/*- * See the file LICENSE for redistribution information. * * Copyright (c) 1996-2002 * Sleepycat Software. All rights reserved. */ #include "db_config.h" #ifndef lint static const char revid[] = "$Id: lock_util.c,v 11.8 2002/03/27 04:32:20 bostic Exp $"; #endif /* not lint */ #ifndef NO_SYSTEM_INCLUDES #include #include #endif #include "db_int.h" #include "dbinc/db_page.h" #include "dbinc/db_shash.h" #include "dbinc/hash.h" #include "dbinc/lock.h" /* * __lock_cmp -- * This function is used to compare a DBT that is about to be entered * into a hash table with an object already in the hash table. Note * that it just returns true on equal and 0 on not-equal. Therefore * this function cannot be used as a sort function; its purpose is to * be used as a hash comparison function. * * PUBLIC: int __lock_cmp __P((const DBT *, DB_LOCKOBJ *)); */ int __lock_cmp(dbt, lock_obj) const DBT *dbt; DB_LOCKOBJ *lock_obj; { void *obj_data; obj_data = SH_DBT_PTR(&lock_obj->lockobj); return (dbt->size == lock_obj->lockobj.size && memcmp(dbt->data, obj_data, dbt->size) == 0); } /* * PUBLIC: int __lock_locker_cmp __P((u_int32_t, DB_LOCKER *)); */ int __lock_locker_cmp(locker, sh_locker) u_int32_t locker; DB_LOCKER *sh_locker; { return (locker == sh_locker->id); } /* * The next two functions are the hash functions used to store objects in the * lock hash tables. They are hashing the same items, but one (__lock_ohash) * takes a DBT (used for hashing a parameter passed from the user) and the * other (__lock_lhash) takes a DB_LOCKOBJ (used for hashing something that is * already in the lock manager). In both cases, we have a special check to * fast path the case where we think we are doing a hash on a DB page/fileid * pair. If the size is right, then we do the fast hash. * * We know that DB uses DB_LOCK_ILOCK types for its lock objects. The first * four bytes are the 4-byte page number and the next DB_FILE_ID_LEN bytes * are a unique file id, where the first 4 bytes on UNIX systems are the file * inode number, and the first 4 bytes on Windows systems are the FileIndexLow * bytes. So, we use the XOR of the page number and the first four bytes of * the file id to produce a 32-bit hash value. * * We have no particular reason to believe that this algorithm will produce * a good hash, but we want a fast hash more than we want a good one, when * we're coming through this code path. */ #define FAST_HASH(P) { \ u_int32_t __h; \ u_int8_t *__cp, *__hp; \ __hp = (u_int8_t *)&__h; \ __cp = (u_int8_t *)(P); \ __hp[0] = __cp[0] ^ __cp[4]; \ __hp[1] = __cp[1] ^ __cp[5]; \ __hp[2] = __cp[2] ^ __cp[6]; \ __hp[3] = __cp[3] ^ __cp[7]; \ return (__h); \ } /* * __lock_ohash -- * * PUBLIC: u_int32_t __lock_ohash __P((const DBT *)); */ u_int32_t __lock_ohash(dbt) const DBT *dbt; { if (dbt->size == sizeof(DB_LOCK_ILOCK)) FAST_HASH(dbt->data); return (__ham_func5(NULL, dbt->data, dbt->size)); } /* * __lock_lhash -- * * PUBLIC: u_int32_t __lock_lhash __P((DB_LOCKOBJ *)); */ u_int32_t __lock_lhash(lock_obj) DB_LOCKOBJ *lock_obj; { void *obj_data; obj_data = SH_DBT_PTR(&lock_obj->lockobj); if (lock_obj->lockobj.size == sizeof(DB_LOCK_ILOCK)) FAST_HASH(obj_data); return (__ham_func5(NULL, obj_data, lock_obj->lockobj.size)); } /* * __lock_locker_hash -- * Hash function for entering lockers into the locker hash table. * Since these are simply 32-bit unsigned integers, just return * the locker value. * * PUBLIC: u_int32_t __lock_locker_hash __P((u_int32_t)); */ u_int32_t __lock_locker_hash(locker) u_int32_t locker; { return (locker); }