#ident "Copyright (c) 2007 Tokutek Inc. All rights reserved." #include #include #include typedef void *OMTVALUE; #include "omt.h" #include "../newbrt/memory.h" #include "../newbrt/toku_assert.h" #include "../include/db.h" #include "../newbrt/brttypes.h" typedef u_int32_t node_idx; static const node_idx NODE_NULL = UINT32_MAX; typedef struct omt_node *OMT_NODE; struct omt_node { u_int32_t weight; /* Size of subtree rooted at this node (including this one). */ node_idx left; /* Index of left subtree. */ node_idx right; /* Index of right subtree. */ OMTVALUE value; /* The value stored in the node. */ }; struct omt { node_idx root; u_int32_t node_capacity; OMT_NODE nodes; node_idx free_idx; u_int32_t tmparray_size; node_idx* tmparray; OMTCURSOR associated; // the OMTs associated with this. }; struct omt_cursor { OMT omt; // The omt this cursor is associated with. NULL if not present. u_int32_t max_pathlen; //Max (root to leaf) path length; u_int32_t pathlen; //Length of current path node_idx *path; OMTCURSOR next,prev; // circular linked list of all OMTCURSORs associated with omt. }; //Initial max size of root-to-leaf path static const u_int32_t TOKU_OMTCURSOR_INITIAL_SIZE = 4; static int omt_create_internal(OMT *omtp, u_int32_t num_starting_nodes) { if (num_starting_nodes < 2) num_starting_nodes = 2; OMT MALLOC(result); if (result==NULL) return errno; result->root=NODE_NULL; result->node_capacity = num_starting_nodes*2; MALLOC_N(result->node_capacity, result->nodes); if (result->nodes==NULL) { toku_free(result); return errno; } result->tmparray_size = num_starting_nodes*2; MALLOC_N(result->tmparray_size, result->tmparray); if (result->tmparray==NULL) { toku_free(result->nodes); toku_free(result); return errno; } result->free_idx = 0; result->associated = NULL; *omtp = result; return 0; } int toku_omt_create (OMT *omtp) { return omt_create_internal(omtp, 2); } int toku_omt_cursor_create (OMTCURSOR *omtcp) { OMTCURSOR MALLOC(c); if (c==NULL) return errno; c->omt = NULL; c->next = c->prev = NULL; c->max_pathlen = TOKU_OMTCURSOR_INITIAL_SIZE; c->pathlen = 0; MALLOC_N(c->max_pathlen, c->path); if (c->path==NULL) { toku_free(c); return errno; } *omtcp = c; return 0; } void toku_omt_cursor_invalidate (OMTCURSOR c) { if (c==NULL || c->omt==NULL) return; if (c->next == c) { // It's the last one. c->omt->associated = NULL; } else { OMTCURSOR next = c->next; OMTCURSOR prev = c->prev; if (c->omt->associated == c) { c->omt->associated = next; } next->prev = prev; prev->next = next; } c->next = c->prev = NULL; c->omt = NULL; } void toku_omt_cursor_destroy (OMTCURSOR *p) { toku_omt_cursor_invalidate(*p); toku_free((*p)->path); toku_free(*p); *p = NULL; } static void invalidate_cursors (OMT omt) { OMTCURSOR assoced; while ((assoced = omt->associated)) { toku_omt_cursor_invalidate(assoced); } } static void associate (OMT omt, OMTCURSOR c) { if (c->omt==omt) return; toku_omt_cursor_invalidate(c); if (omt->associated==NULL) { c->prev = c; c->next = c; omt->associated = c; } else { c->prev = omt->associated->prev; c->next = omt->associated; omt->associated->prev->next = c; omt->associated->prev = c; } c->omt = omt; } void toku_omt_destroy(OMT *omtp) { OMT omt=*omtp; invalidate_cursors(omt); toku_free(omt->nodes); toku_free(omt->tmparray); toku_free(omt); *omtp=NULL; } static inline u_int32_t nweight(OMT omt, node_idx idx) { if (idx==NODE_NULL) return 0; else return (omt->nodes+idx)->weight; } u_int32_t toku_omt_size(OMT V) { return nweight(V, V->root); } static inline node_idx omt_node_malloc(OMT omt) { assert(omt->free_idx < omt->node_capacity); return omt->free_idx++; } static inline void omt_node_free(OMT omt, node_idx idx) { assert(idx < omt->node_capacity); } static inline void fill_array_with_subtree_values(OMT omt, OMTVALUE *array, node_idx tree_idx) { if (tree_idx==NODE_NULL) return; OMT_NODE tree = omt->nodes+tree_idx; fill_array_with_subtree_values(omt, array, tree->left); array[nweight(omt, tree->left)] = tree->value; fill_array_with_subtree_values(omt, array+nweight(omt, tree->left)+1, tree->right); } // Example: numvalues=4, halfway=2, left side is values of size 2 // right side is values+3 of size 1 // numvalues=3, halfway=1, left side is values of size 1 // right side is values+2 of size 1 // numvalues=2, halfway=1, left side is values of size 1 // right side is values+2 of size 0 // numvalues=1, halfway=0, left side is values of size 0 // right side is values of size 0. static inline void create_from_sorted_array_internal(OMT omt, node_idx *n_idxp, OMTVALUE *values, u_int32_t numvalues) { if (numvalues==0) { *n_idxp = NODE_NULL; } else { u_int32_t halfway = numvalues/2; node_idx newidx = omt_node_malloc(omt); OMT_NODE newnode = omt->nodes+newidx; newnode->weight = numvalues; newnode->value = values[halfway]; create_from_sorted_array_internal(omt, &newnode->left, values, halfway); create_from_sorted_array_internal(omt, &newnode->right, values+halfway+1, numvalues-(halfway+1)); *n_idxp = newidx; } } int toku_omt_create_from_sorted_array(OMT *omtp, OMTVALUE *values, u_int32_t numvalues) { OMT omt = NULL; int r; if ((r = omt_create_internal(&omt, numvalues))) return r; create_from_sorted_array_internal(omt, &omt->root, values, numvalues); *omtp=omt; return 0; } enum build_choice { MAYBE_REBUILD, JUST_RESIZE }; static inline int maybe_resize_and_rebuild(OMT omt, u_int32_t n, enum build_choice choice) { node_idx *new_tmparray = NULL; OMT_NODE new_nodes = NULL; OMTVALUE *tmp_values = NULL; int r = ENOSYS; u_int32_t new_size = n<=2 ? 4 : 2*n; if (omt->tmparray_sizetmparray_size/2 >= new_size)) { /* Malloc and free instead of realloc (saves the memcpy). */ MALLOC_N(new_size, new_tmparray); if (new_tmparray==NULL) { r = errno; goto cleanup; } } /* Rebuild/realloc the nodes array iff any of the following: * The array is smaller than the number of elements we want. * We are increasing the number of elements and there is no free space. * The array is too large. */ u_int32_t num_nodes = nweight(omt, omt->root); if ((omt->node_capacity/2 >= new_size) || (omt->free_idx>=omt->node_capacity && num_nodesnode_capacitytmparray); omt->tmparray = new_tmparray; omt->tmparray_size = new_size; } if (new_nodes) { /* Rebuild the tree in the new array, leftshifted, in preorder */ if (choice==MAYBE_REBUILD) { fill_array_with_subtree_values(omt, tmp_values, omt->root); } toku_free(omt->nodes); omt->nodes = new_nodes; omt->node_capacity = new_size; omt->free_idx = 0; /* Allocating from mempool starts over. */ omt->root = NODE_NULL; if (choice==MAYBE_REBUILD) { create_from_sorted_array_internal(omt, &omt->root, tmp_values, num_nodes); } } r = 0; cleanup: if (r!=0) { if (new_tmparray) toku_free(new_tmparray); if (new_nodes) toku_free(new_nodes); } if (tmp_values) toku_free(tmp_values); return r; } static inline void fill_array_with_subtree_idxs(OMT omt, node_idx *array, node_idx tree_idx) { if (tree_idx==NODE_NULL) return; OMT_NODE tree = omt->nodes+tree_idx; fill_array_with_subtree_idxs(omt, array, tree->left); array[nweight(omt, tree->left)] = tree_idx; fill_array_with_subtree_idxs(omt, array+nweight(omt, tree->left)+1, tree->right); } /* Reuses existing OMT_NODE structures (used for rebalancing). */ static inline void rebuild_subtree_from_idxs(OMT omt, node_idx *n_idxp, node_idx *idxs, u_int32_t numvalues) { if (numvalues==0) { *n_idxp=NODE_NULL; } else { u_int32_t halfway = numvalues/2; node_idx newidx = idxs[halfway]; OMT_NODE newnode = omt->nodes+newidx; newnode->weight = numvalues; // value is already in there. rebuild_subtree_from_idxs(omt, &newnode->left, idxs, halfway); rebuild_subtree_from_idxs(omt, &newnode->right, idxs+halfway+1, numvalues-(halfway+1)); *n_idxp = newidx; } } static inline void rebalance(OMT omt, node_idx *n_idxp) { node_idx idx = *n_idxp; OMT_NODE n = omt->nodes+idx; fill_array_with_subtree_idxs(omt, omt->tmparray, idx); rebuild_subtree_from_idxs(omt, n_idxp, omt->tmparray, n->weight); } static inline BOOL will_need_rebalance(OMT omt, node_idx n_idx, int leftmod, int rightmod) { if (n_idx==NODE_NULL) return FALSE; OMT_NODE n = omt->nodes+n_idx; // one of the 1's is for the root. // the other is to take ceil(n/2) u_int32_t weight_left = nweight(omt, n->left) + leftmod; u_int32_t weight_right = nweight(omt, n->right) + rightmod; return ((1+weight_left < (1+1+weight_right)/2) || (1+weight_right < (1+1+weight_left)/2)); } static inline void insert_internal(OMT omt, node_idx *n_idxp, OMTVALUE value, u_int32_t index, node_idx **rebalance_idx) { if (*n_idxp==NODE_NULL) { assert(index==0); node_idx newidx = omt_node_malloc(omt); OMT_NODE newnode = omt->nodes+newidx; newnode->weight = 1; newnode->left = NODE_NULL; newnode->right = NODE_NULL; newnode->value = value; *n_idxp = newidx; } else { node_idx idx = *n_idxp; OMT_NODE n = omt->nodes+idx; n->weight++; if (index <= nweight(omt, n->left)) { if (*rebalance_idx==NULL && will_need_rebalance(omt, idx, 1, 0)) { *rebalance_idx = n_idxp; } insert_internal(omt, &n->left, value, index, rebalance_idx); } else { if (*rebalance_idx==NULL && will_need_rebalance(omt, idx, 0, 1)) { *rebalance_idx = n_idxp; } u_int32_t sub_index = index-nweight(omt, n->left)-1; insert_internal(omt, &n->right, value, sub_index, rebalance_idx); } } } int toku_omt_insert_at(OMT omt, OMTVALUE value, u_int32_t index) { int r; invalidate_cursors(omt); if (index>nweight(omt, omt->root)) return EINVAL; if ((r=maybe_resize_and_rebuild(omt, 1+nweight(omt, omt->root), MAYBE_REBUILD))) return r; node_idx* rebalance_idx = NULL; insert_internal(omt, &omt->root, value, index, &rebalance_idx); if (rebalance_idx) rebalance(omt, rebalance_idx); return 0; } static inline void set_at_internal(OMT omt, node_idx n_idx, OMTVALUE v, u_int32_t index) { assert(n_idx!=NODE_NULL); OMT_NODE n = omt->nodes+n_idx; if (indexleft)) set_at_internal(omt, n->left, v, index); else if (index==nweight(omt, n->left)) { n->value = v; } else { set_at_internal(omt, n->right, v, index-nweight(omt, n->left)-1); } } int toku_omt_set_at (OMT omt, OMTVALUE value, u_int32_t index) { if (index>=nweight(omt, omt->root)) return EINVAL; set_at_internal(omt, omt->root, value, index); return 0; } static inline void delete_internal(OMT omt, node_idx *n_idxp, u_int32_t index, OMTVALUE *vp, node_idx **rebalance_idx) { assert(*n_idxp!=NODE_NULL); OMT_NODE n = omt->nodes+*n_idxp; if (index < nweight(omt, n->left)) { n->weight--; if (*rebalance_idx==NULL && will_need_rebalance(omt, *n_idxp, -1, 0)) { *rebalance_idx = n_idxp; } delete_internal(omt, &n->left, index, vp, rebalance_idx); } else if (index == nweight(omt, n->left)) { if (n->left==NODE_NULL) { u_int32_t idx = *n_idxp; *n_idxp = n->right; *vp = n->value; omt_node_free(omt, idx); } else if (n->right==NODE_NULL) { u_int32_t idx = *n_idxp; *n_idxp = n->left; *vp = n->value; omt_node_free(omt, idx); } else { OMTVALUE zv; // delete the successor of index, get the value, and store it here. if (*rebalance_idx==NULL && will_need_rebalance(omt, *n_idxp, 0, -1)) { *rebalance_idx = n_idxp; } delete_internal(omt, &n->right, 0, &zv, rebalance_idx); n->value = zv; n->weight--; } } else { n->weight--; if (*rebalance_idx==NULL && will_need_rebalance(omt, *n_idxp, 0, -1)) { *rebalance_idx = n_idxp; } delete_internal(omt, &n->right, index-nweight(omt, n->left)-1, vp, rebalance_idx); } } int toku_omt_delete_at(OMT omt, u_int32_t index) { OMTVALUE v; int r; invalidate_cursors(omt); if (index>=nweight(omt, omt->root)) return EINVAL; if ((r=maybe_resize_and_rebuild(omt, -1+nweight(omt, omt->root), MAYBE_REBUILD))) return r; node_idx* rebalance_idx = NULL; delete_internal(omt, &omt->root, index, &v, &rebalance_idx); if (rebalance_idx) rebalance(omt, rebalance_idx); return 0; } static inline void omtcursor_stack_pop(OMTCURSOR c) { assert(c->pathlen); c->pathlen--; } static inline int omtcursor_stack_push(OMTCURSOR c, node_idx idx) { if (c->max_pathlen-1<=c->pathlen) { //Increase max_pathlen u_int32_t new_max = c->max_pathlen*2; node_idx *tmp_path = toku_realloc(c->path, new_max*sizeof(*c->path)); if (tmp_path==NULL) return errno; c->path = tmp_path; c->max_pathlen = new_max; } c->path[c->pathlen++] = idx; return 0; } static inline node_idx omtcursor_stack_peek(OMTCURSOR c) { return c->path[c->pathlen-1]; } static inline int fetch_internal(OMT V, node_idx idx, u_int32_t i, OMTVALUE *v, OMTCURSOR c) { OMT_NODE n = V->nodes+idx; int r; if (c!=NULL && (r=omtcursor_stack_push(c, idx))) return r; if (i < nweight(V, n->left)) { return fetch_internal(V, n->left, i, v, c); } else if (i == nweight(V, n->left)) { *v = n->value; return 0; } else { return fetch_internal(V, n->right, i-nweight(V, n->left)-1, v, c); } } int toku_omt_fetch(OMT V, u_int32_t i, OMTVALUE *v, OMTCURSOR c) { if (i>=nweight(V, V->root)) return EINVAL; if (c) associate(V,c); int r = fetch_internal(V, V->root, i, v, c); if (c && r!=0) { toku_omt_cursor_invalidate(c); } return r; } static inline int iterate_internal(OMT omt, u_int32_t left, u_int32_t right, node_idx n_idx, u_int32_t idx, int (*f)(OMTVALUE, u_int32_t, void*), void*v) { int r; if (n_idx==NODE_NULL) return 0; OMT_NODE n = omt->nodes+n_idx; u_int32_t idx_root = idx+nweight(omt,n->left); if (left< idx_root && (r=iterate_internal(omt, left, right, n->left, idx, f, v))) return r; if (left<=idx_root && idx_rootvalue, idx_root, v))) return r; if (idx_root+1right, idx_root+1, f, v); return 0; } int toku_omt_iterate(OMT omt, int (*f)(OMTVALUE, u_int32_t, void*), void*v) { return iterate_internal(omt, 0, nweight(omt, omt->root), omt->root, 0, f, v); } int toku_omt_iterate_on_range(OMT omt, u_int32_t left, u_int32_t right, int (*f)(OMTVALUE, u_int32_t, void*), void*v) { return iterate_internal(omt, left, right, omt->root, 0, f, v); } int toku_omt_insert(OMT omt, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, u_int32_t *index) { int r; u_int32_t idx; invalidate_cursors(omt); r = toku_omt_find_zero(omt, h, v, NULL, &idx, NULL); if (r==0) { if (index) *index = idx; return DB_KEYEXIST; } if (r!=DB_NOTFOUND) return r; if ((r = toku_omt_insert_at(omt, value, idx))) return r; if (index) *index = idx; return 0; } static inline int find_internal_zero(OMT omt, node_idx n_idx, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, u_int32_t *index, OMTCURSOR c) // requires: index!=NULL { int r; if (n_idx==NODE_NULL) { *index = 0; return DB_NOTFOUND; } if (c!=NULL && (r=omtcursor_stack_push(c, n_idx))) return r; OMT_NODE n = omt->nodes+n_idx; int hv = h(n->value, extra); if (hv<0) { r = find_internal_zero(omt, n->right, h, extra, value, index, c); *index += nweight(omt, n->left)+1; return r; } else if (hv>0) { return find_internal_zero(omt, n->left, h, extra, value, index, c); } else { r = find_internal_zero(omt, n->left, h, extra, value, index, c); if (r==DB_NOTFOUND) { *index = nweight(omt, n->left); if (value) *value = n->value; if (c!=NULL) { //Truncate the saved cursor path at n_idx. while (omtcursor_stack_peek(c)!=n_idx) omtcursor_stack_pop(c); } r = 0; } return r; } } int toku_omt_find_zero(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, u_int32_t *index, OMTCURSOR c) { //Index can be modified before a cursor error, so we must use a temp. u_int32_t tmp_index; if (c) associate(V,c); int r = find_internal_zero(V, V->root, h, extra, value, &tmp_index, c); if (c && r!=0) { toku_omt_cursor_invalidate(c); } if ((r==0 || r==DB_NOTFOUND) && index!=NULL) *index = tmp_index; return r; } // If direction <0 then find the largest i such that h(V_i,extra)<0. static inline int find_internal_minus(OMT omt, node_idx n_idx, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, u_int32_t *index, OMTCURSOR c) // requires: index!=NULL { int r; if (n_idx==NODE_NULL) return DB_NOTFOUND; if (c!=NULL && (r=omtcursor_stack_push(c, n_idx))) return r; OMT_NODE n = omt->nodes+n_idx; int hv = h(n->value, extra); if (hv<0) { r = find_internal_minus(omt, n->right, h, extra, value, index, c); if (r==0) *index += nweight(omt, n->left)+1; else if (r==DB_NOTFOUND) { *index = nweight(omt, n->left); if (value!=NULL) *value = n->value; if (c!=NULL) { //Truncate the saved cursor path at n_idx. while (omtcursor_stack_peek(c)!=n_idx) omtcursor_stack_pop(c); } r = 0; } return r; } else { return find_internal_minus(omt, n->left, h, extra, value, index, c); } } // If direction >0 then find the smallest i such that h(V_i,extra)>0. static inline int find_internal_plus(OMT omt, node_idx n_idx, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, u_int32_t *index, OMTCURSOR c) // requires: index!=NULL { int r; if (n_idx==NODE_NULL) return DB_NOTFOUND; if (c!=NULL && (r=omtcursor_stack_push(c, n_idx))) return r; OMT_NODE n = omt->nodes+n_idx; int hv = h(n->value, extra); if (hv>0) { r = find_internal_plus(omt, n->left, h, extra, value, index, c); if (r==DB_NOTFOUND) { *index = nweight(omt, n->left); if (value!=NULL) *value = n->value; if (c!=NULL) { //Truncate the saved cursor path at n_idx. while (omtcursor_stack_peek(c)!=n_idx) omtcursor_stack_pop(c); } r = 0; } return r; } else { r = find_internal_plus(omt, n->right, h, extra, value, index, c); if (r==0) *index += nweight(omt, n->left)+1; return r; } } int toku_omt_find(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, int direction, OMTVALUE *value, u_int32_t *index, OMTCURSOR c) { u_int32_t tmp_index; int r; if (index==NULL) index=&tmp_index; if (c) associate(V,c); if (direction==0) { abort(); } else if (direction<0) { r = find_internal_minus(V, V->root, h, extra, value, index, c); } else { r = find_internal_plus( V, V->root, h, extra, value, index, c); } if (c && r!=0) { toku_omt_cursor_invalidate(c); } return r; } int toku_omt_split_at(OMT omt, OMT *newomtp, u_int32_t index) { int r = ENOSYS; OMT newomt = NULL; OMTVALUE *tmp_values = NULL; invalidate_cursors(omt); if (index>nweight(omt, omt->root)) { r = EINVAL; goto cleanup; } u_int32_t newsize = nweight(omt, omt->root)-index; if ((r = omt_create_internal(&newomt, newsize))) goto cleanup; MALLOC_N(nweight(omt, omt->root), tmp_values); if (tmp_values==NULL) { r = errno; goto cleanup; } fill_array_with_subtree_values(omt, tmp_values, omt->root); // Modify omt's array at the last possible moment, since after this nothing can fail. if ((r = maybe_resize_and_rebuild(omt, index, TRUE))) goto cleanup; create_from_sorted_array_internal(omt, &omt->root, tmp_values, index); create_from_sorted_array_internal(newomt, &newomt->root, tmp_values+index, newsize); *newomtp = newomt; r = 0; cleanup: if (r!=0) { if (newomt) toku_omt_destroy(&newomt); } if (tmp_values) toku_free(tmp_values); return r; } int toku_omt_merge(OMT leftomt, OMT rightomt, OMT *newomtp) { int r = ENOSYS; OMT newomt = NULL; OMTVALUE *tmp_values = NULL; invalidate_cursors(leftomt); invalidate_cursors(rightomt); u_int32_t newsize = toku_omt_size(leftomt)+toku_omt_size(rightomt); if ((r = omt_create_internal(&newomt, newsize))) goto cleanup; MALLOC_N(newsize, tmp_values); if (tmp_values==NULL) { r = errno; goto cleanup; } fill_array_with_subtree_values(leftomt, tmp_values, leftomt->root); fill_array_with_subtree_values(rightomt, tmp_values+toku_omt_size(leftomt), rightomt->root); create_from_sorted_array_internal(newomt, &newomt->root, tmp_values, newsize); toku_omt_destroy(&leftomt); toku_omt_destroy(&rightomt); *newomtp = newomt; r = 0; cleanup: if (r!=0) { if (newomt) toku_omt_destroy(&newomt); } if (tmp_values) toku_free(tmp_values); return r; } void toku_omt_clear(OMT omt) { invalidate_cursors(omt); omt->free_idx = 0; omt->root = NODE_NULL; } unsigned long toku_omt_memory_size (OMT omt) { return sizeof(*omt)+omt->node_capacity*sizeof(omt->nodes[0]) + omt->tmparray_size*sizeof(omt->tmparray[0]); } int toku_omt_cursor_is_valid (OMTCURSOR c) { return c->omt!=NULL; } static inline void omtcursor_current_internal(OMTCURSOR c, OMTVALUE *v) { *v = c->omt->nodes[omtcursor_stack_peek(c)].value; } static inline int omtcursor_next_internal(OMTCURSOR c) { OMT_NODE current = c->omt->nodes+omtcursor_stack_peek(c); if (current->right!=NODE_NULL) { //Enter into subtree if (omtcursor_stack_push(c, current->right)) return EINVAL; current = c->omt->nodes+current->right; while (current->left!=NODE_NULL) { if (omtcursor_stack_push(c, current->left)) return EINVAL; current = c->omt->nodes+current->left; } return 0; } else { //Pop the stack till we remove a left child. node_idx parent_idx = omtcursor_stack_peek(c); node_idx child_idx; while (c->pathlen>=2) { child_idx = parent_idx; omtcursor_stack_pop(c); parent_idx = omtcursor_stack_peek(c); if (c->omt->nodes[parent_idx].left==child_idx) return 0; } return EINVAL; } } int toku_omt_cursor_next (OMTCURSOR c, OMTVALUE *v) { if (c->omt == NULL) return EINVAL; int r = omtcursor_next_internal(c); if (r!=0) toku_omt_cursor_invalidate(c); else omtcursor_current_internal(c, v); return r; } static inline int omtcursor_prev_internal(OMTCURSOR c) { OMT_NODE current = c->omt->nodes+omtcursor_stack_peek(c); if (current->left!=NODE_NULL) { //Enter into subtree if (omtcursor_stack_push(c, current->left)) return EINVAL; current = c->omt->nodes+current->left; while (current->right!=NODE_NULL) { if (omtcursor_stack_push(c, current->right)) return EINVAL; current = c->omt->nodes+current->right; } return 0; } else { //Pop the stack till we remove a right child. node_idx parent_idx = omtcursor_stack_peek(c); node_idx child_idx; while (c->pathlen>=2) { child_idx = parent_idx; omtcursor_stack_pop(c); parent_idx = omtcursor_stack_peek(c); if (c->omt->nodes[parent_idx].right==child_idx) return 0; } return EINVAL; } } int toku_omt_cursor_prev (OMTCURSOR c, OMTVALUE *v) { if (c->omt == NULL) return EINVAL; int r = omtcursor_prev_internal(c); if (r!=0) toku_omt_cursor_invalidate(c); else omtcursor_current_internal(c, v); return r; } int toku_omt_cursor_current (OMTCURSOR c, OMTVALUE *v) { if (c->omt == NULL) return EINVAL; omtcursor_current_internal(c, v); return 0; }