size + extra_size == size); ut_ad(extra_size == extra); } #endif /* UNIV_DEBUG */ /* Add to the total size of the record in row_merge_block_t the encoded length of extra_size and the extra bytes (extra_size). See row_merge_buf_write() for the variable-length encoding of extra_size. */ data_size += (extra_size + 1) + ((extra_size + 1) >= 0x80); ut_ad(data_size < srv_sort_buf_size); /* Reserve one byte for the end marker of row_merge_block_t. */ if (buf->total_size + data_size >= srv_sort_buf_size - 1) { DBUG_RETURN(0); } buf->total_size += data_size; buf->n_tuples++; n_row_added++; field = entry->fields; /* Copy the data fields. */ do { dfield_dup(field++, buf->heap); } while (--n_fields); DBUG_RETURN(n_row_added); } /*************************************************************//** Report a duplicate key. */ UNIV_INTERN void row_merge_dup_report( /*=================*/ row_merge_dup_t* dup, /*!< in/out: for reporting duplicates */ const dfield_t* entry) /*!< in: duplicate index entry */ { if (!dup->n_dup++) { /* Only report the first duplicate record, but count all duplicate records. */ innobase_fields_to_mysql(dup->table, dup->index, entry); } } /*************************************************************//** Compare two tuples. @return 1, 0, -1 if a is greater, equal, less, respectively, than b */ static __attribute__((warn_unused_result)) int row_merge_tuple_cmp( /*================*/ ulint n_uniq, /*!< in: number of unique fields */ ulint n_field,/*!< in: number of fields */ const mtuple_t& a, /*!< in: first tuple to be compared */ const mtuple_t& b, /*!< in: second tuple to be compared */ row_merge_dup_t* dup) /*!< in/out: for reporting duplicates, NULL if non-unique index */ { int cmp; const dfield_t* af = a.fields; const dfield_t* bf = b.fields; ulint n = n_uniq; ut_ad(n_uniq > 0); ut_ad(n_uniq <= n_field); /* Compare the fields of the tuples until a difference is found or we run out of fields to compare. If !cmp at the end, the tuples are equal. */ do { cmp = cmp_dfield_dfield(af++, bf++); } while (!cmp && --n); if (cmp) { return(cmp); } if (dup) { /* Report a duplicate value error if the tuples are logically equal. NULL columns are logically inequal, although they are equal in the sorting order. Find out if any of the fields are NULL. */ for (const dfield_t* df = a.fields; df != af; df++) { if (dfield_is_null(df)) { goto no_report; } } row_merge_dup_report(dup, a.fields); } no_report: /* The n_uniq fields were equal, but we compare all fields so that we will get the same (internal) order as in the B-tree. */ for (n = n_field - n_uniq + 1; --n; ) { cmp = cmp_dfield_dfield(af++, bf++); if (cmp) { return(cmp); } } /* This should never be reached, except in a secondary index when creating a secondary index and a PRIMARY KEY, and there is a duplicate in the PRIMARY KEY that has not been detected yet. Internally, an index must never contain duplicates. */ return(cmp); } /** Wrapper for row_merge_tuple_sort() to inject some more context to UT_SORT_FUNCTION_BODY(). @param tuples array of tuples that being sorted @param aux work area, same size as tuples[] @param low lower bound of the sorting area, inclusive @param high upper bound of the sorting area, inclusive */ #define row_merge_tuple_sort_ctx(tuples, aux, low, high) \ row_merge_tuple_sort(n_uniq, n_field, dup, tuples, aux, low, high) /** Wrapper for row_merge_tuple_cmp() to inject some more context to UT_SORT_FUNCTION_BODY(). @param a first tuple to be compared @param b second tuple to be compared @return 1, 0, -1 if a is greater, equal, less, respectively, than b */ #define row_merge_tuple_cmp_ctx(a,b) \ row_merge_tuple_cmp(n_uniq, n_field, a, b, dup) /**********************************************************************//** Merge sort the tuple buffer in main memory. */ static __attribute__((nonnull(4,5))) void row_merge_tuple_sort( /*=================*/ ulint n_uniq, /*!< in: number of unique fields */ ulint n_field,/*!< in: number of fields */ row_merge_dup_t* dup, /*!< in/out: reporter of duplicates (NULL if non-unique index) */ mtuple_t* tuples, /*!< in/out: tuples */ mtuple_t* aux, /*!< in/out: work area */ ulint low, /*!< in: lower bound of the sorting area, inclusive */ ulint high) /*!< in: upper bound of the sorting area, exclusive */ { ut_ad(n_field > 0); ut_ad(n_uniq <= n_field); UT_SORT_FUNCTION_BODY(row_merge_tuple_sort_ctx, tuples, aux, low, high, row_merge_tuple_cmp_ctx); } /******************************************************//** Sort a buffer. */ UNIV_INTERN void row_merge_buf_sort( /*===============*/ row_merge_buf_t* buf, /*!< in/out: sort buffer */ row_merge_dup_t* dup) /*!< in/out: reporter of duplicates (NULL if non-unique index) */ { row_merge_tuple_sort(dict_index_get_n_unique(buf->index), dict_index_get_n_fields(buf->index), dup, buf->tuples, buf->tmp_tuples, 0, buf->n_tuples); } /******************************************************//** Write a buffer to a block. */ UNIV_INTERN void row_merge_buf_write( /*================*/ const row_merge_buf_t* buf, /*!< in: sorted buffer */ const merge_file_t* of UNIV_UNUSED, /*!< in: output file */ row_merge_block_t* block) /*!< out: buffer for writing to file */ { const dict_index_t* index = buf->index; ulint n_fields= dict_index_get_n_fields(index); byte* b = &block[0]; for (ulint i = 0; i < buf->n_tuples; i++) { const mtuple_t* entry = &buf->tuples[i]; row_merge_buf_encode(&b, index, entry, n_fields); ut_ad(b < &block[srv_sort_buf_size]); #ifdef UNIV_DEBUG if (row_merge_print_write) { fprintf(stderr, "row_merge_buf_write %p,%d,%lu %lu", (void*) b, of->fd, (ulong) of->offset, (ulong) i); row_merge_tuple_print(stderr, entry, n_fields); } #endif /* UNIV_DEBUG */ } /* Write an "end-of-chunk" marker. */ ut_a(b < &block[srv_sort_buf_size]); ut_a(b == &block[0] + buf->total_size); *b++ = 0; #ifdef UNIV_DEBUG_VALGRIND /* The rest of the block is uninitialized. Initialize it to avoid bogus warnings. */ memset(b, 0xff, &block[srv_sort_buf_size] - b); #endif /* UNIV_DEBUG_VALGRIND */ #ifdef UNIV_DEBUG if (row_merge_print_write) { fprintf(stderr, "row_merge_buf_write %p,%d,%lu EOF\n", (void*) b, of->fd, (ulong) of->offset); } #endif /* UNIV_DEBUG */ } /******************************************************//** Create a memory heap and allocate space for row_merge_rec_offsets() and mrec_buf_t[3]. @return memory heap */ static mem_heap_t* row_merge_heap_create( /*==================*/ const dict_index_t* index, /*!< in: record descriptor */ mrec_buf_t** buf, /*!< out: 3 buffers */ ulint** offsets1, /*!< out: offsets */ ulint** offsets2) /*!< out: offsets */ { ulint i = 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index); mem_heap_t* heap = mem_heap_create(2 * i * sizeof **offsets1 + 3 * sizeof **buf); *buf = static_cast( mem_heap_alloc(heap, 3 * sizeof **buf)); *offsets1 = static_cast( mem_heap_alloc(heap, i * sizeof **offsets1)); *offsets2 = static_cast( mem_heap_alloc(heap, i * sizeof **offsets2)); (*offsets1)[0] = (*offsets2)[0] = i; (*offsets1)[1] = (*offsets2)[1] = dict_index_get_n_fields(index); return(heap); } /********************************************************************//** Read a merge block from the file system. @return TRUE if request was successful, FALSE if fail */ UNIV_INTERN ibool row_merge_read( /*===========*/ int fd, /*!< in: file descriptor */ ulint offset, /*!< in: offset where to read in number of row_merge_block_t elements */ row_merge_block_t* buf) /*!< out: data */ { os_offset_t ofs = ((os_offset_t) offset) * srv_sort_buf_size; ibool success; DBUG_EXECUTE_IF("row_merge_read_failure", return(FALSE);); #ifdef UNIV_DEBUG if (row_merge_print_block_read) { fprintf(stderr, "row_merge_read fd=%d ofs=%lu\n", fd, (ulong) offset); } #endif /* UNIV_DEBUG */ #ifdef UNIV_DEBUG if (row_merge_print_block_read) { fprintf(stderr, "row_merge_read fd=%d ofs=%lu\n", fd, (ulong) offset); } #endif /* UNIV_DEBUG */ success = os_file_read_no_error_handling(OS_FILE_FROM_FD(fd), buf, ofs, srv_sort_buf_size, FALSE); #ifdef POSIX_FADV_DONTNEED /* Each block is read exactly once. Free up the file cache. */ posix_fadvise(fd, ofs, srv_sort_buf_size, POSIX_FADV_DONTNEED); #endif /* POSIX_FADV_DONTNEED */ if (UNIV_UNLIKELY(!success)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: failed to read merge block at " UINT64PF "\n", ofs); } return(UNIV_LIKELY(success)); } /********************************************************************//** Write a merge block to the file system. @return TRUE if request was successful, FALSE if fail */ UNIV_INTERN ibool row_merge_write( /*============*/ int fd, /*!< in: file descriptor */ ulint offset, /*!< in: offset where to write, in number of row_merge_block_t elements */ const void* buf) /*!< in: data */ { size_t buf_len = srv_sort_buf_size; os_offset_t ofs = buf_len * (os_offset_t) offset; ibool ret; DBUG_EXECUTE_IF("row_merge_write_failure", return(FALSE);); ret = os_file_write("(merge)", OS_FILE_FROM_FD(fd), buf, ofs, buf_len); #ifdef UNIV_DEBUG if (row_merge_print_block_write) { fprintf(stderr, "row_merge_write fd=%d ofs=%lu\n", fd, (ulong) offset); } #endif /* UNIV_DEBUG */ #ifdef POSIX_FADV_DONTNEED /* The block will be needed on the next merge pass, but it can be evicted from the file cache meanwhile. */ posix_fadvise(fd, ofs, buf_len, POSIX_FADV_DONTNEED); #endif /* POSIX_FADV_DONTNEED */ return(UNIV_LIKELY(ret)); } /********************************************************************//** Read a merge record. @return pointer to next record, or NULL on I/O error or end of list */ UNIV_INTERN const byte* row_merge_read_rec( /*===============*/ row_merge_block_t* block, /*!< in/out: file buffer */ mrec_buf_t* buf, /*!< in/out: secondary buffer */ const byte* b, /*!< in: pointer to record */ const dict_index_t* index, /*!< in: index of the record */ int fd, /*!< in: file descriptor */ ulint* foffs, /*!< in/out: file offset */ const mrec_t** mrec, /*!< out: pointer to merge record, or NULL on end of list (non-NULL on I/O error) */ ulint* offsets)/*!< out: offsets of mrec */ { ulint extra_size; ulint data_size; ulint avail_size; ut_ad(block); ut_ad(buf); ut_ad(b >= &block[0]); ut_ad(b < &block[srv_sort_buf_size]); ut_ad(index); ut_ad(foffs); ut_ad(mrec); ut_ad(offsets); ut_ad(*offsets == 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index)); extra_size = *b++; if (UNIV_UNLIKELY(!extra_size)) { /* End of list */ *mrec = NULL; #ifdef UNIV_DEBUG if (row_merge_print_read) { fprintf(stderr, "row_merge_read %p,%p,%d,%lu EOF\n", (const void*) b, (const void*) block, fd, (ulong) *foffs); } #endif /* UNIV_DEBUG */ return(NULL); } if (extra_size >= 0x80) { /* Read another byte of extra_size. */ if (UNIV_UNLIKELY(b >= &block[srv_sort_buf_size])) { if (!row_merge_read(fd, ++(*foffs), block)) { err_exit: /* Signal I/O error. */ *mrec = b; return(NULL); } /* Wrap around to the beginning of the buffer. */ b = &block[0]; } extra_size = (extra_size & 0x7f) << 8; extra_size |= *b++; } /* Normalize extra_size. Above, value 0 signals "end of list". */ extra_size--; /* Read the extra bytes. */ if (UNIV_UNLIKELY(b + extra_size >= &block[srv_sort_buf_size])) { /* The record spans two blocks. Copy the entire record to the auxiliary buffer and handle this as a special case. */ avail_size = &block[srv_sort_buf_size] - b; ut_ad(avail_size < sizeof *buf); memcpy(*buf, b, avail_size); if (!row_merge_read(fd, ++(*foffs), block)) { goto err_exit; } /* Wrap around to the beginning of the buffer. */ b = &block[0]; /* Copy the record. */ memcpy(*buf + avail_size, b, extra_size - avail_size); b += extra_size - avail_size; *mrec = *buf + extra_size; rec_init_offsets_temp(*mrec, index, offsets); data_size = rec_offs_data_size(offsets); /* These overflows should be impossible given that records are much smaller than either buffer, and the record starts near the beginning of each buffer. */ ut_a(extra_size + data_size < sizeof *buf); ut_a(b + data_size < &block[srv_sort_buf_size]); /* Copy the data bytes. */ memcpy(*buf + extra_size, b, data_size); b += data_size; goto func_exit; } *mrec = b + extra_size; rec_init_offsets_temp(*mrec, index, offsets); data_size = rec_offs_data_size(offsets); ut_ad(extra_size + data_size < sizeof *buf); b += extra_size + data_size; if (UNIV_LIKELY(b < &block[srv_sort_buf_size])) { /* The record fits entirely in the block. This is the normal case. */ goto func_exit; } /* The record spans two blocks. Copy it to buf. */ b -= extra_size + data_size; avail_size = &block[srv_sort_buf_size] - b; memcpy(*buf, b, avail_size); *mrec = *buf + extra_size; #ifdef UNIV_DEBUG /* We cannot invoke rec_offs_make_valid() here, because there are no REC_N_NEW_EXTRA_BYTES between extra_size and data_size. Similarly, rec_offs_validate() would fail, because it invokes rec_get_status(). */ offsets[2] = (ulint) *mrec; offsets[3] = (ulint) index; #endif /* UNIV_DEBUG */ if (!row_merge_read(fd, ++(*foffs), block)) { goto err_exit; } /* Wrap around to the beginning of the buffer. */ b = &block[0]; /* Copy the rest of the record. */ memcpy(*buf + avail_size, b, extra_size + data_size - avail_size); b += extra_size + data_size - avail_size; func_exit: #ifdef UNIV_DEBUG if (row_merge_print_read) { fprintf(stderr, "row_merge_read %p,%p,%d,%lu ", (const void*) b, (const void*) block, fd, (ulong) *foffs); rec_print_comp(stderr, *mrec, offsets); putc('\n', stderr); } #endif /* UNIV_DEBUG */ return(b); } /********************************************************************//** Write a merge record. */ static void row_merge_write_rec_low( /*====================*/ byte* b, /*!< out: buffer */ ulint e, /*!< in: encoded extra_size */ #ifdef UNIV_DEBUG ulint size, /*!< in: total size to write */ int fd, /*!< in: file descriptor */ ulint foffs, /*!< in: file offset */ #endif /* UNIV_DEBUG */ const mrec_t* mrec, /*!< in: record to write */ const ulint* offsets)/*!< in: offsets of mrec */ #ifndef UNIV_DEBUG # define row_merge_write_rec_low(b, e, size, fd, foffs, mrec, offsets) \ row_merge_write_rec_low(b, e, mrec, offsets) #endif /* !UNIV_DEBUG */ { #ifdef UNIV_DEBUG const byte* const end = b + size; ut_ad(e == rec_offs_extra_size(offsets) + 1); if (row_merge_print_write) { fprintf(stderr, "row_merge_write %p,%d,%lu ", (void*) b, fd, (ulong) foffs); rec_print_comp(stderr, mrec, offsets); putc('\n', stderr); } #endif /* UNIV_DEBUG */ if (e < 0x80) { *b++ = (byte) e; } else { *b++ = (byte) (0x80 | (e >> 8)); *b++ = (byte) e; } memcpy(b, mrec - rec_offs_extra_size(offsets), rec_offs_size(offsets)); ut_ad(b + rec_offs_size(offsets) == end); } /********************************************************************//** Write a merge record. @return pointer to end of block, or NULL on error */ static byte* row_merge_write_rec( /*================*/ row_merge_block_t* block, /*!< in/out: file buffer */ mrec_buf_t* buf, /*!< in/out: secondary buffer */ byte* b, /*!< in: pointer to end of block */ int fd, /*!< in: file descriptor */ ulint* foffs, /*!< in/out: file offset */ const mrec_t* mrec, /*!< in: record to write */ const ulint* offsets)/*!< in: offsets of mrec */ { ulint extra_size; ulint size; ulint avail_size; ut_ad(block); ut_ad(buf); ut_ad(b >= &block[0]); ut_ad(b < &block[srv_sort_buf_size]); ut_ad(mrec); ut_ad(foffs); ut_ad(mrec < &block[0] || mrec > &block[srv_sort_buf_size]); ut_ad(mrec < buf[0] || mrec > buf[1]); /* Normalize extra_size. Value 0 signals "end of list". */ extra_size = rec_offs_extra_size(offsets) + 1; size = extra_size + (extra_size >= 0x80) + rec_offs_data_size(offsets); if (UNIV_UNLIKELY(b + size >= &block[srv_sort_buf_size])) { /* The record spans two blocks. Copy it to the temporary buffer first. */ avail_size = &block[srv_sort_buf_size] - b; row_merge_write_rec_low(buf[0], extra_size, size, fd, *foffs, mrec, offsets); /* Copy the head of the temporary buffer, write the completed block, and copy the tail of the record to the head of the new block. */ memcpy(b, buf[0], avail_size); if (!row_merge_write(fd, (*foffs)++, block)) { return(NULL); } UNIV_MEM_INVALID(&block[0], srv_sort_buf_size); /* Copy the rest. */ b = &block[0]; memcpy(b, buf[0] + avail_size, size - avail_size); b += size - avail_size; } else { row_merge_write_rec_low(b, extra_size, size, fd, *foffs, mrec, offsets); b += size; } return(b); } /********************************************************************//** Write an end-of-list marker. @return pointer to end of block, or NULL on error */ static byte* row_merge_write_eof( /*================*/ row_merge_block_t* block, /*!< in/out: file buffer */ byte* b, /*!< in: pointer to end of block */ int fd, /*!< in: file descriptor */ ulint* foffs) /*!< in/out: file offset */ { ut_ad(block); ut_ad(b >= &block[0]); ut_ad(b < &block[srv_sort_buf_size]); ut_ad(foffs); #ifdef UNIV_DEBUG if (row_merge_print_write) { fprintf(stderr, "row_merge_write %p,%p,%d,%lu EOF\n", (void*) b, (void*) block, fd, (ulong) *foffs); } #endif /* UNIV_DEBUG */ *b++ = 0; UNIV_MEM_ASSERT_RW(&block[0], b - &block[0]); UNIV_MEM_ASSERT_W(&block[0], srv_sort_buf_size); #ifdef UNIV_DEBUG_VALGRIND /* The rest of the block is uninitialized. Initialize it to avoid bogus warnings. */ memset(b, 0xff, &block[srv_sort_buf_size] - b); #endif /* UNIV_DEBUG_VALGRIND */ if (!row_merge_write(fd, (*foffs)++, block)) { return(NULL); } UNIV_MEM_INVALID(&block[0], srv_sort_buf_size); return(&block[0]); } /********************************************************************//** Reads clustered index of the table and create temporary files containing the index entries for the indexes to be built. @return DB_SUCCESS or error */ static __attribute__((nonnull(1,2,3,4,6,9,10,16), warn_unused_result)) dberr_t row_merge_read_clustered_index( /*===========================*/ trx_t* trx, /*!< in: transaction */ struct TABLE* table, /*!< in/out: MySQL table object, for reporting erroneous records */ const dict_table_t* old_table,/*!< in: table where rows are read from */ const dict_table_t* new_table,/*!< in: table where indexes are created; identical to old_table unless creating a PRIMARY KEY */ bool online, /*!< in: true if creating indexes online */ dict_index_t** index, /*!< in: indexes to be created */ dict_index_t* fts_sort_idx, /*!< in: full-text index to be created, or NULL */ fts_psort_t* psort_info, /*!< in: parallel sort info for fts_sort_idx creation, or NULL */ merge_file_t* files, /*!< in: temporary files */ const ulint* key_numbers, /*!< in: MySQL key numbers to create */ ulint n_index,/*!< in: number of indexes to create */ const dtuple_t* add_cols, /*!< in: default values of added columns, or NULL */ const ulint* col_map,/*!< in: mapping of old column numbers to new ones, or NULL if old_table == new_table */ ulint add_autoinc, /*!< in: number of added AUTO_INCREMENT column, or ULINT_UNDEFINED if none is added */ ib_sequence_t& sequence,/*!< in/out: autoinc sequence */ row_merge_block_t* block, /*!< in/out: file buffer */ float pct_cost) /*!< in: percent of task weight out of total alter job */ { dict_index_t* clust_index; /* Clustered index */ mem_heap_t* row_heap; /* Heap memory to create clustered index tuples */ row_merge_buf_t** merge_buf; /* Temporary list for records*/ btr_pcur_t pcur; /* Cursor on the clustered index */ mtr_t mtr; /* Mini transaction */ dberr_t err = DB_SUCCESS;/* Return code */ ulint n_nonnull = 0; /* number of columns changed to NOT NULL */ ulint* nonnull = NULL; /* NOT NULL columns */ dict_index_t* fts_index = NULL;/* FTS index */ doc_id_t doc_id = 0; doc_id_t max_doc_id = 0; ibool add_doc_id = FALSE; os_event_t fts_parallel_sort_event = NULL; ibool fts_pll_sort = FALSE; ib_int64_t sig_count = 0; float curr_progress; ib_int64_t read_rows = 0; ib_int64_t table_total_rows; DBUG_ENTER("row_merge_read_clustered_index"); ut_ad((old_table == new_table) == !col_map); ut_ad(!add_cols || col_map); table_total_rows = dict_table_get_n_rows(old_table); if(table_total_rows == 0) { /* We don't know total row count */ table_total_rows = 1; } trx->op_info = "reading clustered index"; #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Start Create Index\n"); #endif /* Create and initialize memory for record buffers */ merge_buf = static_cast( mem_alloc(n_index * sizeof *merge_buf)); for (ulint i = 0; i < n_index; i++) { if (index[i]->type & DICT_FTS) { /* We are building a FT index, make sure we have the temporary 'fts_sort_idx' */ ut_a(fts_sort_idx); fts_index = index[i]; merge_buf[i] = row_merge_buf_create(fts_sort_idx); add_doc_id = DICT_TF2_FLAG_IS_SET( new_table, DICT_TF2_FTS_ADD_DOC_ID); /* If Doc ID does not exist in the table itself, fetch the first FTS Doc ID */ if (add_doc_id) { fts_get_next_doc_id( (dict_table_t*) new_table, &doc_id); ut_ad(doc_id > 0); } fts_pll_sort = TRUE; row_fts_start_psort(psort_info); fts_parallel_sort_event = psort_info[0].psort_common->sort_event; } else { merge_buf[i] = row_merge_buf_create(index[i]); } } mtr_start(&mtr); /* Find the clustered index and create a persistent cursor based on that. */ clust_index = dict_table_get_first_index(old_table); btr_pcur_open_at_index_side( true, clust_index, BTR_SEARCH_LEAF, &pcur, true, 0, &mtr); if (old_table != new_table) { /* The table is being rebuilt. Identify the columns that were flagged NOT NULL in the new table, so that we can quickly check that the records in the old table do not violate the added NOT NULL constraints. */ nonnull = static_cast( mem_alloc(dict_table_get_n_cols(new_table) * sizeof *nonnull)); for (ulint i = 0; i < dict_table_get_n_cols(old_table); i++) { if (dict_table_get_nth_col(old_table, i)->prtype & DATA_NOT_NULL) { continue; } const ulint j = col_map[i]; if (j == ULINT_UNDEFINED) { /* The column was dropped. */ continue; } if (dict_table_get_nth_col(new_table, j)->prtype & DATA_NOT_NULL) { nonnull[n_nonnull++] = j; } } if (!n_nonnull) { mem_free(nonnull); nonnull = NULL; } } row_heap = mem_heap_create(sizeof(mrec_buf_t)); /* Scan the clustered index. */ for (;;) { const rec_t* rec; ulint* offsets; const dtuple_t* row; row_ext_t* ext; page_cur_t* cur = btr_pcur_get_page_cur(&pcur); page_cur_move_to_next(cur); if (page_cur_is_after_last(cur)) { if (UNIV_UNLIKELY(trx_is_interrupted(trx))) { err = DB_INTERRUPTED; trx->error_key_num = 0; goto func_exit; } if (online && old_table != new_table) { err = row_log_table_get_error(clust_index); if (err != DB_SUCCESS) { trx->error_key_num = 0; goto func_exit; } } #ifdef DBUG_OFF # define dbug_run_purge false #else /* DBUG_OFF */ bool dbug_run_purge = false; #endif /* DBUG_OFF */ DBUG_EXECUTE_IF( "ib_purge_on_create_index_page_switch", dbug_run_purge = true;); if (dbug_run_purge || rw_lock_get_waiters( dict_index_get_lock(clust_index))) { /* There are waiters on the clustered index tree lock, likely the purge thread. Store and restore the cursor position, and yield so that scanning a large table will not starve other threads. */ /* Store the cursor position on the last user record on the page. */ btr_pcur_move_to_prev_on_page(&pcur); /* Leaf pages must never be empty, unless this is the only page in the index tree. */ ut_ad(btr_pcur_is_on_user_rec(&pcur) || buf_block_get_page_no( btr_pcur_get_block(&pcur)) == clust_index->page); btr_pcur_store_position(&pcur, &mtr); mtr_commit(&mtr); if (dbug_run_purge) { /* This is for testing purposes only (see DBUG_EXECUTE_IF above). We signal the purge thread and hope that the purge batch will complete before we execute btr_pcur_restore_position(). */ trx_purge_run(); os_thread_sleep(1000000); } /* Give the waiters a chance to proceed. */ os_thread_yield(); mtr_start(&mtr); /* Restore position on the record, or its predecessor if the record was purged meanwhile. */ btr_pcur_restore_position( BTR_SEARCH_LEAF, &pcur, &mtr); /* Move to the successor of the original record. */ if (!btr_pcur_move_to_next_user_rec( &pcur, &mtr)) { end_of_index: row = NULL; mtr_commit(&mtr); mem_heap_free(row_heap); if (nonnull) { mem_free(nonnull); } goto write_buffers; } } else { ulint next_page_no; buf_block_t* block; next_page_no = btr_page_get_next( page_cur_get_page(cur), &mtr); if (next_page_no == FIL_NULL) { goto end_of_index; } block = page_cur_get_block(cur); block = btr_block_get( buf_block_get_space(block), buf_block_get_zip_size(block), next_page_no, BTR_SEARCH_LEAF, clust_index, &mtr); btr_leaf_page_release(page_cur_get_block(cur), BTR_SEARCH_LEAF, &mtr); page_cur_set_before_first(block, cur); page_cur_move_to_next(cur); ut_ad(!page_cur_is_after_last(cur)); } } rec = page_cur_get_rec(cur); offsets = rec_get_offsets(rec, clust_index, NULL, ULINT_UNDEFINED, &row_heap); if (online) { /* Perform a REPEATABLE READ. When rebuilding the table online, row_log_table_apply() must not see a newer state of the table when applying the log. This is mainly to prevent false duplicate key errors, because the log will identify records by the PRIMARY KEY, and also to prevent unsafe BLOB access. When creating a secondary index online, this table scan must not see records that have only been inserted to the clustered index, but have not been written to the online_log of index[]. If we performed READ UNCOMMITTED, it could happen that the ADD INDEX reaches ONLINE_INDEX_COMPLETE state between the time the DML thread has updated the clustered index but has not yet accessed secondary index. */ ut_ad(trx->read_view); if (!read_view_sees_trx_id( trx->read_view, row_get_rec_trx_id( rec, clust_index, offsets))) { rec_t* old_vers; row_vers_build_for_consistent_read( rec, &mtr, clust_index, &offsets, trx->read_view, &row_heap, row_heap, &old_vers); rec = old_vers; if (!rec) { continue; } } if (rec_get_deleted_flag( rec, dict_table_is_comp(old_table))) { /* This record was deleted in the latest committed version, or it was deleted and then reinserted-by-update before purge kicked in. Skip it. */ continue; } ut_ad(!rec_offs_any_null_extern(rec, offsets)); } else if (rec_get_deleted_flag( rec, dict_table_is_comp(old_table))) { /* Skip delete-marked records. Skipping delete-marked records will make the created indexes unuseable for transactions whose read views were created before the index creation completed, but preserving the history would make it tricky to detect duplicate keys. */ continue; } /* When !online, we are holding a lock on old_table, preventing any inserts that could have written a record 'stub' before writing out off-page columns. */ ut_ad(!rec_offs_any_null_extern(rec, offsets)); /* Build a row based on the clustered index. */ row = row_build(ROW_COPY_POINTERS, clust_index, rec, offsets, new_table, add_cols, col_map, &ext, row_heap); ut_ad(row); for (ulint i = 0; i < n_nonnull; i++) { const dfield_t* field = &row->fields[nonnull[i]]; ut_ad(dfield_get_type(field)->prtype & DATA_NOT_NULL); if (dfield_is_null(field)) { err = DB_INVALID_NULL; trx->error_key_num = 0; goto func_exit; } } /* Get the next Doc ID */ if (add_doc_id) { doc_id++; } else { doc_id = 0; } if (add_autoinc != ULINT_UNDEFINED) { ut_ad(add_autoinc < dict_table_get_n_user_cols(new_table)); const dfield_t* dfield; dfield = dtuple_get_nth_field(row, add_autoinc); if (dfield_is_null(dfield)) { goto write_buffers; } const dtype_t* dtype = dfield_get_type(dfield); byte* b = static_cast(dfield_get_data(dfield)); if (sequence.eof()) { err = DB_ERROR; trx->error_key_num = 0; ib_errf(trx->mysql_thd, IB_LOG_LEVEL_ERROR, ER_AUTOINC_READ_FAILED, "[NULL]"); goto func_exit; } ulonglong value = sequence++; switch (dtype_get_mtype(dtype)) { case DATA_INT: { ibool usign; ulint len = dfield_get_len(dfield); usign = dtype_get_prtype(dtype) & DATA_UNSIGNED; mach_write_ulonglong(b, value, len, usign); break; } case DATA_FLOAT: mach_float_write( b, static_cast(value)); break; case DATA_DOUBLE: mach_double_write( b, static_cast(value)); break; default: ut_ad(0); } } write_buffers: /* Build all entries for all the indexes to be created in a single scan of the clustered index. */ for (ulint i = 0; i < n_index; i++) { row_merge_buf_t* buf = merge_buf[i]; merge_file_t* file = &files[i]; ulint rows_added = 0; if (UNIV_LIKELY (row && (rows_added = row_merge_buf_add( buf, fts_index, old_table, psort_info, row, ext, &doc_id)))) { /* If we are creating FTS index, a single row can generate more records for tokenized word */ file->n_rec += rows_added; if (doc_id > max_doc_id) { max_doc_id = doc_id; } if (buf->index->type & DICT_FTS) { /* Check if error occurs in child thread */ for (ulint j = 0; j < fts_sort_pll_degree; j++) { if (psort_info[j].error != DB_SUCCESS) { err = psort_info[j].error; trx->error_key_num = i; break; } } if (err != DB_SUCCESS) { break; } } continue; } if (buf->index->type & DICT_FTS) { if (!row || !doc_id) { continue; } } /* The buffer must be sufficiently large to hold at least one record. It may only be empty when we reach the end of the clustered index. row_merge_buf_add() must not have been called in this loop. */ ut_ad(buf->n_tuples || row == NULL); /* We have enough data tuples to form a block. Sort them and write to disk. */ if (buf->n_tuples) { if (dict_index_is_unique(buf->index)) { row_merge_dup_t dup = { buf->index, table, col_map, 0}; row_merge_buf_sort(buf, &dup); if (dup.n_dup) { err = DB_DUPLICATE_KEY; trx->error_key_num = key_numbers[i]; break; } } else { row_merge_buf_sort(buf, NULL); } } else if (online && new_table == old_table) { /* Note the newest transaction that modified this index when the scan was completed. We prevent older readers from accessing this index, to ensure read consistency. */ trx_id_t max_trx_id; ut_a(row == NULL); rw_lock_x_lock( dict_index_get_lock(buf->index)); ut_a(dict_index_get_online_status(buf->index) == ONLINE_INDEX_CREATION); max_trx_id = row_log_get_max_trx(buf->index); if (max_trx_id > buf->index->trx_id) { buf->index->trx_id = max_trx_id; } rw_lock_x_unlock( dict_index_get_lock(buf->index)); } row_merge_buf_write(buf, file, block); if (!row_merge_write(file->fd, file->offset++, block)) { err = DB_TEMP_FILE_WRITE_FAILURE; trx->error_key_num = i; break; } UNIV_MEM_INVALID(&block[0], srv_sort_buf_size); merge_buf[i] = row_merge_buf_empty(buf); if (UNIV_LIKELY(row != NULL)) { /* Try writing the record again, now that the buffer has been written out and emptied. */ if (UNIV_UNLIKELY (!(rows_added = row_merge_buf_add( buf, fts_index, old_table, psort_info, row, ext, &doc_id)))) { /* An empty buffer should have enough room for at least one record. */ ut_error; } file->n_rec += rows_added; } } if (row == NULL) { goto all_done; } if (err != DB_SUCCESS) { goto func_exit; } mem_heap_empty(row_heap); /* Increment innodb_onlineddl_pct_progress status variable */ read_rows++; if(read_rows % 1000 == 0) { /* Update progress for each 1000 rows */ curr_progress = (read_rows >= table_total_rows) ? pct_cost : ((pct_cost * read_rows) / table_total_rows); /* presenting 10.12% as 1012 integer */ onlineddl_pct_progress = curr_progress * 100; } } func_exit: mtr_commit(&mtr); mem_heap_free(row_heap); if (nonnull) { mem_free(nonnull); } all_done: #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Scan Table\n"); #endif if (fts_pll_sort) { bool all_exit = false; ulint trial_count = 0; const ulint max_trial_count = 10000; wait_again: /* Check if error occurs in child thread */ for (ulint j = 0; j < fts_sort_pll_degree; j++) { if (psort_info[j].error != DB_SUCCESS) { err = psort_info[j].error; trx->error_key_num = j; break; } } /* Tell all children that parent has done scanning */ for (ulint i = 0; i < fts_sort_pll_degree; i++) { if (err == DB_SUCCESS) { psort_info[i].state = FTS_PARENT_COMPLETE; } else { psort_info[i].state = FTS_PARENT_EXITING; } } /* Now wait all children to report back to be completed */ os_event_wait_time_low(fts_parallel_sort_event, 1000000, sig_count); for (ulint i = 0; i < fts_sort_pll_degree; i++) { if (psort_info[i].child_status != FTS_CHILD_COMPLETE && psort_info[i].child_status != FTS_CHILD_EXITING) { sig_count = os_event_reset( fts_parallel_sort_event); goto wait_again; } } /* Now all children should complete, wait a bit until they all finish setting the event, before we free everything. This has a 10 second timeout */ do { all_exit = true; for (ulint j = 0; j < fts_sort_pll_degree; j++) { if (psort_info[j].child_status != FTS_CHILD_EXITING) { all_exit = false; os_thread_sleep(1000); break; } } trial_count++; } while (!all_exit && trial_count < max_trial_count); if (!all_exit) { ut_ad(0); ib_logf(IB_LOG_LEVEL_FATAL, "Not all child sort threads exited" " when creating FTS index '%s'", fts_sort_idx->name); } } #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Tokenization\n"); #endif for (ulint i = 0; i < n_index; i++) { row_merge_buf_free(merge_buf[i]); } row_fts_free_pll_merge_buf(psort_info); mem_free(merge_buf); btr_pcur_close(&pcur); /* Update the next Doc ID we used. Table should be locked, so no concurrent DML */ if (max_doc_id && err == DB_SUCCESS) { /* Sync fts cache for other fts indexes to keep all fts indexes consistent in sync_doc_id. */ err = fts_sync_table(const_cast(new_table)); if (err == DB_SUCCESS) { fts_update_next_doc_id( 0, new_table, old_table->name, max_doc_id); } } trx->op_info = ""; DBUG_RETURN(err); } /** Write a record via buffer 2 and read the next record to buffer N. @param N number of the buffer (0 or 1) @param INDEX record descriptor @param AT_END statement to execute at end of input */ #define ROW_MERGE_WRITE_GET_NEXT(N, INDEX, AT_END) \ do { \ b2 = row_merge_write_rec(&block[2 * srv_sort_buf_size], \ &buf[2], b2, \ of->fd, &of->offset, \ mrec##N, offsets##N); \ if (UNIV_UNLIKELY(!b2 || ++of->n_rec > file->n_rec)) { \ goto corrupt; \ } \ b##N = row_merge_read_rec(&block[N * srv_sort_buf_size],\ &buf[N], b##N, INDEX, \ file->fd, foffs##N, \ &mrec##N, offsets##N); \ if (UNIV_UNLIKELY(!b##N)) { \ if (mrec##N) { \ goto corrupt; \ } \ AT_END; \ } \ } while (0) /*************************************************************//** Merge two blocks of records on disk and write a bigger block. @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_merge_blocks( /*=============*/ const row_merge_dup_t* dup, /*!< in: descriptor of index being created */ const merge_file_t* file, /*!< in: file containing index entries */ row_merge_block_t* block, /*!< in/out: 3 buffers */ ulint* foffs0, /*!< in/out: offset of first source list in the file */ ulint* foffs1, /*!< in/out: offset of second source list in the file */ merge_file_t* of) /*!< in/out: output file */ { mem_heap_t* heap; /*!< memory heap for offsets0, offsets1 */ mrec_buf_t* buf; /*!< buffer for handling split mrec in block[] */ const byte* b0; /*!< pointer to block[0] */ const byte* b1; /*!< pointer to block[srv_sort_buf_size] */ byte* b2; /*!< pointer to block[2 * srv_sort_buf_size] */ const mrec_t* mrec0; /*!< merge rec, points to block[0] or buf[0] */ const mrec_t* mrec1; /*!< merge rec, points to block[srv_sort_buf_size] or buf[1] */ ulint* offsets0;/* offsets of mrec0 */ ulint* offsets1;/* offsets of mrec1 */ #ifdef UNIV_DEBUG if (row_merge_print_block) { fprintf(stderr, "row_merge_blocks fd=%d ofs=%lu + fd=%d ofs=%lu" " = fd=%d ofs=%lu\n", file->fd, (ulong) *foffs0, file->fd, (ulong) *foffs1, of->fd, (ulong) of->offset); } #endif /* UNIV_DEBUG */ heap = row_merge_heap_create(dup->index, &buf, &offsets0, &offsets1); /* Write a record and read the next record. Split the output file in two halves, which can be merged on the following pass. */ if (!row_merge_read(file->fd, *foffs0, &block[0]) || !row_merge_read(file->fd, *foffs1, &block[srv_sort_buf_size])) { corrupt: mem_heap_free(heap); return(DB_CORRUPTION); } b0 = &block[0]; b1 = &block[srv_sort_buf_size]; b2 = &block[2 * srv_sort_buf_size]; b0 = row_merge_read_rec( &block[0], &buf[0], b0, dup->index, file->fd, foffs0, &mrec0, offsets0); b1 = row_merge_read_rec( &block[srv_sort_buf_size], &buf[srv_sort_buf_size], b1, dup->index, file->fd, foffs1, &mrec1, offsets1); if (UNIV_UNLIKELY(!b0 && mrec0) || UNIV_UNLIKELY(!b1 && mrec1)) { goto corrupt; } while (mrec0 && mrec1) { switch (cmp_rec_rec_simple( mrec0, mrec1, offsets0, offsets1, dup->index, dup->table)) { case 0: mem_heap_free(heap); return(DB_DUPLICATE_KEY); case -1: ROW_MERGE_WRITE_GET_NEXT(0, dup->index, goto merged); break; case 1: ROW_MERGE_WRITE_GET_NEXT(1, dup->index, goto merged); break; default: ut_error; } } merged: if (mrec0) { /* append all mrec0 to output */ for (;;) { ROW_MERGE_WRITE_GET_NEXT(0, dup->index, goto done0); } } done0: if (mrec1) { /* append all mrec1 to output */ for (;;) { ROW_MERGE_WRITE_GET_NEXT(1, dup->index, goto done1); } } done1: mem_heap_free(heap); b2 = row_merge_write_eof(&block[2 * srv_sort_buf_size], b2, of->fd, &of->offset); return(b2 ? DB_SUCCESS : DB_CORRUPTION); } /*************************************************************//** Copy a block of index entries. @return TRUE on success, FALSE on failure */ static __attribute__((nonnull, warn_unused_result)) ibool row_merge_blocks_copy( /*==================*/ const dict_index_t* index, /*!< in: index being created */ const merge_file_t* file, /*!< in: input file */ row_merge_block_t* block, /*!< in/out: 3 buffers */ ulint* foffs0, /*!< in/out: input file offset */ merge_file_t* of) /*!< in/out: output file */ { mem_heap_t* heap; /*!< memory heap for offsets0, offsets1 */ mrec_buf_t* buf; /*!< buffer for handling split mrec in block[] */ const byte* b0; /*!< pointer to block[0] */ byte* b2; /*!< pointer to block[2 * srv_sort_buf_size] */ const mrec_t* mrec0; /*!< merge rec, points to block[0] */ ulint* offsets0;/* offsets of mrec0 */ ulint* offsets1;/* dummy offsets */ #ifdef UNIV_DEBUG if (row_merge_print_block) { fprintf(stderr, "row_merge_blocks_copy fd=%d ofs=%lu" " = fd=%d ofs=%lu\n", file->fd, (ulong) foffs0, of->fd, (ulong) of->offset); } #endif /* UNIV_DEBUG */ heap = row_merge_heap_create(index, &buf, &offsets0, &offsets1); /* Write a record and read the next record. Split the output file in two halves, which can be merged on the following pass. */ if (!row_merge_read(file->fd, *foffs0, &block[0])) { corrupt: mem_heap_free(heap); return(FALSE); } b0 = &block[0]; b2 = &block[2 * srv_sort_buf_size]; b0 = row_merge_read_rec(&block[0], &buf[0], b0, index, file->fd, foffs0, &mrec0, offsets0); if (UNIV_UNLIKELY(!b0 && mrec0)) { goto corrupt; } if (mrec0) { /* append all mrec0 to output */ for (;;) { ROW_MERGE_WRITE_GET_NEXT(0, index, goto done0); } } done0: /* The file offset points to the beginning of the last page that has been read. Update it to point to the next block. */ (*foffs0)++; mem_heap_free(heap); return(row_merge_write_eof(&block[2 * srv_sort_buf_size], b2, of->fd, &of->offset) != NULL); } /*************************************************************//** Merge disk files. @return DB_SUCCESS or error code */ static __attribute__((nonnull)) dberr_t row_merge( /*======*/ trx_t* trx, /*!< in: transaction */ const row_merge_dup_t* dup, /*!< in: descriptor of index being created */ merge_file_t* file, /*!< in/out: file containing index entries */ row_merge_block_t* block, /*!< in/out: 3 buffers */ int* tmpfd, /*!< in/out: temporary file handle */ ulint* num_run,/*!< in/out: Number of runs remain to be merged */ ulint* run_offset) /*!< in/out: Array contains the first offset number for each merge run */ { ulint foffs0; /*!< first input offset */ ulint foffs1; /*!< second input offset */ dberr_t error; /*!< error code */ merge_file_t of; /*!< output file */ const ulint ihalf = run_offset[*num_run / 2]; /*!< half the input file */ ulint n_run = 0; /*!< num of runs generated from this merge */ UNIV_MEM_ASSERT_W(&block[0], 3 * srv_sort_buf_size); ut_ad(ihalf < file->offset); of.fd = *tmpfd; of.offset = 0; of.n_rec = 0; #ifdef POSIX_FADV_SEQUENTIAL /* The input file will be read sequentially, starting from the beginning and the middle. In Linux, the POSIX_FADV_SEQUENTIAL affects the entire file. Each block will be read exactly once. */ posix_fadvise(file->fd, 0, 0, POSIX_FADV_SEQUENTIAL | POSIX_FADV_NOREUSE); #endif /* POSIX_FADV_SEQUENTIAL */ /* Merge blocks to the output file. */ foffs0 = 0; foffs1 = ihalf; UNIV_MEM_INVALID(run_offset, *num_run * sizeof *run_offset); for (; foffs0 < ihalf && foffs1 < file->offset; foffs0++, foffs1++) { if (trx_is_interrupted(trx)) { return(DB_INTERRUPTED); } /* Remember the offset number for this run */ run_offset[n_run++] = of.offset; error = row_merge_blocks(dup, file, block, &foffs0, &foffs1, &of); if (error != DB_SUCCESS) { return(error); } } /* Copy the last blocks, if there are any. */ while (foffs0 < ihalf) { if (UNIV_UNLIKELY(trx_is_interrupted(trx))) { return(DB_INTERRUPTED); } /* Remember the offset number for this run */ run_offset[n_run++] = of.offset; if (!row_merge_blocks_copy(dup->index, file, block, &foffs0, &of)) { return(DB_CORRUPTION); } } ut_ad(foffs0 == ihalf); while (foffs1 < file->offset) { if (trx_is_interrupted(trx)) { return(DB_INTERRUPTED); } /* Remember the offset number for this run */ run_offset[n_run++] = of.offset; if (!row_merge_blocks_copy(dup->index, file, block, &foffs1, &of)) { return(DB_CORRUPTION); } } ut_ad(foffs1 == file->offset); if (UNIV_UNLIKELY(of.n_rec != file->n_rec)) { return(DB_CORRUPTION); } ut_ad(n_run <= *num_run); *num_run = n_run; /* Each run can contain one or more offsets. As merge goes on, the number of runs (to merge) will reduce until we have one single run. So the number of runs will always be smaller than the number of offsets in file */ ut_ad((*num_run) <= file->offset); /* The number of offsets in output file is always equal or smaller than input file */ ut_ad(of.offset <= file->offset); /* Swap file descriptors for the next pass. */ *tmpfd = file->fd; *file = of; UNIV_MEM_INVALID(&block[0], 3 * srv_sort_buf_size); return(DB_SUCCESS); } /*************************************************************//** Merge disk files. @return DB_SUCCESS or error code */ UNIV_INTERN dberr_t row_merge_sort( /*===========*/ trx_t* trx, /*!< in: transaction */ const row_merge_dup_t* dup, /*!< in: descriptor of index being created */ merge_file_t* file, /*!< in/out: file containing index entries */ row_merge_block_t* block, /*!< in/out: 3 buffers */ int* tmpfd, /*!< in/out: temporary file handle */ const bool update_progress, /*!< in: update progress status variable or not */ const float pct_progress, /*!< in: total progress percent until now */ const float pct_cost) /*!< in: current progress percent */ { const ulint half = file->offset / 2; ulint num_runs; ulint cur_run = 0; ulint* run_offset; dberr_t error = DB_SUCCESS; ulint merge_count = 0; ulint total_merge_sort_count; float curr_progress = 0; DBUG_ENTER("row_merge_sort"); /* Record the number of merge runs we need to perform */ num_runs = file->offset; /* Find the number N which 2^N is greater or equal than num_runs */ /* N is merge sort running count */ total_merge_sort_count = ceil(my_log2f(num_runs)); if(total_merge_sort_count <= 0) { total_merge_sort_count=1; } /* If num_runs are less than 1, nothing to merge */ if (num_runs <= 1) { DBUG_RETURN(error); } /* "run_offset" records each run's first offset number */ run_offset = (ulint*) mem_alloc(file->offset * sizeof(ulint)); /* This tells row_merge() where to start for the first round of merge. */ run_offset[half] = half; /* The file should always contain at least one byte (the end of file marker). Thus, it must be at least one block. */ ut_ad(file->offset > 0); thd_progress_init(trx->mysql_thd, num_runs); sql_print_information("InnoDB: Online DDL : merge-sorting has estimated %lu runs", num_runs); /* Merge the runs until we have one big run */ do { cur_run++; /* Report progress of merge sort to MySQL for show processlist progress field */ thd_progress_report(trx->mysql_thd, cur_run, num_runs); sql_print_information("InnoDB: Online DDL : merge-sorting current run %lu estimated %lu runs", cur_run, num_runs); error = row_merge(trx, dup, file, block, tmpfd, &num_runs, run_offset); if(update_progress) { merge_count++; curr_progress = (merge_count >= total_merge_sort_count) ? pct_cost : ((pct_cost * merge_count) / total_merge_sort_count); /* presenting 10.12% as 1012 integer */; onlineddl_pct_progress = (pct_progress + curr_progress) * 100; } if (error != DB_SUCCESS) { break; } UNIV_MEM_ASSERT_RW(run_offset, num_runs * sizeof *run_offset); } while (num_runs > 1); mem_free(run_offset); thd_progress_end(trx->mysql_thd); DBUG_RETURN(error); } /*************************************************************//** Copy externally stored columns to the data tuple. */ static __attribute__((nonnull)) void row_merge_copy_blobs( /*=================*/ const mrec_t* mrec, /*!< in: merge record */ const ulint* offsets,/*!< in: offsets of mrec */ ulint zip_size,/*!< in: compressed page size in bytes, or 0 */ dtuple_t* tuple, /*!< in/out: data tuple */ mem_heap_t* heap) /*!< in/out: memory heap */ { ut_ad(rec_offs_any_extern(offsets)); for (ulint i = 0; i < dtuple_get_n_fields(tuple); i++) { ulint len; const void* data; dfield_t* field = dtuple_get_nth_field(tuple, i); if (!dfield_is_ext(field)) { continue; } ut_ad(!dfield_is_null(field)); /* During the creation of a PRIMARY KEY, the table is X-locked, and we skip copying records that have been marked for deletion. Therefore, externally stored columns cannot possibly be freed between the time the BLOB pointers are read (row_merge_read_clustered_index()) and dereferenced (below). */ data = btr_rec_copy_externally_stored_field( mrec, offsets, zip_size, i, &len, heap, NULL); /* Because we have locked the table, any records written by incomplete transactions must have been rolled back already. There must not be any incomplete BLOB columns. */ ut_a(data); dfield_set_data(field, data, len); } } /********************************************************************//** Read sorted file containing index data tuples and insert these data tuples to the index @return DB_SUCCESS or error number */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_merge_insert_index_tuples( /*==========================*/ trx_id_t trx_id, /*!< in: transaction identifier */ dict_index_t* index, /*!< in: index */ const dict_table_t* old_table,/*!< in: old table */ int fd, /*!< in: file descriptor */ row_merge_block_t* block, /*!< in/out: file buffer */ const ib_int64_t table_total_rows, /*!< in: total rows of old table */ const float pct_progress, /*!< in: total progress percent until now */ const float pct_cost) /*!< in: current progress percent */ { const byte* b; mem_heap_t* heap; mem_heap_t* tuple_heap; mem_heap_t* ins_heap; dberr_t error = DB_SUCCESS; ulint foffs = 0; ulint* offsets; mrec_buf_t* buf; ib_int64_t inserted_rows = 0; float curr_progress; DBUG_ENTER("row_merge_insert_index_tuples"); ut_ad(!srv_read_only_mode); ut_ad(!(index->type & DICT_FTS)); ut_ad(trx_id); tuple_heap = mem_heap_create(1000); { ulint i = 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index); heap = mem_heap_create(sizeof *buf + i * sizeof *offsets); ins_heap = mem_heap_create(sizeof *buf + i * sizeof *offsets); offsets = static_cast( mem_heap_alloc(heap, i * sizeof *offsets)); offsets[0] = i; offsets[1] = dict_index_get_n_fields(index); } b = block; if (!row_merge_read(fd, foffs, block)) { error = DB_CORRUPTION; } else { buf = static_cast( mem_heap_alloc(heap, sizeof *buf)); for (;;) { const mrec_t* mrec; dtuple_t* dtuple; ulint n_ext; big_rec_t* big_rec; rec_t* rec; btr_cur_t cursor; mtr_t mtr; b = row_merge_read_rec(block, buf, b, index, fd, &foffs, &mrec, offsets); if (UNIV_UNLIKELY(!b)) { /* End of list, or I/O error */ if (mrec) { error = DB_CORRUPTION; } break; } dict_index_t* old_index = dict_table_get_first_index(old_table); if (dict_index_is_clust(index) && dict_index_is_online_ddl(old_index)) { error = row_log_table_get_error(old_index); if (error != DB_SUCCESS) { break; } } dtuple = row_rec_to_index_entry_low( mrec, index, offsets, &n_ext, tuple_heap); if (!n_ext) { /* There are no externally stored columns. */ } else { ut_ad(dict_index_is_clust(index)); /* Off-page columns can be fetched safely when concurrent modifications to the table are disabled. (Purge can process delete-marked records, but row_merge_read_clustered_index() would have skipped them.) When concurrent modifications are enabled, row_merge_read_clustered_index() will only see rows from transactions that were committed before the ALTER TABLE started (REPEATABLE READ). Any modifications after the row_merge_read_clustered_index() scan will go through row_log_table_apply(). Any modifications to off-page columns will be tracked by row_log_table_blob_alloc() and row_log_table_blob_free(). */ row_merge_copy_blobs( mrec, offsets, dict_table_zip_size(old_table), dtuple, tuple_heap); } ut_ad(dtuple_validate(dtuple)); log_free_check(); mtr_start(&mtr); /* Insert after the last user record. */ btr_cur_open_at_index_side( false, index, BTR_MODIFY_LEAF, &cursor, 0, &mtr); page_cur_position( page_rec_get_prev(btr_cur_get_rec(&cursor)), btr_cur_get_block(&cursor), btr_cur_get_page_cur(&cursor)); cursor.flag = BTR_CUR_BINARY; #ifdef UNIV_DEBUG /* Check that the records are inserted in order. */ rec = btr_cur_get_rec(&cursor); if (!page_rec_is_infimum(rec)) { ulint* rec_offsets = rec_get_offsets( rec, index, offsets, ULINT_UNDEFINED, &tuple_heap); ut_ad(cmp_dtuple_rec(dtuple, rec, rec_offsets) > 0); } #endif /* UNIV_DEBUG */ ulint* ins_offsets = NULL; error = btr_cur_optimistic_insert( BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG | BTR_CREATE_FLAG, &cursor, &ins_offsets, &ins_heap, dtuple, &rec, &big_rec, 0, NULL, &mtr); if (error == DB_FAIL) { ut_ad(!big_rec); mtr_commit(&mtr); mtr_start(&mtr); btr_cur_open_at_index_side( false, index, BTR_MODIFY_TREE, &cursor, 0, &mtr); page_cur_position( page_rec_get_prev(btr_cur_get_rec( &cursor)), btr_cur_get_block(&cursor), btr_cur_get_page_cur(&cursor)); error = btr_cur_pessimistic_insert( BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG | BTR_CREATE_FLAG, &cursor, &ins_offsets, &ins_heap, dtuple, &rec, &big_rec, 0, NULL, &mtr); } if (!dict_index_is_clust(index)) { page_update_max_trx_id( btr_cur_get_block(&cursor), btr_cur_get_page_zip(&cursor), trx_id, &mtr); } mtr_commit(&mtr); if (UNIV_LIKELY_NULL(big_rec)) { /* If the system crashes at this point, the clustered index record will contain a null BLOB pointer. This should not matter, because the copied table will be dropped on crash recovery anyway. */ ut_ad(dict_index_is_clust(index)); ut_ad(error == DB_SUCCESS); error = row_ins_index_entry_big_rec( dtuple, big_rec, ins_offsets, &ins_heap, index, NULL, __FILE__, __LINE__); dtuple_convert_back_big_rec( index, dtuple, big_rec); } if (error != DB_SUCCESS) { goto err_exit; } mem_heap_empty(tuple_heap); mem_heap_empty(ins_heap); /* Increment innodb_onlineddl_pct_progress status variable */ inserted_rows++; if(inserted_rows % 1000 == 0) { /* Update progress for each 1000 rows */ curr_progress = (inserted_rows >= table_total_rows || table_total_rows <= 0) ? pct_cost : ((pct_cost * inserted_rows) / table_total_rows); /* presenting 10.12% as 1012 integer */; onlineddl_pct_progress = (pct_progress + curr_progress) * 100; } } } err_exit: mem_heap_free(tuple_heap); mem_heap_free(ins_heap); mem_heap_free(heap); DBUG_RETURN(error); } /*********************************************************************//** Sets an exclusive lock on a table, for the duration of creating indexes. @return error code or DB_SUCCESS */ UNIV_INTERN dberr_t row_merge_lock_table( /*=================*/ trx_t* trx, /*!< in/out: transaction */ dict_table_t* table, /*!< in: table to lock */ enum lock_mode mode) /*!< in: LOCK_X or LOCK_S */ { mem_heap_t* heap; que_thr_t* thr; dberr_t err; sel_node_t* node; ut_ad(!srv_read_only_mode); ut_ad(mode == LOCK_X || mode == LOCK_S); heap = mem_heap_create(512); trx->op_info = "setting table lock for creating or dropping index"; node = sel_node_create(heap); thr = pars_complete_graph_for_exec(node, trx, heap); thr->graph->state = QUE_FORK_ACTIVE; /* We use the select query graph as the dummy graph needed in the lock module call */ thr = static_cast( que_fork_get_first_thr( static_cast(que_node_get_parent(thr)))); que_thr_move_to_run_state_for_mysql(thr, trx); run_again: thr->run_node = thr; thr->prev_node = thr->common.parent; err = lock_table(0, table, mode, thr); trx->error_state = err; if (UNIV_LIKELY(err == DB_SUCCESS)) { que_thr_stop_for_mysql_no_error(thr, trx); } else { que_thr_stop_for_mysql(thr); if (err != DB_QUE_THR_SUSPENDED) { bool was_lock_wait; was_lock_wait = row_mysql_handle_errors( &err, trx, thr, NULL); if (was_lock_wait) { goto run_again; } } else { que_thr_t* run_thr; que_node_t* parent; parent = que_node_get_parent(thr); run_thr = que_fork_start_command( static_cast(parent)); ut_a(run_thr == thr); /* There was a lock wait but the thread was not in a ready to run or running state. */ trx->error_state = DB_LOCK_WAIT; goto run_again; } } que_graph_free(thr->graph); trx->op_info = ""; return(err); } /*********************************************************************//** Drop an index that was created before an error occurred. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. */ static void row_merge_drop_index_dict( /*======================*/ trx_t* trx, /*!< in/out: dictionary transaction */ index_id_t index_id)/*!< in: index identifier */ { static const char sql[] = "PROCEDURE DROP_INDEX_PROC () IS\n" "BEGIN\n" "DELETE FROM SYS_FIELDS WHERE INDEX_ID=:indexid;\n" "DELETE FROM SYS_INDEXES WHERE ID=:indexid;\n" "END;\n"; dberr_t error; pars_info_t* info; ut_ad(!srv_read_only_mode); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(trx->dict_operation_lock_mode == RW_X_LATCH); ut_ad(trx_get_dict_operation(trx) == TRX_DICT_OP_INDEX); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&dict_operation_lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ info = pars_info_create(); pars_info_add_ull_literal(info, "indexid", index_id); trx->op_info = "dropping index from dictionary"; error = que_eval_sql(info, sql, FALSE, trx); if (error != DB_SUCCESS) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: row_merge_drop_index_dict " "failed with error code: %u.\n", (unsigned) error); } trx->op_info = ""; } /*********************************************************************//** Drop indexes that were created before an error occurred. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. */ UNIV_INTERN void row_merge_drop_indexes_dict( /*========================*/ trx_t* trx, /*!< in/out: dictionary transaction */ table_id_t table_id)/*!< in: table identifier */ { static const char sql[] = "PROCEDURE DROP_INDEXES_PROC () IS\n" "ixid CHAR;\n" "found INT;\n" "DECLARE CURSOR index_cur IS\n" " SELECT ID FROM SYS_INDEXES\n" " WHERE TABLE_ID=:tableid AND\n" " SUBSTR(NAME,0,1)='" TEMP_INDEX_PREFIX_STR "'\n" "FOR UPDATE;\n" "BEGIN\n" "found := 1;\n" "OPEN index_cur;\n" "WHILE found = 1 LOOP\n" " FETCH index_cur INTO ixid;\n" " IF (SQL % NOTFOUND) THEN\n" " found := 0;\n" " ELSE\n" " DELETE FROM SYS_FIELDS WHERE INDEX_ID=ixid;\n" " DELETE FROM SYS_INDEXES WHERE CURRENT OF index_cur;\n" " END IF;\n" "END LOOP;\n" "CLOSE index_cur;\n" "END;\n"; dberr_t error; pars_info_t* info; ut_ad(!srv_read_only_mode); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(trx->dict_operation_lock_mode == RW_X_LATCH); ut_ad(trx_get_dict_operation(trx) == TRX_DICT_OP_INDEX); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&dict_operation_lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ /* It is possible that table->n_ref_count > 1 when locked=TRUE. In this case, all code that should have an open handle to the table be waiting for the next statement to execute, or waiting for a meta-data lock. A concurrent purge will be prevented by dict_operation_lock. */ info = pars_info_create(); pars_info_add_ull_literal(info, "tableid", table_id); trx->op_info = "dropping indexes"; error = que_eval_sql(info, sql, FALSE, trx); if (error != DB_SUCCESS) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: row_merge_drop_indexes_dict " "failed with error code: %u.\n", (unsigned) error); } trx->op_info = ""; } /*********************************************************************//** Drop indexes that were created before an error occurred. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. */ UNIV_INTERN void row_merge_drop_indexes( /*===================*/ trx_t* trx, /*!< in/out: dictionary transaction */ dict_table_t* table, /*!< in/out: table containing the indexes */ ibool locked) /*!< in: TRUE=table locked, FALSE=may need to do a lazy drop */ { dict_index_t* index; dict_index_t* next_index; ut_ad(!srv_read_only_mode); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(trx->dict_operation_lock_mode == RW_X_LATCH); ut_ad(trx_get_dict_operation(trx) == TRX_DICT_OP_INDEX); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&dict_operation_lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ index = dict_table_get_first_index(table); ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_get_online_status(index) == ONLINE_INDEX_COMPLETE); /* the caller should have an open handle to the table */ ut_ad(table->n_ref_count >= 1); /* It is possible that table->n_ref_count > 1 when locked=TRUE. In this case, all code that should have an open handle to the table be waiting for the next statement to execute, or waiting for a meta-data lock. A concurrent purge will be prevented by dict_operation_lock. */ if (!locked && table->n_ref_count > 1) { /* We will have to drop the indexes later, when the table is guaranteed to be no longer in use. Mark the indexes as incomplete and corrupted, so that other threads will stop using them. Let dict_table_close() or crash recovery or the next invocation of prepare_inplace_alter_table() take care of dropping the indexes. */ while ((index = dict_table_get_next_index(index)) != NULL) { ut_ad(!dict_index_is_clust(index)); switch (dict_index_get_online_status(index)) { case ONLINE_INDEX_ABORTED_DROPPED: continue; case ONLINE_INDEX_COMPLETE: if (*index->name != TEMP_INDEX_PREFIX) { /* Do nothing to already published indexes. */ } else if (index->type & DICT_FTS) { /* Drop a completed FULLTEXT index, due to a timeout during MDL upgrade for commit_inplace_alter_table(). Because only concurrent reads are allowed (and they are not seeing this index yet) we are safe to drop the index. */ dict_index_t* prev = UT_LIST_GET_PREV( indexes, index); /* At least there should be the clustered index before this one. */ ut_ad(prev); ut_a(table->fts); fts_drop_index(table, index, trx); /* Since INNOBASE_SHARE::idx_trans_tbl is shared between all open ha_innobase handles to this table, no thread should be accessing this dict_index_t object. Also, we should be holding LOCK=SHARED MDL on the table even after the MDL upgrade timeout. */ /* We can remove a DICT_FTS index from the cache, because we do not allow ADD FULLTEXT INDEX with LOCK=NONE. If we allowed that, we should exclude FTS entries from prebuilt->ins_node->entry_list in ins_node_create_entry_list(). */ dict_index_remove_from_cache( table, index); index = prev; } else { rw_lock_x_lock( dict_index_get_lock(index)); dict_index_set_online_status( index, ONLINE_INDEX_ABORTED); index->type |= DICT_CORRUPT; table->drop_aborted = TRUE; goto drop_aborted; } continue; case ONLINE_INDEX_CREATION: rw_lock_x_lock(dict_index_get_lock(index)); ut_ad(*index->name == TEMP_INDEX_PREFIX); row_log_abort_sec(index); drop_aborted: rw_lock_x_unlock(dict_index_get_lock(index)); DEBUG_SYNC_C("merge_drop_index_after_abort"); /* covered by dict_sys->mutex */ MONITOR_INC(MONITOR_BACKGROUND_DROP_INDEX); /* fall through */ case ONLINE_INDEX_ABORTED: /* Drop the index tree from the data dictionary and free it from the tablespace, but keep the object in the data dictionary cache. */ row_merge_drop_index_dict(trx, index->id); rw_lock_x_lock(dict_index_get_lock(index)); dict_index_set_online_status( index, ONLINE_INDEX_ABORTED_DROPPED); rw_lock_x_unlock(dict_index_get_lock(index)); table->drop_aborted = TRUE; continue; } ut_error; } return; } row_merge_drop_indexes_dict(trx, table->id); /* Invalidate all row_prebuilt_t::ins_graph that are referring to this table. That is, force row_get_prebuilt_insert_row() to rebuild prebuilt->ins_node->entry_list). */ ut_ad(table->def_trx_id <= trx->id); table->def_trx_id = trx->id; next_index = dict_table_get_next_index(index); while ((index = next_index) != NULL) { /* read the next pointer before freeing the index */ next_index = dict_table_get_next_index(index); ut_ad(!dict_index_is_clust(index)); if (*index->name == TEMP_INDEX_PREFIX) { /* If it is FTS index, drop from table->fts and also drop its auxiliary tables */ if (index->type & DICT_FTS) { ut_a(table->fts); fts_drop_index(table, index, trx); } switch (dict_index_get_online_status(index)) { case ONLINE_INDEX_CREATION: /* This state should only be possible when prepare_inplace_alter_table() fails after invoking row_merge_create_index(). In inplace_alter_table(), row_merge_build_indexes() should never leave the index in this state. It would invoke row_log_abort_sec() on failure. */ case ONLINE_INDEX_COMPLETE: /* In these cases, we are able to drop the index straight. The DROP INDEX was never deferred. */ break; case ONLINE_INDEX_ABORTED: case ONLINE_INDEX_ABORTED_DROPPED: /* covered by dict_sys->mutex */ MONITOR_DEC(MONITOR_BACKGROUND_DROP_INDEX); } dict_index_remove_from_cache(table, index); } } table->drop_aborted = FALSE; ut_d(dict_table_check_for_dup_indexes(table, CHECK_ALL_COMPLETE)); } /*********************************************************************//** Drop all partially created indexes during crash recovery. */ UNIV_INTERN void row_merge_drop_temp_indexes(void) /*=============================*/ { static const char sql[] = "PROCEDURE DROP_TEMP_INDEXES_PROC () IS\n" "ixid CHAR;\n" "found INT;\n" "DECLARE CURSOR index_cur IS\n" " SELECT ID FROM SYS_INDEXES\n" " WHERE SUBSTR(NAME,0,1)='" TEMP_INDEX_PREFIX_STR "'\n" "FOR UPDATE;\n" "BEGIN\n" "found := 1;\n" "OPEN index_cur;\n" "WHILE found = 1 LOOP\n" " FETCH index_cur INTO ixid;\n" " IF (SQL % NOTFOUND) THEN\n" " found := 0;\n" " ELSE\n" " DELETE FROM SYS_FIELDS WHERE INDEX_ID=ixid;\n" " DELETE FROM SYS_INDEXES WHERE CURRENT OF index_cur;\n" " END IF;\n" "END LOOP;\n" "CLOSE index_cur;\n" "END;\n"; trx_t* trx; dberr_t error; /* Load the table definitions that contain partially defined indexes, so that the data dictionary information can be checked when accessing the tablename.ibd files. */ trx = trx_allocate_for_background(); trx->op_info = "dropping partially created indexes"; row_mysql_lock_data_dictionary(trx); /* Ensure that this transaction will be rolled back and locks will be released, if the server gets killed before the commit gets written to the redo log. */ trx_set_dict_operation(trx, TRX_DICT_OP_INDEX); trx->op_info = "dropping indexes"; error = que_eval_sql(NULL, sql, FALSE, trx); if (error != DB_SUCCESS) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: row_merge_drop_temp_indexes " "failed with error code: %u.\n", (unsigned) error); } trx_commit_for_mysql(trx); row_mysql_unlock_data_dictionary(trx); trx_free_for_background(trx); } /*********************************************************************//** Creates temporary merge files, and if UNIV_PFS_IO defined, register the file descriptor with Performance Schema. @return file descriptor, or -1 on failure */ UNIV_INTERN int row_merge_file_create_low(void) /*===========================*/ { int fd; #ifdef UNIV_PFS_IO /* This temp file open does not go through normal file APIs, add instrumentation to register with performance schema */ struct PSI_file_locker* locker = NULL; PSI_file_locker_state state; register_pfs_file_open_begin(&state, locker, innodb_file_temp_key, PSI_FILE_OPEN, "Innodb Merge Temp File", __FILE__, __LINE__); #endif fd = innobase_mysql_tmpfile(); #ifdef UNIV_PFS_IO register_pfs_file_open_end(locker, fd); #endif if (fd < 0) { ib_logf(IB_LOG_LEVEL_ERROR, "Cannot create temporary merge file"); return (-1); } return(fd); } /*********************************************************************//** Create a merge file. @return file descriptor, or -1 on failure */ UNIV_INTERN int row_merge_file_create( /*==================*/ merge_file_t* merge_file) /*!< out: merge file structure */ { merge_file->fd = row_merge_file_create_low(); merge_file->offset = 0; merge_file->n_rec = 0; if (merge_file->fd >= 0) { if (srv_disable_sort_file_cache) { os_file_set_nocache(merge_file->fd, "row0merge.cc", "sort"); } } return(merge_file->fd); } /*********************************************************************//** Destroy a merge file. And de-register the file from Performance Schema if UNIV_PFS_IO is defined. */ UNIV_INTERN void row_merge_file_destroy_low( /*=======================*/ int fd) /*!< in: merge file descriptor */ { #ifdef UNIV_PFS_IO struct PSI_file_locker* locker = NULL; PSI_file_locker_state state; register_pfs_file_io_begin(&state, locker, fd, 0, PSI_FILE_CLOSE, __FILE__, __LINE__); #endif if (fd >= 0) { close(fd); } #ifdef UNIV_PFS_IO register_pfs_file_io_end(locker, 0); #endif } /*********************************************************************//** Destroy a merge file. */ UNIV_INTERN void row_merge_file_destroy( /*===================*/ merge_file_t* merge_file) /*!< in/out: merge file structure */ { ut_ad(!srv_read_only_mode); if (merge_file->fd != -1) { row_merge_file_destroy_low(merge_file->fd); merge_file->fd = -1; } } /*********************************************************************//** Rename an index in the dictionary that was created. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. @return DB_SUCCESS if all OK */ UNIV_INTERN dberr_t row_merge_rename_index_to_add( /*==========================*/ trx_t* trx, /*!< in/out: transaction */ table_id_t table_id, /*!< in: table identifier */ index_id_t index_id) /*!< in: index identifier */ { dberr_t err = DB_SUCCESS; pars_info_t* info = pars_info_create(); /* We use the private SQL parser of Innobase to generate the query graphs needed in renaming indexes. */ static const char rename_index[] = "PROCEDURE RENAME_INDEX_PROC () IS\n" "BEGIN\n" "UPDATE SYS_INDEXES SET NAME=SUBSTR(NAME,1,LENGTH(NAME)-1)\n" "WHERE TABLE_ID = :tableid AND ID = :indexid;\n" "END;\n"; ut_ad(trx); ut_a(trx->dict_operation_lock_mode == RW_X_LATCH); ut_ad(trx_get_dict_operation(trx) == TRX_DICT_OP_INDEX); trx->op_info = "renaming index to add"; pars_info_add_ull_literal(info, "tableid", table_id); pars_info_add_ull_literal(info, "indexid", index_id); err = que_eval_sql(info, rename_index, FALSE, trx); if (err != DB_SUCCESS) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: row_merge_rename_index_to_add " "failed with error code: %u.\n", (unsigned) err); } trx->op_info = ""; return(err); } /*********************************************************************//** Rename an index in the dictionary that is to be dropped. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. @return DB_SUCCESS if all OK */ UNIV_INTERN dberr_t row_merge_rename_index_to_drop( /*===========================*/ trx_t* trx, /*!< in/out: transaction */ table_id_t table_id, /*!< in: table identifier */ index_id_t index_id) /*!< in: index identifier */ { dberr_t err; pars_info_t* info = pars_info_create(); ut_ad(!srv_read_only_mode); /* We use the private SQL parser of Innobase to generate the query graphs needed in renaming indexes. */ static const char rename_index[] = "PROCEDURE RENAME_INDEX_PROC () IS\n" "BEGIN\n" "UPDATE SYS_INDEXES SET NAME=CONCAT('" TEMP_INDEX_PREFIX_STR "',NAME)\n" "WHERE TABLE_ID = :tableid AND ID = :indexid;\n" "END;\n"; ut_ad(trx); ut_a(trx->dict_operation_lock_mode == RW_X_LATCH); ut_ad(trx_get_dict_operation(trx) == TRX_DICT_OP_INDEX); trx->op_info = "renaming index to drop"; pars_info_add_ull_literal(info, "tableid", table_id); pars_info_add_ull_literal(info, "indexid", index_id); err = que_eval_sql(info, rename_index, FALSE, trx); if (err != DB_SUCCESS) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: row_merge_rename_index_to_drop " "failed with error code: %u.\n", (unsigned) err); } trx->op_info = ""; return(err); } /*********************************************************************//** Provide a new pathname for a table that is being renamed if it belongs to a file-per-table tablespace. The caller is responsible for freeing the memory allocated for the return value. @return new pathname of tablespace file, or NULL if space = 0 */ UNIV_INTERN char* row_make_new_pathname( /*==================*/ dict_table_t* table, /*!< in: table to be renamed */ const char* new_name) /*!< in: new name */ { char* new_path; char* old_path; ut_ad(table->space != TRX_SYS_SPACE); old_path = fil_space_get_first_path(table->space); ut_a(old_path); new_path = os_file_make_new_pathname(old_path, new_name); mem_free(old_path); return(new_path); } /*********************************************************************//** Rename the tables in the data dictionary. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. @return error code or DB_SUCCESS */ UNIV_INTERN dberr_t row_merge_rename_tables_dict( /*=========================*/ dict_table_t* old_table, /*!< in/out: old table, renamed to tmp_name */ dict_table_t* new_table, /*!< in/out: new table, renamed to old_table->name */ const char* tmp_name, /*!< in: new name for old_table */ trx_t* trx) /*!< in/out: dictionary transaction */ { dberr_t err = DB_ERROR; pars_info_t* info; ut_ad(!srv_read_only_mode); ut_ad(old_table != new_table); ut_ad(mutex_own(&dict_sys->mutex)); ut_a(trx->dict_operation_lock_mode == RW_X_LATCH); ut_ad(trx_get_dict_operation(trx) == TRX_DICT_OP_TABLE || trx_get_dict_operation(trx) == TRX_DICT_OP_INDEX); trx->op_info = "renaming tables"; /* We use the private SQL parser of Innobase to generate the query graphs needed in updating the dictionary data in system tables. */ info = pars_info_create(); pars_info_add_str_literal(info, "new_name", new_table->name); pars_info_add_str_literal(info, "old_name", old_table->name); pars_info_add_str_literal(info, "tmp_name", tmp_name); err = que_eval_sql(info, "PROCEDURE RENAME_TABLES () IS\n" "BEGIN\n" "UPDATE SYS_TABLES SET NAME = :tmp_name\n" " WHERE NAME = :old_name;\n" "UPDATE SYS_TABLES SET NAME = :old_name\n" " WHERE NAME = :new_name;\n" "END;\n", FALSE, trx); /* Update SYS_TABLESPACES and SYS_DATAFILES if the old table is in a non-system tablespace where space > 0. */ if (err == DB_SUCCESS && old_table->space != TRX_SYS_SPACE && !old_table->ibd_file_missing) { /* Make pathname to update SYS_DATAFILES. */ char* tmp_path = row_make_new_pathname(old_table, tmp_name); info = pars_info_create(); pars_info_add_str_literal(info, "tmp_name", tmp_name); pars_info_add_str_literal(info, "tmp_path", tmp_path); pars_info_add_int4_literal(info, "old_space", (lint) old_table->space); err = que_eval_sql(info, "PROCEDURE RENAME_OLD_SPACE () IS\n" "BEGIN\n" "UPDATE SYS_TABLESPACES" " SET NAME = :tmp_name\n" " WHERE SPACE = :old_space;\n" "UPDATE SYS_DATAFILES" " SET PATH = :tmp_path\n" " WHERE SPACE = :old_space;\n" "END;\n", FALSE, trx); mem_free(tmp_path); } /* Update SYS_TABLESPACES and SYS_DATAFILES if the new table is in a non-system tablespace where space > 0. */ if (err == DB_SUCCESS && new_table->space != TRX_SYS_SPACE) { /* Make pathname to update SYS_DATAFILES. */ char* old_path = row_make_new_pathname( new_table, old_table->name); info = pars_info_create(); pars_info_add_str_literal(info, "old_name", old_table->name); pars_info_add_str_literal(info, "old_path", old_path); pars_info_add_int4_literal(info, "new_space", (lint) new_table->space); err = que_eval_sql(info, "PROCEDURE RENAME_NEW_SPACE () IS\n" "BEGIN\n" "UPDATE SYS_TABLESPACES" " SET NAME = :old_name\n" " WHERE SPACE = :new_space;\n" "UPDATE SYS_DATAFILES" " SET PATH = :old_path\n" " WHERE SPACE = :new_space;\n" "END;\n", FALSE, trx); mem_free(old_path); } if (err == DB_SUCCESS && dict_table_is_discarded(new_table)) { err = row_import_update_discarded_flag( trx, new_table->id, true, true); } trx->op_info = ""; return(err); } /*********************************************************************//** Create and execute a query graph for creating an index. @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_merge_create_index_graph( /*=========================*/ trx_t* trx, /*!< in: trx */ dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: index */ { ind_node_t* node; /*!< Index creation node */ mem_heap_t* heap; /*!< Memory heap */ que_thr_t* thr; /*!< Query thread */ dberr_t err; ut_ad(trx); ut_ad(table); ut_ad(index); heap = mem_heap_create(512); index->table = table; node = ind_create_graph_create(index, heap, false); thr = pars_complete_graph_for_exec(node, trx, heap); ut_a(thr == que_fork_start_command( static_cast(que_node_get_parent(thr)))); que_run_threads(thr); err = trx->error_state; que_graph_free((que_t*) que_node_get_parent(thr)); return(err); } /*********************************************************************//** Create the index and load in to the dictionary. @return index, or NULL on error */ UNIV_INTERN dict_index_t* row_merge_create_index( /*===================*/ trx_t* trx, /*!< in/out: trx (sets error_state) */ dict_table_t* table, /*!< in: the index is on this table */ const index_def_t* index_def) /*!< in: the index definition */ { dict_index_t* index; dberr_t err; ulint n_fields = index_def->n_fields; ulint i; ut_ad(!srv_read_only_mode); /* Create the index prototype, using the passed in def, this is not a persistent operation. We pass 0 as the space id, and determine at a lower level the space id where to store the table. */ index = dict_mem_index_create(table->name, index_def->name, 0, index_def->ind_type, n_fields); ut_a(index); for (i = 0; i < n_fields; i++) { index_field_t* ifield = &index_def->fields[i]; dict_mem_index_add_field( index, dict_table_get_col_name(table, ifield->col_no), ifield->prefix_len); } /* Add the index to SYS_INDEXES, using the index prototype. */ err = row_merge_create_index_graph(trx, table, index); if (err == DB_SUCCESS) { index = dict_table_get_index_on_name(table, index_def->name); ut_a(index); /* Note the id of the transaction that created this index, we use it to restrict readers from accessing this index, to ensure read consistency. */ ut_ad(index->trx_id == trx->id); } else { index = NULL; } return(index); } /*********************************************************************//** Check if a transaction can use an index. */ UNIV_INTERN ibool row_merge_is_index_usable( /*======================*/ const trx_t* trx, /*!< in: transaction */ const dict_index_t* index) /*!< in: index to check */ { if (!dict_index_is_clust(index) && dict_index_is_online_ddl(index)) { /* Indexes that are being created are not useable. */ return(FALSE); } return(!dict_index_is_corrupted(index) && (dict_table_is_temporary(index->table) || !trx->read_view || read_view_sees_trx_id(trx->read_view, index->trx_id))); } /*********************************************************************//** Drop a table. The caller must have ensured that the background stats thread is not processing the table. This can be done by calling dict_stats_wait_bg_to_stop_using_table() after locking the dictionary and before calling this function. @return DB_SUCCESS or error code */ UNIV_INTERN dberr_t row_merge_drop_table( /*=================*/ trx_t* trx, /*!< in: transaction */ dict_table_t* table) /*!< in: table to drop */ { ut_ad(!srv_read_only_mode); /* There must be no open transactions on the table. */ ut_a(table->n_ref_count == 0); return(row_drop_table_for_mysql(table->name, trx, false, false)); } /*********************************************************************//** Build indexes on a table by reading a clustered index, creating a temporary file containing index entries, merge sorting these index entries and inserting sorted index entries to indexes. @return DB_SUCCESS or error code */ UNIV_INTERN dberr_t row_merge_build_indexes( /*====================*/ trx_t* trx, /*!< in: transaction */ dict_table_t* old_table, /*!< in: table where rows are read from */ dict_table_t* new_table, /*!< in: table where indexes are created; identical to old_table unless creating a PRIMARY KEY */ bool online, /*!< in: true if creating indexes online */ dict_index_t** indexes, /*!< in: indexes to be created */ const ulint* key_numbers, /*!< in: MySQL key numbers */ ulint n_indexes, /*!< in: size of indexes[] */ struct TABLE* table, /*!< in/out: MySQL table, for reporting erroneous key value if applicable */ const dtuple_t* add_cols, /*!< in: default values of added columns, or NULL */ const ulint* col_map, /*!< in: mapping of old column numbers to new ones, or NULL if old_table == new_table */ ulint add_autoinc, /*!< in: number of added AUTO_INCREMENT column, or ULINT_UNDEFINED if none is added */ ib_sequence_t& sequence) /*!< in: autoinc instance if add_autoinc != ULINT_UNDEFINED */ { merge_file_t* merge_files; row_merge_block_t* block; ulint block_size; ulint i; ulint j; dberr_t error; int tmpfd = -1; dict_index_t* fts_sort_idx = NULL; fts_psort_t* psort_info = NULL; fts_psort_t* merge_info = NULL; ib_int64_t sig_count = 0; bool fts_psort_initiated = false; float total_static_cost = 0; float total_dynamic_cost = 0; uint total_index_blocks = 0; float pct_cost=0; float pct_progress=0; DBUG_ENTER("row_merge_build_indexes"); ut_ad(!srv_read_only_mode); ut_ad((old_table == new_table) == !col_map); ut_ad(!add_cols || col_map); /* Allocate memory for merge file data structure and initialize fields */ block_size = 3 * srv_sort_buf_size; block = static_cast( os_mem_alloc_large(&block_size)); if (block == NULL) { DBUG_RETURN(DB_OUT_OF_MEMORY); } trx_start_if_not_started_xa(trx); merge_files = static_cast( mem_alloc(n_indexes * sizeof *merge_files)); /* Initialize all the merge file descriptors, so that we don't call row_merge_file_destroy() on uninitialized merge file descriptor */ for (i = 0; i < n_indexes; i++) { merge_files[i].fd = -1; } total_static_cost = COST_BUILD_INDEX_STATIC * n_indexes + COST_READ_CLUSTERED_INDEX; total_dynamic_cost = COST_BUILD_INDEX_DYNAMIC * n_indexes; for (i = 0; i < n_indexes; i++) { if (row_merge_file_create(&merge_files[i]) < 0) { error = DB_OUT_OF_MEMORY; goto func_exit; } if (indexes[i]->type & DICT_FTS) { ibool opt_doc_id_size = FALSE; /* To build FTS index, we would need to extract doc's word, Doc ID, and word's position, so we need to build a "fts sort index" indexing on above three 'fields' */ fts_sort_idx = row_merge_create_fts_sort_index( indexes[i], old_table, &opt_doc_id_size); row_merge_dup_t* dup = static_cast( ut_malloc(sizeof *dup)); dup->index = fts_sort_idx; dup->table = table; dup->col_map = col_map; dup->n_dup = 0; row_fts_psort_info_init( trx, dup, new_table, opt_doc_id_size, &psort_info, &merge_info); /* "We need to ensure that we free the resources allocated */ fts_psort_initiated = true; } } tmpfd = row_merge_file_create_low(); if (tmpfd < 0) { error = DB_OUT_OF_MEMORY; goto func_exit; } /* Reset the MySQL row buffer that is used when reporting duplicate keys. */ innobase_rec_reset(table); sql_print_information("InnoDB: Online DDL : Start"); sql_print_information("InnoDB: Online DDL : Start reading clustered " "index of the table and create temporary files"); pct_cost = COST_READ_CLUSTERED_INDEX * 100 / (total_static_cost + total_dynamic_cost); /* Read clustered index of the table and create files for secondary index entries for merge sort */ error = row_merge_read_clustered_index( trx, table, old_table, new_table, online, indexes, fts_sort_idx, psort_info, merge_files, key_numbers, n_indexes, add_cols, col_map, add_autoinc, sequence, block, pct_cost); pct_progress += pct_cost; sql_print_information("InnoDB: Online DDL : End of reading " "clustered index of the table and create temporary files"); for (i = 0; i < n_indexes; i++) { total_index_blocks += merge_files[i].offset; } if (error != DB_SUCCESS) { goto func_exit; } DEBUG_SYNC_C("row_merge_after_scan"); /* Now we have files containing index entries ready for sorting and inserting. */ for (i = 0; i < n_indexes; i++) { dict_index_t* sort_idx = indexes[i]; if (indexes[i]->type & DICT_FTS) { os_event_t fts_parallel_merge_event; sort_idx = fts_sort_idx; fts_parallel_merge_event = merge_info[0].psort_common->merge_event; if (FTS_PLL_MERGE) { ulint trial_count = 0; bool all_exit = false; os_event_reset(fts_parallel_merge_event); row_fts_start_parallel_merge(merge_info); wait_again: os_event_wait_time_low( fts_parallel_merge_event, 1000000, sig_count); for (j = 0; j < FTS_NUM_AUX_INDEX; j++) { if (merge_info[j].child_status != FTS_CHILD_COMPLETE && merge_info[j].child_status != FTS_CHILD_EXITING) { sig_count = os_event_reset( fts_parallel_merge_event); goto wait_again; } } /* Now all children should complete, wait a bit until they all finish using event */ while (!all_exit && trial_count < 10000) { all_exit = true; for (j = 0; j < FTS_NUM_AUX_INDEX; j++) { if (merge_info[j].child_status != FTS_CHILD_EXITING) { all_exit = false; os_thread_sleep(1000); break; } } trial_count++; } if (!all_exit) { ib_logf(IB_LOG_LEVEL_ERROR, "Not all child merge threads" " exited when creating FTS" " index '%s'", indexes[i]->name); } } else { /* This cannot report duplicates; an assertion would fail in that case. */ error = row_fts_merge_insert( sort_idx, new_table, psort_info, 0); } #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Insert\n"); #endif } else { row_merge_dup_t dup = { sort_idx, table, col_map, 0}; pct_cost = (COST_BUILD_INDEX_STATIC + (total_dynamic_cost * merge_files[i].offset / total_index_blocks)) / (total_static_cost + total_dynamic_cost) * PCT_COST_MERGESORT_INDEX * 100; sql_print_information("InnoDB: Online DDL : Start merge-sorting" " index %s (%lu / %lu), estimated cost : %2.4f", indexes[i]->name, (i+1), n_indexes, pct_cost); error = row_merge_sort( trx, &dup, &merge_files[i], block, &tmpfd, true, pct_progress, pct_cost); pct_progress += pct_cost; sql_print_information("InnoDB: Online DDL : End of " " merge-sorting index %s (%lu / %lu)", indexes[i]->name, (i+1), n_indexes); if (error == DB_SUCCESS) { pct_cost = (COST_BUILD_INDEX_STATIC + (total_dynamic_cost * merge_files[i].offset / total_index_blocks)) / (total_static_cost + total_dynamic_cost) * PCT_COST_INSERT_INDEX * 100; sql_print_information("InnoDB: Online DDL : Start " "building index %s (%lu / %lu), estimated " "cost : %2.4f", indexes[i]->name, (i+1), n_indexes, pct_cost); error = row_merge_insert_index_tuples( trx->id, sort_idx, old_table, merge_files[i].fd, block, merge_files[i].n_rec, pct_progress, pct_cost); pct_progress += pct_cost; sql_print_information("InnoDB: Online DDL : " "End of building index %s (%lu / %lu)", indexes[i]->name, (i+1), n_indexes); } } /* Close the temporary file to free up space. */ row_merge_file_destroy(&merge_files[i]); if (indexes[i]->type & DICT_FTS) { row_fts_psort_info_destroy(psort_info, merge_info); fts_psort_initiated = false; } else if (error != DB_SUCCESS || !online) { /* Do not apply any online log. */ } else if (old_table != new_table) { ut_ad(!sort_idx->online_log); ut_ad(sort_idx->online_status == ONLINE_INDEX_COMPLETE); } else { sql_print_information("InnoDB: Online DDL : Start applying row log"); DEBUG_SYNC_C("row_log_apply_before"); error = row_log_apply(trx, sort_idx, table); DEBUG_SYNC_C("row_log_apply_after"); sql_print_information("InnoDB: Online DDL : End of applying row log"); } sql_print_information("InnoDB: Online DDL : Completed"); if (error != DB_SUCCESS) { trx->error_key_num = key_numbers[i]; goto func_exit; } if (indexes[i]->type & DICT_FTS && fts_enable_diag_print) { char* name = (char*) indexes[i]->name; if (*name == TEMP_INDEX_PREFIX) { name++; } ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Finished building " "full-text index %s\n", name); } } func_exit: DBUG_EXECUTE_IF( "ib_build_indexes_too_many_concurrent_trxs", error = DB_TOO_MANY_CONCURRENT_TRXS; trx->error_state = error;); if (fts_psort_initiated) { /* Clean up FTS psort related resource */ row_fts_psort_info_destroy(psort_info, merge_info); fts_psort_initiated = false; } row_merge_file_destroy_low(tmpfd); for (i = 0; i < n_indexes; i++) { row_merge_file_destroy(&merge_files[i]); } if (fts_sort_idx) { dict_mem_index_free(fts_sort_idx); } mem_free(merge_files); os_mem_free_large(block, block_size); DICT_TF2_FLAG_UNSET(new_table, DICT_TF2_FTS_ADD_DOC_ID); if (online && old_table == new_table && error != DB_SUCCESS) { /* On error, flag all online secondary index creation as aborted. */ for (i = 0; i < n_indexes; i++) { ut_ad(!(indexes[i]->type & DICT_FTS)); ut_ad(*indexes[i]->name == TEMP_INDEX_PREFIX); ut_ad(!dict_index_is_clust(indexes[i])); /* Completed indexes should be dropped as well, and indexes whose creation was aborted should be dropped from the persistent storage. However, at this point we can only set some flags in the not-yet-published indexes. These indexes will be dropped later in row_merge_drop_indexes(), called by rollback_inplace_alter_table(). */ switch (dict_index_get_online_status(indexes[i])) { case ONLINE_INDEX_COMPLETE: break; case ONLINE_INDEX_CREATION: rw_lock_x_lock( dict_index_get_lock(indexes[i])); row_log_abort_sec(indexes[i]); indexes[i]->type |= DICT_CORRUPT; rw_lock_x_unlock( dict_index_get_lock(indexes[i])); new_table->drop_aborted = TRUE; /* fall through */ case ONLINE_INDEX_ABORTED_DROPPED: case ONLINE_INDEX_ABORTED: MONITOR_MUTEX_INC( &dict_sys->mutex, MONITOR_BACKGROUND_DROP_INDEX); } } } DBUG_RETURN(error); }