#ident "$Id$" #ident "Copyright (c) 2007-2010 Tokutek Inc. All rights reserved." #ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it." #include #include #include #include #include #include "toku_assert.h" #include "x1764.h" #include "threadpool.h" #include "sub_block.h" void sub_block_init(struct sub_block *sub_block) { sub_block->uncompressed_ptr = 0; sub_block->uncompressed_size = 0; sub_block->compressed_ptr = 0; sub_block->compressed_size_bound = 0; sub_block->compressed_size = 0; sub_block->xsum = 0; } // get the size of the compression header size_t sub_block_header_size(int n_sub_blocks) { return sizeof (u_int32_t) + n_sub_blocks * sizeof (struct stored_sub_block); } // get the sum of the sub block compressed sizes size_t get_sum_compressed_size_bound(int n_sub_blocks, struct sub_block sub_block[]) { size_t compressed_size_bound = 0; for (int i = 0; i < n_sub_blocks; i++) { sub_block[i].compressed_size_bound = compressBound(sub_block[i].uncompressed_size); compressed_size_bound += sub_block[i].compressed_size_bound; } return compressed_size_bound; } // get the sum of the sub block uncompressed sizes size_t get_sum_uncompressed_size(int n_sub_blocks, struct sub_block sub_block[]) { size_t uncompressed_size = 0; for (int i = 0; i < n_sub_blocks; i++) uncompressed_size += sub_block[i].uncompressed_size; return uncompressed_size; } // round up n static inline int alignup32(int a, int b) { return ((a+b-1) / b) * b; } // Choose n_sub_blocks and sub_block_size such that the product is >= total_size and the sub_block_size is at // least >= the target_sub_block_size. int choose_sub_block_size(int total_size, int n_sub_blocks_limit, int *sub_block_size_ret, int *n_sub_blocks_ret) { if (total_size < 0 || n_sub_blocks_limit < 1) return EINVAL; const int alignment = 32; int n_sub_blocks, sub_block_size; n_sub_blocks = total_size / target_sub_block_size; if (n_sub_blocks <= 1) { n_sub_blocks = n_sub_blocks; if (total_size > 0 && n_sub_blocks_limit > 0) n_sub_blocks = 1; sub_block_size = total_size; } else { if (n_sub_blocks > n_sub_blocks_limit) // limit the number of sub-blocks n_sub_blocks = n_sub_blocks_limit; sub_block_size = alignup32(total_size / n_sub_blocks, alignment); while (sub_block_size * n_sub_blocks < total_size) // round up the sub-block size until big enough sub_block_size += alignment; } *sub_block_size_ret = sub_block_size; *n_sub_blocks_ret = n_sub_blocks; return 0; } void set_all_sub_block_sizes(int total_size, int sub_block_size, int n_sub_blocks, struct sub_block sub_block[]) { int size_left = total_size; int i; for (i = 0; i < n_sub_blocks-1; i++) { sub_block[i].uncompressed_size = sub_block_size; size_left -= sub_block_size; } if (i == 0 || size_left > 0) sub_block[i].uncompressed_size = size_left; } // find the index of the first sub block that contains offset // Returns the sub block index, else returns -1 int get_sub_block_index(int n_sub_blocks, struct sub_block sub_block[], size_t offset) { size_t start_offset = 0; for (int i = 0; i < n_sub_blocks; i++) { size_t size = sub_block[i].uncompressed_size; if (offset < start_offset + size) return i; start_offset += size; } return -1; } #include "workset.h" void compress_work_init(struct compress_work *w, struct sub_block *sub_block) { w->sub_block = sub_block; } void compress_sub_block(struct sub_block *sub_block) { // compress it Bytef *uncompressed_ptr = (Bytef *) sub_block->uncompressed_ptr; Bytef *compressed_ptr = (Bytef *) sub_block->compressed_ptr; uLongf uncompressed_len = sub_block->uncompressed_size; uLongf real_compressed_len = sub_block->compressed_size_bound; int compression_level = 5; int r = compress2((Bytef*)compressed_ptr, &real_compressed_len, (Bytef*)uncompressed_ptr, uncompressed_len, compression_level); assert(r == Z_OK); sub_block->compressed_size = real_compressed_len; // replace the compressed size estimate with the real size // checksum it sub_block->xsum = x1764_memory(sub_block->compressed_ptr, sub_block->compressed_size); } void * compress_worker(void *arg) { struct workset *ws = (struct workset *) arg; while (1) { struct compress_work *w = (struct compress_work *) workset_get(ws); if (w == NULL) break; compress_sub_block(w->sub_block); } workset_release_ref(ws); return arg; } size_t compress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], char *uncompressed_ptr, char *compressed_ptr, int num_cores, struct toku_thread_pool *pool) { char *compressed_base_ptr = compressed_ptr; size_t compressed_len; if (n_sub_blocks == 1) { // single sub-block sub_block[0].uncompressed_ptr = uncompressed_ptr; sub_block[0].compressed_ptr = compressed_ptr; compress_sub_block(&sub_block[0]); compressed_len = sub_block[0].compressed_size; } else { // multiple sub-blocks int T = num_cores; // T = min(num_cores, n_sub_blocks) - 1 if (T > n_sub_blocks) T = n_sub_blocks; if (T > 0) T = T - 1; // threads in addition to the running thread struct workset ws; workset_init(&ws); struct compress_work work[n_sub_blocks]; workset_lock(&ws); for (int i = 0; i < n_sub_blocks; i++) { sub_block[i].uncompressed_ptr = uncompressed_ptr; sub_block[i].compressed_ptr = compressed_ptr; compress_work_init(&work[i], &sub_block[i]); workset_put_locked(&ws, &work[i].base); uncompressed_ptr += sub_block[i].uncompressed_size; compressed_ptr += sub_block[i].compressed_size_bound; } workset_unlock(&ws); // compress the sub-blocks if (0) printf("%s:%d T=%d N=%d\n", __FUNCTION__, __LINE__, T, n_sub_blocks); toku_thread_pool_run(pool, 0, &T, compress_worker, &ws); workset_add_ref(&ws, T); compress_worker(&ws); // wait for all of the work to complete workset_join(&ws); // squeeze out the holes not used by the compress bound compressed_ptr = compressed_base_ptr + sub_block[0].compressed_size; for (int i = 1; i < n_sub_blocks; i++) { memmove(compressed_ptr, sub_block[i].compressed_ptr, sub_block[i].compressed_size); compressed_ptr += sub_block[i].compressed_size; } compressed_len = compressed_ptr - compressed_base_ptr; } return compressed_len; } // initialize the decompression work void decompress_work_init(struct decompress_work *dw, void *compress_ptr, u_int32_t compress_size, void *uncompress_ptr, u_int32_t uncompress_size, u_int32_t xsum) { dw->compress_ptr = compress_ptr; dw->compress_size = compress_size; dw->uncompress_ptr = uncompress_ptr; dw->uncompress_size = uncompress_size; dw->xsum = xsum; dw->error = 0; } int verbose_decompress_sub_block = 1; // decompress one block int decompress_sub_block(void *compress_ptr, u_int32_t compress_size, void *uncompress_ptr, u_int32_t uncompress_size, u_int32_t expected_xsum) { int result = 0; // verify checksum u_int32_t xsum = x1764_memory(compress_ptr, compress_size); if (xsum != expected_xsum) { if (verbose_decompress_sub_block) fprintf(stderr, "%s:%d xsum %u expected %u\n", __FUNCTION__, __LINE__, xsum, expected_xsum); result = EINVAL; } else { // decompress uLongf destlen = uncompress_size; int r = uncompress(uncompress_ptr, &destlen, compress_ptr, compress_size); if (r != Z_OK || destlen != uncompress_size) { if (verbose_decompress_sub_block) fprintf(stderr, "%s:%d uncompress %d %lu %u\n", __FUNCTION__, __LINE__, r, destlen, uncompress_size); result = EINVAL; } } return result; } // decompress blocks until there is no more work to do void * decompress_worker(void *arg) { struct workset *ws = (struct workset *) arg; while (1) { struct decompress_work *dw = (struct decompress_work *) workset_get(ws); if (dw == NULL) break; dw->error = decompress_sub_block(dw->compress_ptr, dw->compress_size, dw->uncompress_ptr, dw->uncompress_size, dw->xsum); } workset_release_ref(ws); return arg; } int decompress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], unsigned char *compressed_data, unsigned char *uncompressed_data, int num_cores, struct toku_thread_pool *pool) { int r; if (n_sub_blocks == 1) { r = decompress_sub_block(compressed_data, sub_block[0].compressed_size, uncompressed_data, sub_block[0].uncompressed_size, sub_block[0].xsum); } else { // compute the number of additional threads needed for decompressing this node int T = num_cores; // T = min(#cores, #blocks) - 1 if (T > n_sub_blocks) T = n_sub_blocks; if (T > 0) T = T - 1; // threads in addition to the running thread // init the decompression work set struct workset ws; workset_init(&ws); // initialize the decompression work and add to the work set struct decompress_work decompress_work[n_sub_blocks]; workset_lock(&ws); for (int i = 0; i < n_sub_blocks; i++) { decompress_work_init(&decompress_work[i], compressed_data, sub_block[i].compressed_size, uncompressed_data, sub_block[i].uncompressed_size, sub_block[i].xsum); workset_put_locked(&ws, &decompress_work[i].base); uncompressed_data += sub_block[i].uncompressed_size; compressed_data += sub_block[i].compressed_size; } workset_unlock(&ws); // decompress the sub-blocks if (0) printf("%s:%d Cores=%d Blocks=%d T=%d\n", __FUNCTION__, __LINE__, num_cores, n_sub_blocks, T); toku_thread_pool_run(pool, 0, &T, decompress_worker, &ws); workset_add_ref(&ws, T); decompress_worker(&ws); // cleanup workset_join(&ws); workset_destroy(&ws); r = 0; for (int i = 0; i < n_sub_blocks; i++) { r = decompress_work[i].error; if (r != 0) break; } } return r; }