/* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. Copyright (c) 2019, 2020 IBM. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */ #include "mysys_priv.h" #include #ifdef __linux__ #include #endif #if defined(__linux__) || defined(MAP_ALIGNED) #include "my_bit.h" #endif #ifdef HAVE_LINUX_MMAN_H #include #endif #ifdef HAVE_SOLARIS_LARGE_PAGES #if defined(__sun__) && defined(__GNUC__) && defined(__cplusplus) \ && defined(_XOPEN_SOURCE) /* memcntl exist within sys/mman.h, but under-defines what is need to use it */ extern int memcntl(caddr_t, size_t, int, caddr_t, int, int); #endif /* __sun__ ... */ #endif /* HAVE_SOLARIS_LARGE_PAGES */ #if defined(_WIN32) static size_t my_large_page_size; #define HAVE_LARGE_PAGES #elif defined(HAVE_MMAP) #define HAVE_LARGE_PAGES #endif #ifdef HAVE_LARGE_PAGES static my_bool my_use_large_pages= 0; #else #define my_use_large_pages 0 #endif #if defined(HAVE_GETPAGESIZES) || defined(__linux__) /* Descending sort */ static int size_t_cmp(const void *a, const void *b) { const size_t ia= *(const size_t *) a; const size_t ib= *(const size_t *) b; if (ib > ia) { return 1; } else if (ib < ia) { return -1; } return 0; } #endif /* defined(HAVE_GETPAGESIZES) || defined(__linux__) */ #if defined(__linux__) || defined(HAVE_GETPAGESIZES) #define my_large_page_sizes_length 8 static size_t my_large_page_sizes[my_large_page_sizes_length]; #endif /** Linux-specific function to determine the sizes of large pages */ #ifdef __linux__ static inline my_bool my_is_2pow(size_t n) { return !((n) & ((n) - 1)); } static void my_get_large_page_sizes(size_t sizes[my_large_page_sizes_length]) { DIR *dirp; struct dirent *r; int i= 0; DBUG_ENTER("my_get_large_page_sizes"); dirp= opendir("/sys/kernel/mm/hugepages"); if (dirp == NULL) { my_error(EE_DIR, MYF(ME_BELL), "/sys/kernel/mm/hugepages", errno); } else { while (i < my_large_page_sizes_length && (r= readdir(dirp))) { if (strncmp("hugepages-", r->d_name, 10) == 0) { sizes[i]= strtoull(r->d_name + 10, NULL, 10) * 1024ULL; if (!my_is_2pow(sizes[i])) { my_printf_error(0, "non-power of 2 large page size (%zu) found," " skipping", MYF(ME_NOTE | ME_ERROR_LOG_ONLY), sizes[i]); sizes[i]= 0; continue; } ++i; } } if (closedir(dirp)) { my_error(EE_BADCLOSE, MYF(ME_BELL), "/sys/kernel/mm/hugepages", errno); } qsort(sizes, i, sizeof(size_t), size_t_cmp); } DBUG_VOID_RETURN; } #elif defined(HAVE_GETPAGESIZES) static void my_get_large_page_sizes(size_t sizes[my_large_page_sizes_length]) { int nelem; nelem= getpagesizes(NULL, 0); assert(nelem <= my_large_page_sizes_length); getpagesizes(sizes, my_large_page_sizes_length); qsort(sizes, nelem, sizeof(size_t), size_t_cmp); if (nelem < my_large_page_sizes_length) { sizes[nelem]= 0; } } #elif defined(_WIN32) #define my_large_page_sizes_length 0 #define my_get_large_page_sizes(A) do {} while(0) #else #define my_large_page_sizes_length 1 static size_t my_large_page_sizes[my_large_page_sizes_length]; static void my_get_large_page_sizes(size_t sizes[]) { sizes[0]= my_getpagesize(); } #endif /** Returns the next large page size smaller or equal to the passed in size. The search starts at my_large_page_sizes[*start]. Assumes my_get_large_page_sizes(my_large_page_sizes) has been called before use. For first use, have *start=0. There is no need to increment *start. @param[in] sz size to be searched for. @param[in,out] start ptr to int representing offset in my_large_page_sizes to start from. *start is updated during search and can be used to search again if 0 isn't returned. @returns the next size found. *start will be incremented to the next potential size. @retval a large page size that is valid on this system or 0 if no large page size possible. */ #if defined(HAVE_MMAP) && !defined(_WIN32) static size_t my_next_large_page_size(size_t sz, int *start) { DBUG_ENTER("my_next_large_page_size"); while (*start < my_large_page_sizes_length && my_large_page_sizes[*start] > 0) { size_t cur= *start; (*start)++; if (my_large_page_sizes[cur] <= sz) { DBUG_RETURN(my_large_page_sizes[cur]); } } DBUG_RETURN(0); } #endif /* defined(MMAP) || !defined(_WIN32) */ int my_init_large_pages(my_bool super_large_pages) { #ifdef _WIN32 if (!my_obtain_privilege(SE_LOCK_MEMORY_NAME)) { my_printf_error(EE_PERM_LOCK_MEMORY, "Lock Pages in memory access rights required for use with" " large-pages, see https://mariadb.com/kb/en/library/" "mariadb-memory-allocation/#huge-pages", MYF(MY_WME)); } my_large_page_size= GetLargePageMinimum(); #endif my_use_large_pages= 1; my_get_large_page_sizes(my_large_page_sizes); #ifndef HAVE_LARGE_PAGES my_printf_error(EE_OUTOFMEMORY, "No large page support on this platform", MYF(MY_WME)); #endif #ifdef HAVE_SOLARIS_LARGE_PAGES /* tell the kernel that we want to use 4/256MB page for heap storage and also for the stack. We use 4 MByte as default and if the super-large-page is set we increase it to 256 MByte. 256 MByte is for server installations with GBytes of RAM memory where the MySQL Server will have page caches and other memory regions measured in a number of GBytes. We use as big pages as possible which isn't bigger than the above desired page sizes. */ int nelem= 0; size_t max_desired_page_size= (super_large_pages ? 256 : 4) * 1024 * 1024; size_t max_page_size= my_next_large_page_size(max_desired_page_size, &nelem); if (max_page_size > 0) { struct memcntl_mha mpss; mpss.mha_cmd= MHA_MAPSIZE_BSSBRK; mpss.mha_pagesize= max_page_size; mpss.mha_flags= 0; if (memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t) &mpss, 0, 0)) { my_error(EE_MEMCNTL, MYF(ME_WARNING | ME_ERROR_LOG_ONLY), "MC_HAT_ADVISE", "MHA_MAPSIZE_BSSBRK"); } mpss.mha_cmd= MHA_MAPSIZE_STACK; if (memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t) &mpss, 0, 0)) { my_error(EE_MEMCNTL, MYF(ME_WARNING | ME_ERROR_LOG_ONLY), "MC_HAT_ADVISE", "MHA_MAPSIZE_STACK"); } } #endif /* HAVE_SOLARIS_LARGE_PAGES */ return 0; } #if defined(HAVE_MMAP) && !defined(_WIN32) /* Solaris for example has only MAP_ANON, FreeBSD has MAP_ANONYMOUS and MAP_ANON but MAP_ANONYMOUS is marked "for compatibility" */ #if defined(MAP_ANONYMOUS) #define OS_MAP_ANON MAP_ANONYMOUS #elif defined(MAP_ANON) #define OS_MAP_ANON MAP_ANON #else #error unsupported mmap - no MAP_ANON{YMOUS} #endif #endif /* HAVE_MMAP && !_WIN32 */ /** General large pages allocator. Tries to allocate memory from large pages pool and falls back to my_malloc_lock() in case of failure. Every implementation returns a zero filled buffer here. */ uchar *my_large_malloc(size_t *size, myf my_flags) { uchar *ptr= NULL; #ifdef _WIN32 DWORD alloc_type= MEM_COMMIT | MEM_RESERVE; size_t orig_size= *size; DBUG_ENTER("my_large_malloc"); if (my_use_large_pages) { alloc_type|= MEM_LARGE_PAGES; /* Align block size to my_large_page_size */ *size= MY_ALIGN(*size, (size_t) my_large_page_size); } ptr= VirtualAlloc(NULL, *size, alloc_type, PAGE_READWRITE); if (!ptr) { if (my_flags & MY_WME) { if (my_use_large_pages) { my_printf_error(EE_OUTOFMEMORY, "Couldn't allocate %zu bytes (MEM_LARGE_PAGES page " "size %zu); Windows error %lu", MYF(ME_WARNING | ME_ERROR_LOG_ONLY), *size, my_large_page_size, GetLastError()); } else { my_error(EE_OUTOFMEMORY, MYF(ME_BELL+ME_ERROR_LOG), *size); } } if (my_use_large_pages) { *size= orig_size; ptr= VirtualAlloc(NULL, *size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); if (!ptr && my_flags & MY_WME) { my_error(EE_OUTOFMEMORY, MYF(ME_BELL+ME_ERROR_LOG), *size); } } } #elif defined(HAVE_MMAP) int mapflag; int page_i= 0; size_t large_page_size= 0; size_t aligned_size= *size; DBUG_ENTER("my_large_malloc"); while (1) { mapflag= MAP_PRIVATE | OS_MAP_ANON; if (my_use_large_pages) { large_page_size= my_next_large_page_size(*size, &page_i); /* this might be 0, in which case we do a standard mmap */ if (large_page_size) { #if defined(MAP_HUGETLB) /* linux 2.6.32 */ mapflag|= MAP_HUGETLB; #if defined(MAP_HUGE_SHIFT) /* Linux-3.8+ */ mapflag|= my_bit_log2_size_t(large_page_size) << MAP_HUGE_SHIFT; #else # warning "No explicit large page (HUGETLB pages) support in Linux < 3.8" #endif #elif defined(MAP_ALIGNED) mapflag|= MAP_ALIGNED(my_bit_log2_size_t(large_page_size)); #if defined(MAP_ALIGNED_SUPER) mapflag|= MAP_ALIGNED_SUPER; #endif #endif aligned_size= MY_ALIGN(*size, (size_t) large_page_size); } else { aligned_size= *size; } } ptr= mmap(NULL, aligned_size, PROT_READ | PROT_WRITE, mapflag, -1, 0); if (ptr == (void*) -1) { ptr= NULL; if (my_flags & MY_WME) { if (large_page_size && errno == ENOMEM) { my_printf_error(EE_OUTOFMEMORY, "Couldn't allocate %zu bytes (Large/HugeTLB memory " "page size %zu); errno %u; continuing to smaller size", MYF(ME_WARNING | ME_ERROR_LOG_ONLY), aligned_size, large_page_size, errno); } else { my_error(EE_OUTOFMEMORY, MYF(ME_BELL+ME_ERROR_LOG), aligned_size); } } /* try next smaller memory size */ if (large_page_size && errno == ENOMEM) continue; /* other errors are more serious */ break; } else /* success */ { if (large_page_size) { /* we do need to record the adjustment so that munmap gets called with the right size. This is only the case for HUGETLB pages. */ *size= aligned_size; } break; } if (large_page_size == 0) { break; /* no more options to try */ } } #else DBUG_RETURN(my_malloc_lock(*size, my_flags)); #endif /* defined(HAVE_MMAP) */ if (ptr != NULL) { MEM_MAKE_DEFINED(ptr, *size); } DBUG_RETURN(ptr); } /** General large pages deallocator. Tries to deallocate memory as if it was from large pages pool and falls back to my_free_lock() in case of failure */ void my_large_free(void *ptr, size_t size) { DBUG_ENTER("my_large_free"); /* The following implementations can only fail if ptr was not allocated with my_large_malloc(), i.e. my_malloc_lock() was used so we should free it with my_free_lock() For ASAN, we need to explicitly unpoison this memory region because the OS may reuse that memory for some TLS or stack variable. It will remain poisoned if it was explicitly poisioned before release. If this happens, we'll have hard to debug false positives like in MDEV-21239. For valgrind, we mark it as UNDEFINED rather than NOACCESS because of the implict reuse possiblility. */ #if defined(HAVE_MMAP) && !defined(_WIN32) if (munmap(ptr, size)) { my_error(EE_BADMEMORYRELEASE, MYF(ME_ERROR_LOG_ONLY), ptr, size, errno); } # if !__has_feature(memory_sanitizer) else { MEM_MAKE_ADDRESSABLE(ptr, size); } # endif #elif defined(_WIN32) /* When RELEASE memory, the size parameter must be 0. Do not use MEM_RELEASE with MEM_DECOMMIT. */ if (ptr && !VirtualFree(ptr, 0, MEM_RELEASE)) { my_error(EE_BADMEMORYRELEASE, MYF(ME_ERROR_LOG_ONLY), ptr, size, GetLastError()); } # if !__has_feature(memory_sanitizer) else { MEM_MAKE_ADDRESSABLE(ptr, size); } # endif #else my_free_lock(ptr); #endif DBUG_VOID_RETURN; }