/***************************************************************************** Copyright (c) 1996, 2012, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file trx/trx0purge.cc Purge old versions Created 3/26/1996 Heikki Tuuri *******************************************************/ #include "trx0purge.h" #ifdef UNIV_NONINL #include "trx0purge.ic" #endif #include "fsp0fsp.h" #include "mach0data.h" #include "trx0rseg.h" #include "trx0trx.h" #include "trx0roll.h" #include "read0read.h" #include "fut0fut.h" #include "que0que.h" #include "row0purge.h" #include "row0upd.h" #include "trx0rec.h" #include "srv0srv.h" #include "srv0start.h" #include "os0thread.h" #include "srv0mon.h" #include "mtr0log.h" /** Maximum allowable purge history length. <=0 means 'infinite'. */ UNIV_INTERN ulong srv_max_purge_lag = 0; /** Max DML user threads delay in micro-seconds. */ UNIV_INTERN ulong srv_max_purge_lag_delay = 0; /** The global data structure coordinating a purge */ UNIV_INTERN trx_purge_t* purge_sys = NULL; /** A dummy undo record used as a return value when we have a whole undo log which needs no purge */ UNIV_INTERN trx_undo_rec_t trx_purge_dummy_rec; #ifdef UNIV_PFS_RWLOCK /* Key to register trx_purge_latch with performance schema */ UNIV_INTERN mysql_pfs_key_t trx_purge_latch_key; #endif /* UNIV_PFS_RWLOCK */ #ifdef UNIV_PFS_MUTEX /* Key to register purge_sys_bh_mutex with performance schema */ UNIV_INTERN mysql_pfs_key_t purge_sys_bh_mutex_key; #endif /* UNIV_PFS_MUTEX */ #ifdef UNIV_DEBUG UNIV_INTERN my_bool srv_purge_view_update_only_debug; #endif /* UNIV_DEBUG */ /****************************************************************//** Builds a purge 'query' graph. The actual purge is performed by executing this query graph. @return own: the query graph */ static que_t* trx_purge_graph_build( /*==================*/ trx_t* trx, /*!< in: transaction */ ulint n_purge_threads) /*!< in: number of purge threads */ { ulint i; mem_heap_t* heap; que_fork_t* fork; heap = mem_heap_create(512); fork = que_fork_create(NULL, NULL, QUE_FORK_PURGE, heap); fork->trx = trx; for (i = 0; i < n_purge_threads; ++i) { que_thr_t* thr; thr = que_thr_create(fork, heap); thr->child = row_purge_node_create(thr, heap); } return(fork); } /********************************************************************//** Creates the global purge system control structure and inits the history mutex. */ UNIV_INTERN void trx_purge_sys_create( /*=================*/ ulint n_purge_threads, /*!< in: number of purge threads */ ib_bh_t* ib_bh) /*!< in, own: UNDO log min binary heap */ { purge_sys = static_cast(mem_zalloc(sizeof(*purge_sys))); purge_sys->state = PURGE_STATE_INIT; purge_sys->event = os_event_create(); /* Take ownership of ib_bh, we are responsible for freeing it. */ purge_sys->ib_bh = ib_bh; rw_lock_create(trx_purge_latch_key, &purge_sys->latch, SYNC_PURGE_LATCH); mutex_create( purge_sys_bh_mutex_key, &purge_sys->bh_mutex, SYNC_PURGE_QUEUE); purge_sys->heap = mem_heap_create(256); ut_a(n_purge_threads > 0); purge_sys->sess = sess_open(); purge_sys->trx = purge_sys->sess->trx; ut_a(purge_sys->trx->sess == purge_sys->sess); /* A purge transaction is not a real transaction, we use a transaction here only because the query threads code requires it. It is otherwise quite unnecessary. We should get rid of it eventually. */ purge_sys->trx->id = 0; purge_sys->trx->start_time = ut_time(); purge_sys->trx->state = TRX_STATE_ACTIVE; purge_sys->trx->op_info = "purge trx"; purge_sys->query = trx_purge_graph_build( purge_sys->trx, n_purge_threads); purge_sys->view = read_view_purge_open(purge_sys->heap); } /************************************************************************ Frees the global purge system control structure. */ UNIV_INTERN void trx_purge_sys_close(void) /*======================*/ { que_graph_free(purge_sys->query); ut_a(purge_sys->trx->id == 0); ut_a(purge_sys->sess->trx == purge_sys->trx); purge_sys->trx->state = TRX_STATE_NOT_STARTED; sess_close(purge_sys->sess); purge_sys->sess = NULL; purge_sys->view = NULL; rw_lock_free(&purge_sys->latch); mutex_free(&purge_sys->bh_mutex); mem_heap_free(purge_sys->heap); ib_bh_free(purge_sys->ib_bh); os_event_free(purge_sys->event); purge_sys->event = NULL; mem_free(purge_sys); purge_sys = NULL; } /*================ UNDO LOG HISTORY LIST =============================*/ /********************************************************************//** Adds the update undo log as the first log in the history list. Removes the update undo log segment from the rseg slot if it is too big for reuse. */ UNIV_INTERN void trx_purge_add_update_undo_to_history( /*=================================*/ trx_t* trx, /*!< in: transaction */ page_t* undo_page, /*!< in: update undo log header page, x-latched */ mtr_t* mtr) /*!< in: mtr */ { trx_undo_t* undo; trx_rseg_t* rseg; trx_rsegf_t* rseg_header; trx_ulogf_t* undo_header; undo = trx->update_undo; rseg = undo->rseg; rseg_header = trx_rsegf_get( undo->rseg->space, undo->rseg->zip_size, undo->rseg->page_no, mtr); undo_header = undo_page + undo->hdr_offset; if (undo->state != TRX_UNDO_CACHED) { ulint hist_size; #ifdef UNIV_DEBUG trx_usegf_t* seg_header = undo_page + TRX_UNDO_SEG_HDR; #endif /* UNIV_DEBUG */ /* The undo log segment will not be reused */ if (UNIV_UNLIKELY(undo->id >= TRX_RSEG_N_SLOTS)) { fprintf(stderr, "InnoDB: Error: undo->id is %lu\n", (ulong) undo->id); ut_error; } trx_rsegf_set_nth_undo(rseg_header, undo->id, FIL_NULL, mtr); MONITOR_DEC(MONITOR_NUM_UNDO_SLOT_USED); hist_size = mtr_read_ulint( rseg_header + TRX_RSEG_HISTORY_SIZE, MLOG_4BYTES, mtr); ut_ad(undo->size == flst_get_len( seg_header + TRX_UNDO_PAGE_LIST, mtr)); mlog_write_ulint( rseg_header + TRX_RSEG_HISTORY_SIZE, hist_size + undo->size, MLOG_4BYTES, mtr); } /* Add the log as the first in the history list */ flst_add_first(rseg_header + TRX_RSEG_HISTORY, undo_header + TRX_UNDO_HISTORY_NODE, mtr); #ifdef HAVE_ATOMIC_BUILTINS os_atomic_increment_ulint(&trx_sys->rseg_history_len, 1); #else mutex_enter(&trx_sys->mutex); ++trx_sys->rseg_history_len; mutex_exit(&trx_sys->mutex); #endif /* HAVE_ATOMIC_BUILTINS */ srv_wake_purge_thread_if_not_active(); /* Write the trx number to the undo log header */ mlog_write_ull(undo_header + TRX_UNDO_TRX_NO, trx->no, mtr); /* Write information about delete markings to the undo log header */ if (!undo->del_marks) { mlog_write_ulint(undo_header + TRX_UNDO_DEL_MARKS, FALSE, MLOG_2BYTES, mtr); } if (rseg->last_page_no == FIL_NULL) { rseg->last_page_no = undo->hdr_page_no; rseg->last_offset = undo->hdr_offset; rseg->last_trx_no = trx->no; rseg->last_del_marks = undo->del_marks; } } /**********************************************************************//** Frees an undo log segment which is in the history list. Cuts the end of the history list at the youngest undo log in this segment. */ static void trx_purge_free_segment( /*===================*/ trx_rseg_t* rseg, /*!< in: rollback segment */ fil_addr_t hdr_addr, /*!< in: the file address of log_hdr */ ulint n_removed_logs) /*!< in: count of how many undo logs we will cut off from the end of the history list */ { mtr_t mtr; trx_rsegf_t* rseg_hdr; trx_ulogf_t* log_hdr; trx_usegf_t* seg_hdr; ulint seg_size; ulint hist_size; ibool marked = FALSE; /* fputs("Freeing an update undo log segment\n", stderr); */ for (;;) { page_t* undo_page; mtr_start(&mtr); mutex_enter(&rseg->mutex); rseg_hdr = trx_rsegf_get( rseg->space, rseg->zip_size, rseg->page_no, &mtr); undo_page = trx_undo_page_get( rseg->space, rseg->zip_size, hdr_addr.page, &mtr); seg_hdr = undo_page + TRX_UNDO_SEG_HDR; log_hdr = undo_page + hdr_addr.boffset; /* Mark the last undo log totally purged, so that if the system crashes, the tail of the undo log will not get accessed again. The list of pages in the undo log tail gets inconsistent during the freeing of the segment, and therefore purge should not try to access them again. */ if (!marked) { mlog_write_ulint( log_hdr + TRX_UNDO_DEL_MARKS, FALSE, MLOG_2BYTES, &mtr); marked = TRUE; } if (fseg_free_step_not_header( seg_hdr + TRX_UNDO_FSEG_HEADER, &mtr)) { break; } mutex_exit(&rseg->mutex); mtr_commit(&mtr); } /* The page list may now be inconsistent, but the length field stored in the list base node tells us how big it was before we started the freeing. */ seg_size = flst_get_len(seg_hdr + TRX_UNDO_PAGE_LIST, &mtr); /* We may free the undo log segment header page; it must be freed within the same mtr as the undo log header is removed from the history list: otherwise, in case of a database crash, the segment could become inaccessible garbage in the file space. */ flst_cut_end(rseg_hdr + TRX_RSEG_HISTORY, log_hdr + TRX_UNDO_HISTORY_NODE, n_removed_logs, &mtr); #ifdef HAVE_ATOMIC_BUILTINS os_atomic_decrement_ulint(&trx_sys->rseg_history_len, n_removed_logs); #else mutex_enter(&trx_sys->mutex); trx_sys->rseg_history_len -= n_removed_logs; mutex_exit(&trx_sys->mutex); #endif /* HAVE_ATOMIC_BUILTINS */ do { /* Here we assume that a file segment with just the header page can be freed in a few steps, so that the buffer pool is not flooded with bufferfixed pages: see the note in fsp0fsp.cc. */ } while(!fseg_free_step(seg_hdr + TRX_UNDO_FSEG_HEADER, &mtr)); hist_size = mtr_read_ulint(rseg_hdr + TRX_RSEG_HISTORY_SIZE, MLOG_4BYTES, &mtr); ut_ad(hist_size >= seg_size); mlog_write_ulint(rseg_hdr + TRX_RSEG_HISTORY_SIZE, hist_size - seg_size, MLOG_4BYTES, &mtr); ut_ad(rseg->curr_size >= seg_size); rseg->curr_size -= seg_size; mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); } /********************************************************************//** Removes unnecessary history data from a rollback segment. */ static void trx_purge_truncate_rseg_history( /*============================*/ trx_rseg_t* rseg, /*!< in: rollback segment */ const purge_iter_t* limit) /*!< in: truncate offset */ { fil_addr_t hdr_addr; fil_addr_t prev_hdr_addr; trx_rsegf_t* rseg_hdr; page_t* undo_page; trx_ulogf_t* log_hdr; trx_usegf_t* seg_hdr; ulint n_removed_logs = 0; mtr_t mtr; trx_id_t undo_trx_no; mtr_start(&mtr); mutex_enter(&(rseg->mutex)); rseg_hdr = trx_rsegf_get(rseg->space, rseg->zip_size, rseg->page_no, &mtr); hdr_addr = trx_purge_get_log_from_hist( flst_get_last(rseg_hdr + TRX_RSEG_HISTORY, &mtr)); loop: if (hdr_addr.page == FIL_NULL) { mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); return; } undo_page = trx_undo_page_get(rseg->space, rseg->zip_size, hdr_addr.page, &mtr); log_hdr = undo_page + hdr_addr.boffset; undo_trx_no = mach_read_from_8(log_hdr + TRX_UNDO_TRX_NO); if (undo_trx_no >= limit->trx_no) { if (undo_trx_no == limit->trx_no) { trx_undo_truncate_start( rseg, rseg->space, hdr_addr.page, hdr_addr.boffset, limit->undo_no); } #ifdef HAVE_ATOMIC_BUILTINS os_atomic_decrement_ulint( &trx_sys->rseg_history_len, n_removed_logs); #else mutex_enter(&trx_sys->mutex); trx_sys->rseg_history_len -= n_removed_logs; mutex_exit(&trx_sys->mutex); #endif /* HAVE_ATOMIC_BUILTINS */ flst_truncate_end(rseg_hdr + TRX_RSEG_HISTORY, log_hdr + TRX_UNDO_HISTORY_NODE, n_removed_logs, &mtr); mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); return; } prev_hdr_addr = trx_purge_get_log_from_hist( flst_get_prev_addr(log_hdr + TRX_UNDO_HISTORY_NODE, &mtr)); n_removed_logs++; seg_hdr = undo_page + TRX_UNDO_SEG_HDR; if ((mach_read_from_2(seg_hdr + TRX_UNDO_STATE) == TRX_UNDO_TO_PURGE) && (mach_read_from_2(log_hdr + TRX_UNDO_NEXT_LOG) == 0)) { /* We can free the whole log segment */ mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); trx_purge_free_segment(rseg, hdr_addr, n_removed_logs); n_removed_logs = 0; } else { mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); } mtr_start(&mtr); mutex_enter(&(rseg->mutex)); rseg_hdr = trx_rsegf_get(rseg->space, rseg->zip_size, rseg->page_no, &mtr); hdr_addr = prev_hdr_addr; goto loop; } /********************************************************************//** Removes unnecessary history data from rollback segments. NOTE that when this function is called, the caller must not have any latches on undo log pages! */ static void trx_purge_truncate_history( /*========================*/ purge_iter_t* limit, /*!< in: truncate limit */ const read_view_t* view) /*!< in: purge view */ { ulint i; /* We play safe and set the truncate limit at most to the purge view low_limit number, though this is not necessary */ if (limit->trx_no >= view->low_limit_no) { limit->trx_no = view->low_limit_no; limit->undo_no = 0; } ut_ad(limit->trx_no <= purge_sys->view->low_limit_no); for (i = 0; i < TRX_SYS_N_RSEGS; ++i) { trx_rseg_t* rseg = trx_sys->rseg_array[i]; if (rseg != NULL) { ut_a(rseg->id == i); trx_purge_truncate_rseg_history(rseg, limit); } } } /***********************************************************************//** Updates the last not yet purged history log info in rseg when we have purged a whole undo log. Advances also purge_sys->purge_trx_no past the purged log. */ static void trx_purge_rseg_get_next_history_log( /*================================*/ trx_rseg_t* rseg, /*!< in: rollback segment */ ulint* n_pages_handled)/*!< in/out: number of UNDO pages handled */ { const void* ptr; page_t* undo_page; trx_ulogf_t* log_hdr; fil_addr_t prev_log_addr; trx_id_t trx_no; ibool del_marks; mtr_t mtr; rseg_queue_t rseg_queue; mutex_enter(&(rseg->mutex)); ut_a(rseg->last_page_no != FIL_NULL); purge_sys->iter.trx_no = rseg->last_trx_no + 1; purge_sys->iter.undo_no = 0; purge_sys->next_stored = FALSE; mtr_start(&mtr); undo_page = trx_undo_page_get_s_latched( rseg->space, rseg->zip_size, rseg->last_page_no, &mtr); log_hdr = undo_page + rseg->last_offset; /* Increase the purge page count by one for every handled log */ (*n_pages_handled)++; prev_log_addr = trx_purge_get_log_from_hist( flst_get_prev_addr(log_hdr + TRX_UNDO_HISTORY_NODE, &mtr)); if (prev_log_addr.page == FIL_NULL) { /* No logs left in the history list */ rseg->last_page_no = FIL_NULL; mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); mutex_enter(&trx_sys->mutex); /* Add debug code to track history list corruption reported on the MySQL mailing list on Nov 9, 2004. The fut0lst.cc file-based list was corrupt. The prev node pointer was FIL_NULL, even though the list length was over 8 million nodes! We assume that purge truncates the history list in large size pieces, and if we here reach the head of the list, the list cannot be longer than 2000 000 undo logs now. */ if (trx_sys->rseg_history_len > 2000000) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Warning: purge reached the" " head of the history list,\n" "InnoDB: but its length is still" " reported as %lu! Make a detailed bug\n" "InnoDB: report, and submit it" " to http://bugs.mysql.com\n", (ulong) trx_sys->rseg_history_len); ut_ad(0); } mutex_exit(&trx_sys->mutex); return; } mutex_exit(&rseg->mutex); mtr_commit(&mtr); /* Read the trx number and del marks from the previous log header */ mtr_start(&mtr); log_hdr = trx_undo_page_get_s_latched(rseg->space, rseg->zip_size, prev_log_addr.page, &mtr) + prev_log_addr.boffset; trx_no = mach_read_from_8(log_hdr + TRX_UNDO_TRX_NO); del_marks = mach_read_from_2(log_hdr + TRX_UNDO_DEL_MARKS); mtr_commit(&mtr); mutex_enter(&(rseg->mutex)); rseg->last_page_no = prev_log_addr.page; rseg->last_offset = prev_log_addr.boffset; rseg->last_trx_no = trx_no; rseg->last_del_marks = del_marks; rseg_queue.rseg = rseg; rseg_queue.trx_no = rseg->last_trx_no; /* Purge can also produce events, however these are already ordered in the rollback segment and any user generated event will be greater than the events that Purge produces. ie. Purge can never produce events from an empty rollback segment. */ mutex_enter(&purge_sys->bh_mutex); ptr = ib_bh_push(purge_sys->ib_bh, &rseg_queue); ut_a(ptr != NULL); mutex_exit(&purge_sys->bh_mutex); mutex_exit(&rseg->mutex); } /***********************************************************************//** Chooses the rollback segment with the smallest trx_id. @return zip_size if log is for a compressed table, ULINT_UNDEFINED if no rollback segments to purge, 0 for non compressed tables. */ static ulint trx_purge_get_rseg_with_min_trx_id( /*===============================*/ trx_purge_t* purge_sys) /*!< in/out: purge instance */ { ulint zip_size = 0; mutex_enter(&purge_sys->bh_mutex); /* Only purge consumes events from the binary heap, user threads only produce the events. */ if (!ib_bh_is_empty(purge_sys->ib_bh)) { trx_rseg_t* rseg; rseg = ((rseg_queue_t*) ib_bh_first(purge_sys->ib_bh))->rseg; ib_bh_pop(purge_sys->ib_bh); mutex_exit(&purge_sys->bh_mutex); purge_sys->rseg = rseg; } else { mutex_exit(&purge_sys->bh_mutex); purge_sys->rseg = NULL; return(ULINT_UNDEFINED); } ut_a(purge_sys->rseg != NULL); mutex_enter(&purge_sys->rseg->mutex); ut_a(purge_sys->rseg->last_page_no != FIL_NULL); /* We assume in purge of externally stored fields that space id is in the range of UNDO tablespace space ids */ ut_a(purge_sys->rseg->space <= srv_undo_tablespaces_open); zip_size = purge_sys->rseg->zip_size; ut_a(purge_sys->iter.trx_no <= purge_sys->rseg->last_trx_no); purge_sys->iter.trx_no = purge_sys->rseg->last_trx_no; purge_sys->hdr_offset = purge_sys->rseg->last_offset; purge_sys->hdr_page_no = purge_sys->rseg->last_page_no; mutex_exit(&purge_sys->rseg->mutex); return(zip_size); } /***********************************************************************//** Position the purge sys "iterator" on the undo record to use for purging. */ static void trx_purge_read_undo_rec( /*====================*/ trx_purge_t* purge_sys, /*!< in/out: purge instance */ ulint zip_size) /*!< in: block size or 0 */ { ulint offset; ulint page_no; ib_uint64_t undo_no; purge_sys->hdr_offset = purge_sys->rseg->last_offset; page_no = purge_sys->hdr_page_no = purge_sys->rseg->last_page_no; if (purge_sys->rseg->last_del_marks) { mtr_t mtr; trx_undo_rec_t* undo_rec = NULL; mtr_start(&mtr); undo_rec = trx_undo_get_first_rec( purge_sys->rseg->space, zip_size, purge_sys->hdr_page_no, purge_sys->hdr_offset, RW_S_LATCH, &mtr); if (undo_rec != NULL) { offset = page_offset(undo_rec); undo_no = trx_undo_rec_get_undo_no(undo_rec); page_no = page_get_page_no(page_align(undo_rec)); } else { offset = 0; undo_no = 0; } mtr_commit(&mtr); } else { offset = 0; undo_no = 0; } purge_sys->offset = offset; purge_sys->page_no = page_no; purge_sys->iter.undo_no = undo_no; purge_sys->next_stored = TRUE; } /***********************************************************************//** Chooses the next undo log to purge and updates the info in purge_sys. This function is used to initialize purge_sys when the next record to purge is not known, and also to update the purge system info on the next record when purge has handled the whole undo log for a transaction. */ static void trx_purge_choose_next_log(void) /*===========================*/ { ulint zip_size; ut_ad(purge_sys->next_stored == FALSE); zip_size = trx_purge_get_rseg_with_min_trx_id(purge_sys); if (purge_sys->rseg != NULL) { trx_purge_read_undo_rec(purge_sys, zip_size); } else { /* There is nothing to do yet. */ os_thread_yield(); } } /***********************************************************************//** Gets the next record to purge and updates the info in the purge system. @return copy of an undo log record or pointer to the dummy undo log record */ static trx_undo_rec_t* trx_purge_get_next_rec( /*===================*/ ulint* n_pages_handled,/*!< in/out: number of UNDO pages handled */ mem_heap_t* heap) /*!< in: memory heap where copied */ { trx_undo_rec_t* rec; trx_undo_rec_t* rec_copy; trx_undo_rec_t* rec2; page_t* undo_page; page_t* page; ulint offset; ulint page_no; ulint space; ulint zip_size; mtr_t mtr; ut_ad(purge_sys->next_stored); ut_ad(purge_sys->iter.trx_no < purge_sys->view->low_limit_no); space = purge_sys->rseg->space; zip_size = purge_sys->rseg->zip_size; page_no = purge_sys->page_no; offset = purge_sys->offset; if (offset == 0) { /* It is the dummy undo log record, which means that there is no need to purge this undo log */ trx_purge_rseg_get_next_history_log( purge_sys->rseg, n_pages_handled); /* Look for the next undo log and record to purge */ trx_purge_choose_next_log(); return(&trx_purge_dummy_rec); } mtr_start(&mtr); undo_page = trx_undo_page_get_s_latched(space, zip_size, page_no, &mtr); rec = undo_page + offset; rec2 = rec; for (;;) { ulint type; trx_undo_rec_t* next_rec; ulint cmpl_info; /* Try first to find the next record which requires a purge operation from the same page of the same undo log */ next_rec = trx_undo_page_get_next_rec( rec2, purge_sys->hdr_page_no, purge_sys->hdr_offset); if (next_rec == NULL) { rec2 = trx_undo_get_next_rec( rec2, purge_sys->hdr_page_no, purge_sys->hdr_offset, &mtr); break; } rec2 = next_rec; type = trx_undo_rec_get_type(rec2); if (type == TRX_UNDO_DEL_MARK_REC) { break; } cmpl_info = trx_undo_rec_get_cmpl_info(rec2); if (trx_undo_rec_get_extern_storage(rec2)) { break; } if ((type == TRX_UNDO_UPD_EXIST_REC) && !(cmpl_info & UPD_NODE_NO_ORD_CHANGE)) { break; } } if (rec2 == NULL) { mtr_commit(&mtr); trx_purge_rseg_get_next_history_log( purge_sys->rseg, n_pages_handled); /* Look for the next undo log and record to purge */ trx_purge_choose_next_log(); mtr_start(&mtr); undo_page = trx_undo_page_get_s_latched( space, zip_size, page_no, &mtr); rec = undo_page + offset; } else { page = page_align(rec2); purge_sys->offset = rec2 - page; purge_sys->page_no = page_get_page_no(page); purge_sys->iter.undo_no = trx_undo_rec_get_undo_no(rec2); if (undo_page != page) { /* We advance to a new page of the undo log: */ (*n_pages_handled)++; } } rec_copy = trx_undo_rec_copy(rec, heap); mtr_commit(&mtr); return(rec_copy); } /********************************************************************//** Fetches the next undo log record from the history list to purge. It must be released with the corresponding release function. @return copy of an undo log record or pointer to trx_purge_dummy_rec, if the whole undo log can skipped in purge; NULL if none left */ static __attribute__((warn_unused_result, nonnull)) trx_undo_rec_t* trx_purge_fetch_next_rec( /*=====================*/ roll_ptr_t* roll_ptr, /*!< out: roll pointer to undo record */ ulint* n_pages_handled,/*!< in/out: number of UNDO log pages handled */ mem_heap_t* heap) /*!< in: memory heap where copied */ { if (!purge_sys->next_stored) { trx_purge_choose_next_log(); if (!purge_sys->next_stored) { if (srv_print_thread_releases) { fprintf(stderr, "Purge: No logs left in the" " history list\n"); } return(NULL); } } if (purge_sys->iter.trx_no >= purge_sys->view->low_limit_no) { return(NULL); } /* fprintf(stderr, "Thread %lu purging trx %llu undo record %llu\n", os_thread_get_curr_id(), iter->trx_no, iter->undo_no); */ *roll_ptr = trx_undo_build_roll_ptr( FALSE, purge_sys->rseg->id, purge_sys->page_no, purge_sys->offset); /* The following call will advance the stored values of the purge iterator. */ return(trx_purge_get_next_rec(n_pages_handled, heap)); } /*******************************************************************//** This function runs a purge batch. @return number of undo log pages handled in the batch */ static ulint trx_purge_attach_undo_recs( /*=======================*/ ulint n_purge_threads,/*!< in: number of purge threads */ trx_purge_t* purge_sys, /*!< in/out: purge instance */ purge_iter_t* limit, /*!< out: records read up to */ ulint batch_size) /*!< in: no. of pages to purge */ { que_thr_t* thr; ulint i = 0; ulint n_pages_handled = 0; ulint n_thrs = UT_LIST_GET_LEN(purge_sys->query->thrs); ut_a(n_purge_threads > 0); *limit = purge_sys->iter; /* Debug code to validate some pre-requisites and reset done flag. */ for (thr = UT_LIST_GET_FIRST(purge_sys->query->thrs); thr != NULL && i < n_purge_threads; thr = UT_LIST_GET_NEXT(thrs, thr), ++i) { purge_node_t* node; /* Get the purge node. */ node = (purge_node_t*) thr->child; ut_a(que_node_get_type(node) == QUE_NODE_PURGE); ut_a(node->undo_recs == NULL); ut_a(node->done); node->done = FALSE; } /* There should never be fewer nodes than threads, the inverse however is allowed because we only use purge threads as needed. */ ut_a(i == n_purge_threads); /* Fetch and parse the UNDO records. The UNDO records are added to a per purge node vector. */ thr = UT_LIST_GET_FIRST(purge_sys->query->thrs); ut_a(n_thrs > 0 && thr != NULL); ut_ad(trx_purge_check_limit()); i = 0; for (;;) { purge_node_t* node; trx_purge_rec_t* purge_rec; ut_a(!thr->is_active); /* Get the purge node. */ node = (purge_node_t*) thr->child; ut_a(que_node_get_type(node) == QUE_NODE_PURGE); purge_rec = static_cast( mem_heap_zalloc(node->heap, sizeof(*purge_rec))); /* Track the max {trx_id, undo_no} for truncating the UNDO logs once we have purged the records. */ if (purge_sys->iter.trx_no > limit->trx_no || (purge_sys->iter.trx_no == limit->trx_no && purge_sys->iter.undo_no >= limit->undo_no)) { *limit = purge_sys->iter; } /* Fetch the next record, and advance the purge_sys->iter. */ purge_rec->undo_rec = trx_purge_fetch_next_rec( &purge_rec->roll_ptr, &n_pages_handled, node->heap); if (purge_rec->undo_rec != NULL) { if (node->undo_recs == NULL) { node->undo_recs = ib_vector_create( ib_heap_allocator_create(node->heap), sizeof(trx_purge_rec_t), batch_size); } else { ut_a(!ib_vector_is_empty(node->undo_recs)); } ib_vector_push(node->undo_recs, purge_rec); if (n_pages_handled >= batch_size) { break; } } else { break; } thr = UT_LIST_GET_NEXT(thrs, thr); if (!(++i % n_purge_threads)) { thr = UT_LIST_GET_FIRST(purge_sys->query->thrs); } ut_a(thr != NULL); } ut_ad(trx_purge_check_limit()); return(n_pages_handled); } /*******************************************************************//** Calculate the DML delay required. @return delay in microseconds or ULINT_MAX */ static ulint trx_purge_dml_delay(void) /*=====================*/ { /* Determine how much data manipulation language (DML) statements need to be delayed in order to reduce the lagging of the purge thread. */ ulint delay = 0; /* in microseconds; default: no delay */ /* If purge lag is set (ie. > 0) then calculate the new DML delay. Note: we do a dirty read of the trx_sys_t data structure here, without holding trx_sys->mutex. */ if (srv_max_purge_lag > 0) { float ratio; ratio = float(trx_sys->rseg_history_len) / srv_max_purge_lag; if (ratio > 1.0) { /* If the history list length exceeds the srv_max_purge_lag, the data manipulation statements are delayed by at least 5000 microseconds. */ delay = (ulint) ((ratio - .5) * 10000); } if (delay > srv_max_purge_lag_delay) { delay = srv_max_purge_lag_delay; } MONITOR_SET(MONITOR_DML_PURGE_DELAY, delay); } return(delay); } /*******************************************************************//** Wait for pending purge jobs to complete. */ static void trx_purge_wait_for_workers_to_complete( /*===================================*/ trx_purge_t* purge_sys) /*!< in: purge instance */ { ulint n_submitted = purge_sys->n_submitted; #ifdef HAVE_ATOMIC_BUILTINS /* Ensure that the work queue empties out. */ while (!os_compare_and_swap_ulint( &purge_sys->n_completed, n_submitted, n_submitted)) { #else mutex_enter(&purge_sys->bh_mutex); while (purge_sys->n_completed < n_submitted) { #endif /* HAVE_ATOMIC_BUILTINS */ #ifndef HAVE_ATOMIC_BUILTINS mutex_exit(&purge_sys->bh_mutex); #endif /* !HAVE_ATOMIC_BUILTINS */ if (srv_get_task_queue_length() > 0) { srv_release_threads(SRV_WORKER, 1); } os_thread_yield(); #ifndef HAVE_ATOMIC_BUILTINS mutex_enter(&purge_sys->bh_mutex); #endif /* !HAVE_ATOMIC_BUILTINS */ } #ifndef HAVE_ATOMIC_BUILTINS mutex_exit(&purge_sys->bh_mutex); #endif /* !HAVE_ATOMIC_BUILTINS */ /* None of the worker threads should be doing any work. */ ut_a(purge_sys->n_submitted == purge_sys->n_completed); /* There should be no outstanding tasks as long as the worker threads are active. */ ut_a(srv_get_task_queue_length() == 0); } /******************************************************************//** Remove old historical changes from the rollback segments. */ static void trx_purge_truncate(void) /*====================*/ { ut_ad(trx_purge_check_limit()); if (purge_sys->limit.trx_no == 0) { trx_purge_truncate_history(&purge_sys->iter, purge_sys->view); } else { trx_purge_truncate_history(&purge_sys->limit, purge_sys->view); } } /*******************************************************************//** This function runs a purge batch. @return number of undo log pages handled in the batch */ UNIV_INTERN ulint trx_purge( /*======*/ ulint n_purge_threads, /*!< in: number of purge tasks to submit to the work queue */ ulint batch_size, /*!< in: the maximum number of records to purge in one batch */ bool truncate) /*!< in: truncate history if true */ { que_thr_t* thr = NULL; ulint n_pages_handled; ut_a(n_purge_threads > 0); srv_dml_needed_delay = trx_purge_dml_delay(); /* The number of tasks submitted should be completed. */ ut_a(purge_sys->n_submitted == purge_sys->n_completed); rw_lock_x_lock(&purge_sys->latch); purge_sys->view = NULL; mem_heap_empty(purge_sys->heap); purge_sys->view = read_view_purge_open(purge_sys->heap); rw_lock_x_unlock(&purge_sys->latch); #ifdef UNIV_DEBUG if (srv_purge_view_update_only_debug) { return(0); } #endif /* Fetch the UNDO recs that need to be purged. */ n_pages_handled = trx_purge_attach_undo_recs( n_purge_threads, purge_sys, &purge_sys->limit, batch_size); /* Do we do an asynchronous purge or not ? */ if (n_purge_threads > 1) { ulint i = 0; /* Submit the tasks to the work queue. */ for (i = 0; i < n_purge_threads - 1; ++i) { thr = que_fork_scheduler_round_robin( purge_sys->query, thr); ut_a(thr != NULL); srv_que_task_enqueue_low(thr); } thr = que_fork_scheduler_round_robin(purge_sys->query, thr); ut_a(thr != NULL); purge_sys->n_submitted += n_purge_threads - 1; goto run_synchronously; /* Do it synchronously. */ } else { thr = que_fork_scheduler_round_robin(purge_sys->query, NULL); ut_ad(thr); run_synchronously: ++purge_sys->n_submitted; que_run_threads(thr); os_atomic_inc_ulint( &purge_sys->bh_mutex, &purge_sys->n_completed, 1); if (n_purge_threads > 1) { trx_purge_wait_for_workers_to_complete(purge_sys); } } ut_a(purge_sys->n_submitted == purge_sys->n_completed); #ifdef UNIV_DEBUG rw_lock_x_lock(&purge_sys->latch); if (purge_sys->limit.trx_no == 0) { purge_sys->done = purge_sys->iter; } else { purge_sys->done = purge_sys->limit; } rw_lock_x_unlock(&purge_sys->latch); #endif /* UNIV_DEBUG */ if (truncate) { trx_purge_truncate(); } MONITOR_INC_VALUE(MONITOR_PURGE_INVOKED, 1); MONITOR_INC_VALUE(MONITOR_PURGE_N_PAGE_HANDLED, n_pages_handled); return(n_pages_handled); } /*******************************************************************//** Get the purge state. @return purge state. */ UNIV_INTERN purge_state_t trx_purge_state(void) /*=================*/ { purge_state_t state; rw_lock_x_lock(&purge_sys->latch); state = purge_sys->state; rw_lock_x_unlock(&purge_sys->latch); return(state); } /*******************************************************************//** Stop purge and wait for it to stop, move to PURGE_STATE_STOP. */ UNIV_INTERN void trx_purge_stop(void) /*================*/ { purge_state_t state; ib_int64_t sig_count = os_event_reset(purge_sys->event); ut_a(srv_n_purge_threads > 0); rw_lock_x_lock(&purge_sys->latch); ut_a(purge_sys->state != PURGE_STATE_INIT); ut_a(purge_sys->state != PURGE_STATE_EXIT); ut_a(purge_sys->state != PURGE_STATE_DISABLED); ++purge_sys->n_stop; state = purge_sys->state; if (state == PURGE_STATE_RUN) { ib_logf(IB_LOG_LEVEL_INFO, "Stopping purge"); /* We need to wakeup the purge thread in case it is suspended, so that it can acknowledge the state change. */ srv_purge_wakeup(); } purge_sys->state = PURGE_STATE_STOP; rw_lock_x_unlock(&purge_sys->latch); if (state != PURGE_STATE_STOP) { /* Wait for purge coordinator to signal that it is suspended. */ os_event_wait_low(purge_sys->event, sig_count); } else { bool once = true; rw_lock_x_lock(&purge_sys->latch); /* Wait for purge to signal that it has actually stopped. */ while (purge_sys->running) { if (once) { ib_logf(IB_LOG_LEVEL_INFO, "Waiting for purge to stop"); once = false; } rw_lock_x_unlock(&purge_sys->latch); os_thread_sleep(10000); rw_lock_x_lock(&purge_sys->latch); } rw_lock_x_unlock(&purge_sys->latch); } MONITOR_INC_VALUE(MONITOR_PURGE_STOP_COUNT, 1); } /*******************************************************************//** Resume purge, move to PURGE_STATE_RUN. */ UNIV_INTERN void trx_purge_run(void) /*===============*/ { rw_lock_x_lock(&purge_sys->latch); switch(purge_sys->state) { case PURGE_STATE_INIT: case PURGE_STATE_EXIT: case PURGE_STATE_DISABLED: ut_error; case PURGE_STATE_RUN: case PURGE_STATE_STOP: break; } if (purge_sys->n_stop > 0) { ut_a(purge_sys->state == PURGE_STATE_STOP); --purge_sys->n_stop; if (purge_sys->n_stop == 0) { ib_logf(IB_LOG_LEVEL_INFO, "Resuming purge"); purge_sys->state = PURGE_STATE_RUN; } MONITOR_INC_VALUE(MONITOR_PURGE_RESUME_COUNT, 1); } else { ut_a(purge_sys->state == PURGE_STATE_RUN); } rw_lock_x_unlock(&purge_sys->latch); srv_purge_wakeup(); }