/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* TODO: Fix that MAYBE_KEY are stored in the tree so that we can detect use of full hash keys for queries like: select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205); */ /* Classes in this file are used in the following way: 1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects is created. #of rows in table and index statistics are ignored at this step. 2. Created SEL_TREE and index stats data are used to construct a TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read plans may be created. 3. The least expensive table read plan is used to create a tree of QUICK_SELECT_I-derived objects which are later used for row retrieval. QUICK_RANGEs are also created in this step. */ #ifdef __GNUC__ #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include #include #include "sql_select.h" #ifndef EXTRA_DEBUG #define test_rb_tree(A,B) {} #define test_use_count(A) {} #endif static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag); static char is_null_string[2]= {1,0}; class SEL_ARG :public Sql_alloc { public: uint8 min_flag,max_flag,maybe_flag; uint8 part; // Which key part uint8 maybe_null; uint16 elements; // Elements in tree ulong use_count; // use of this sub_tree Field *field; char *min_value,*max_value; // Pointer to range SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part; enum leaf_color { BLACK,RED } color; enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type; SEL_ARG() {} SEL_ARG(SEL_ARG &); SEL_ARG(Field *,const char *,const char *); SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value, uint8 min_flag, uint8 max_flag, uint8 maybe_flag); SEL_ARG(enum Type type_arg) :elements(1),use_count(1),left(0),next_key_part(0),color(BLACK), type(type_arg) {} inline bool is_same(SEL_ARG *arg) { if (type != arg->type || part != arg->part) return 0; if (type != KEY_RANGE) return 1; return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0; } inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; } inline void maybe_smaller() { maybe_flag=1; } inline int cmp_min_to_min(SEL_ARG* arg) { return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag); } inline int cmp_min_to_max(SEL_ARG* arg) { return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag); } inline int cmp_max_to_max(SEL_ARG* arg) { return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag); } inline int cmp_max_to_min(SEL_ARG* arg) { return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag); } SEL_ARG *clone_and(SEL_ARG* arg) { // Get overlapping range char *new_min,*new_max; uint8 flag_min,flag_max; if (cmp_min_to_min(arg) >= 0) { new_min=min_value; flag_min=min_flag; } else { new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */ } if (cmp_max_to_max(arg) <= 0) { new_max=max_value; flag_max=max_flag; } else { new_max=arg->max_value; flag_max=arg->max_flag; } return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max, test(maybe_flag && arg->maybe_flag)); } SEL_ARG *clone_first(SEL_ARG *arg) { // min <= X < arg->min return new SEL_ARG(field,part, min_value, arg->min_value, min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX, maybe_flag | arg->maybe_flag); } SEL_ARG *clone_last(SEL_ARG *arg) { // min <= X <= key_max return new SEL_ARG(field, part, min_value, arg->max_value, min_flag, arg->max_flag, maybe_flag | arg->maybe_flag); } SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next); bool copy_min(SEL_ARG* arg) { // Get overlapping range if (cmp_min_to_min(arg) > 0) { min_value=arg->min_value; min_flag=arg->min_flag; if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) == (NO_MAX_RANGE | NO_MIN_RANGE)) return 1; // Full range } maybe_flag|=arg->maybe_flag; return 0; } bool copy_max(SEL_ARG* arg) { // Get overlapping range if (cmp_max_to_max(arg) <= 0) { max_value=arg->max_value; max_flag=arg->max_flag; if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) == (NO_MAX_RANGE | NO_MIN_RANGE)) return 1; // Full range } maybe_flag|=arg->maybe_flag; return 0; } void copy_min_to_min(SEL_ARG *arg) { min_value=arg->min_value; min_flag=arg->min_flag; } void copy_min_to_max(SEL_ARG *arg) { max_value=arg->min_value; max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX; } void copy_max_to_min(SEL_ARG *arg) { min_value=arg->max_value; min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN; } void store_min(uint length,char **min_key,uint min_key_flag) { if ((min_flag & GEOM_FLAG) || (!(min_flag & NO_MIN_RANGE) && !(min_key_flag & (NO_MIN_RANGE | NEAR_MIN)))) { if (maybe_null && *min_value) { **min_key=1; bzero(*min_key+1,length-1); } else memcpy(*min_key,min_value,length); (*min_key)+= length; } } void store(uint length,char **min_key,uint min_key_flag, char **max_key, uint max_key_flag) { store_min(length, min_key, min_key_flag); if (!(max_flag & NO_MAX_RANGE) && !(max_key_flag & (NO_MAX_RANGE | NEAR_MAX))) { if (maybe_null && *max_value) { **max_key=1; bzero(*max_key+1,length-1); } else memcpy(*max_key,max_value,length); (*max_key)+= length; } } void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag) { SEL_ARG *key_tree= first(); key_tree->store(key[key_tree->part].store_length, range_key,*range_key_flag,range_key,NO_MAX_RANGE); *range_key_flag|= key_tree->min_flag; if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && !(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) key_tree->next_key_part->store_min_key(key,range_key, range_key_flag); } void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag) { SEL_ARG *key_tree= last(); key_tree->store(key[key_tree->part].store_length, range_key, NO_MIN_RANGE, range_key,*range_key_flag); (*range_key_flag)|= key_tree->max_flag; if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && !(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) key_tree->next_key_part->store_max_key(key,range_key, range_key_flag); } SEL_ARG *insert(SEL_ARG *key); SEL_ARG *tree_delete(SEL_ARG *key); SEL_ARG *find_range(SEL_ARG *key); SEL_ARG *rb_insert(SEL_ARG *leaf); friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par); #ifdef EXTRA_DEBUG friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent); void test_use_count(SEL_ARG *root); #endif SEL_ARG *first(); SEL_ARG *last(); void make_root(); inline bool simple_key() { return !next_key_part && elements == 1; } void increment_use_count(long count) { if (next_key_part) { next_key_part->use_count+=count; count*= (next_key_part->use_count-count); for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next) if (pos->next_key_part) pos->increment_use_count(count); } } void free_tree() { for (SEL_ARG *pos=first(); pos ; pos=pos->next) if (pos->next_key_part) { pos->next_key_part->use_count--; pos->next_key_part->free_tree(); } } inline SEL_ARG **parent_ptr() { return parent->left == this ? &parent->left : &parent->right; } SEL_ARG *clone_tree(); }; class SEL_IMERGE; class SEL_TREE :public Sql_alloc { public: enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type; SEL_TREE(enum Type type_arg) :type(type_arg) {} SEL_TREE() :type(KEY) { keys_map.clear_all(); bzero((char*) keys,sizeof(keys)); } SEL_ARG *keys[MAX_KEY]; key_map keys_map; /* bitmask of non-NULL elements in keys */ /* Possible ways to read rows using index_merge. The list is non-empty only if type==KEY. Currently can be non empty only if keys_map.is_clear_all(). */ List merges; /* The members below are filled/used only after get_mm_tree is done */ key_map ror_scans_map; /* bitmask of ROR scan-able elements in keys */ uint n_ror_scans; /* number of set bits in ror_scans_map */ struct st_ror_scan_info **ror_scans; /* list of ROR key scans */ struct st_ror_scan_info **ror_scans_end; /* last ROR scan */ /* Note that #records for each key scan is stored in table->quick_rows */ }; typedef struct st_qsel_param { THD *thd; TABLE *table; KEY_PART *key_parts,*key_parts_end; KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */ MEM_ROOT *mem_root; table_map prev_tables,read_tables,current_table; uint baseflag, max_key_part, range_count; uint keys; /* number of keys used in the query */ /* used_key_no -> table_key_no translation table */ uint real_keynr[MAX_KEY]; char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH], max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; bool quick; // Don't calulate possible keys COND *cond; uint fields_bitmap_size; MY_BITMAP needed_fields; /* bitmask of fields needed by the query */ key_map *needed_reg; /* ptr to SQL_SELECT::needed_reg */ uint *imerge_cost_buff; /* buffer for index_merge cost estimates */ uint imerge_cost_buff_size; /* size of the buffer */ /* TRUE if last checked tree->key can be used for ROR-scan */ bool is_ror_scan; } PARAM; class TABLE_READ_PLAN; class TRP_RANGE; class TRP_ROR_INTERSECT; class TRP_ROR_UNION; class TRP_ROR_INDEX_MERGE; struct st_ror_scan_info; static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field, Item_func::Functype type,Item *value, Item_result cmp_type); static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field, KEY_PART *key_part, Item_func::Functype type,Item *value); static SEL_TREE *get_mm_tree(PARAM *param,COND *cond); static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts); static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree); static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree, char *min_key,uint min_key_flag, char *max_key, uint max_key_flag); QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index, SEL_ARG *key_tree, MEM_ROOT *alloc = NULL); static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree, bool index_read_must_be_used, double read_time); static TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree, double read_time, bool *are_all_covering); static TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param, SEL_TREE *tree, double read_time); static TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge, double read_time); static int get_index_merge_params(PARAM *param, key_map& needed_reg, SEL_IMERGE *imerge, double *read_time, ha_rows* imerge_rows); inline double get_index_only_read_time(const PARAM* param, ha_rows records, int keynr); #ifndef DBUG_OFF static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map, const char *msg); static void print_ror_scans_arr(TABLE *table, const char *msg, struct st_ror_scan_info **start, struct st_ror_scan_info **end); static void print_rowid(byte* val, int len); static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg); #endif static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2); static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2); static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2); static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2); static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag); static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1); bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key, SEL_ARG *key_tree,char *min_key,uint min_key_flag, char *max_key,uint max_key_flag); static bool eq_tree(SEL_ARG* a,SEL_ARG *b); static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE); static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length); bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param); /* SEL_IMERGE is a list of possible ways to do index merge, i.e. it is a condition in the following form: (t_1||t_2||...||t_N) && (next) where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair (t_i,t_j) contains SEL_ARGS for the same index. SEL_TREE contained in SEL_IMERGE always has merges=NULL. This class relies on memory manager to do the cleanup. */ class SEL_IMERGE : public Sql_alloc { enum { PREALLOCED_TREES= 10}; public: SEL_TREE *trees_prealloced[PREALLOCED_TREES]; SEL_TREE **trees; /* trees used to do index_merge */ SEL_TREE **trees_next; /* last of these trees */ SEL_TREE **trees_end; /* end of allocated space */ SEL_ARG ***best_keys; /* best keys to read in SEL_TREEs */ SEL_IMERGE() : trees(&trees_prealloced[0]), trees_next(trees), trees_end(trees + PREALLOCED_TREES) {} int or_sel_tree(PARAM *param, SEL_TREE *tree); int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree); int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge); }; /* Add SEL_TREE to this index_merge without any checks, NOTES This function implements the following: (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs RETURN 0 - OK -1 - Out of memory. */ int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree) { if (trees_next == trees_end) { const int realloc_ratio= 2; /* Double size for next round */ uint old_elements= (trees_end - trees); uint old_size= sizeof(SEL_TREE**) * old_elements; uint new_size= old_size * realloc_ratio; SEL_TREE **new_trees; if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size))) return -1; memcpy(new_trees, trees, old_size); trees= new_trees; trees_next= trees + old_elements; trees_end= trees + old_elements * realloc_ratio; } *(trees_next++)= tree; return 0; } /* Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree, combining new_tree with one of the trees in this SEL_IMERGE if they both have SEL_ARGs for the same key. SYNOPSIS or_sel_tree_with_checks() param PARAM from SQL_SELECT::test_quick_select new_tree SEL_TREE with type KEY or KEY_SMALLER. NOTES This does the following: (t_1||...||t_k)||new_tree = either = (t_1||...||t_k||new_tree) or = (t_1||....||(t_j|| new_tree)||...||t_k), where t_i, y are SEL_TREEs. new_tree is combined with the first t_j it has a SEL_ARG on common key with. As a consequence of this, choice of keys to do index_merge read may depend on the order of conditions in WHERE part of the query. RETURN 0 OK 1 One of the trees was combined with new_tree to SEL_TREE::ALWAYS, and (*this) should be discarded. -1 An error occurred. */ int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree) { for (SEL_TREE** tree = trees; tree != trees_next; tree++) { if (sel_trees_can_be_ored(*tree, new_tree, param)) { *tree = tree_or(param, *tree, new_tree); if (!*tree) return 1; if (((*tree)->type == SEL_TREE::MAYBE) || ((*tree)->type == SEL_TREE::ALWAYS)) return 1; /* SEL_TREE::IMPOSSIBLE is impossible here */ return 0; } } /* New tree cannot be combined with any of existing trees. */ return or_sel_tree(param, new_tree); } /* Perform OR operation on this index_merge and supplied index_merge list. RETURN 0 - OK 1 - One of conditions in result is always TRUE and this SEL_IMERGE should be discarded. -1 - An error occurred */ int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge) { for (SEL_TREE** tree= imerge->trees; tree != imerge->trees_next; tree++) { if (or_sel_tree_with_checks(param, *tree)) return 1; } return 0; } /* Perform AND operation on two index_merge lists and store result in *im1. */ inline void imerge_list_and_list(List *im1, List *im2) { im1->concat(im2); } /* Perform OR operation on 2 index_merge lists, storing result in first list. NOTES The following conversion is implemented: (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) => => (a_1||b_1). i.e. all conjuncts except the first one are currently dropped. This is done to avoid producing N*K ways to do index_merge. If (a_1||b_1) produce a condition that is always TRUE, NULL is returned and index_merge is discarded (while it is actually possible to try harder). As a consequence of this, choice of keys to do index_merge read may depend on the order of conditions in WHERE part of the query. RETURN 0 OK, result is stored in *im1 other Error, both passed lists are unusable */ int imerge_list_or_list(PARAM *param, List *im1, List *im2) { SEL_IMERGE *imerge= im1->head(); im1->empty(); im1->push_back(imerge); return imerge->or_sel_imerge_with_checks(param, im2->head()); } /* Perform OR operation on index_merge list and key tree. RETURN 0 OK, result is stored in *im1. other Error */ int imerge_list_or_tree(PARAM *param, List *im1, SEL_TREE *tree) { SEL_IMERGE *imerge; List_iterator it(*im1); while((imerge= it++)) { if (imerge->or_sel_tree_with_checks(param, tree)) it.remove(); } return im1->is_empty(); } /*************************************************************************** ** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT ***************************************************************************/ /* make a select from mysql info Error is set as following: 0 = ok 1 = Got some error (out of memory?) */ SQL_SELECT *make_select(TABLE *head, table_map const_tables, table_map read_tables, COND *conds, int *error) { SQL_SELECT *select; DBUG_ENTER("make_select"); *error=0; if (!conds) DBUG_RETURN(0); if (!(select= new SQL_SELECT)) { *error= 1; // out of memory DBUG_RETURN(0); /* purecov: inspected */ } select->read_tables=read_tables; select->const_tables=const_tables; select->head=head; select->cond=conds; if (head->sort.io_cache) { select->file= *head->sort.io_cache; select->records=(ha_rows) (select->file.end_of_file/ head->file->ref_length); my_free((gptr) (head->sort.io_cache),MYF(0)); head->sort.io_cache=0; } DBUG_RETURN(select); } SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0) { quick_keys.clear_all(); needed_reg.clear_all(); my_b_clear(&file); } void SQL_SELECT::cleanup() { delete quick; quick= 0; if (free_cond) { free_cond=0; delete cond; cond= 0; } close_cached_file(&file); } SQL_SELECT::~SQL_SELECT() { cleanup(); } #undef index // Fix for Unixware 7 QUICK_SELECT_I::QUICK_SELECT_I() :max_used_key_length(0), used_key_parts(0) {} QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr, bool no_alloc, MEM_ROOT *parent_alloc) :dont_free(0),error(0),free_file(0),cur_range(NULL),range(0) { index= key_nr; head= table; key_part_info= head->key_info[index].key_part; my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16); if (!no_alloc && !parent_alloc) { // Allocates everything through the internal memroot init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); my_pthread_setspecific_ptr(THR_MALLOC,&alloc); } else bzero((char*) &alloc,sizeof(alloc)); file= head->file; record= head->record[0]; } int QUICK_RANGE_SELECT::init() { DBUG_ENTER("QUICK_RANGE_SELECT::init"); if (file->inited == handler::NONE) DBUG_RETURN(error= file->ha_index_init(index)); error= 0; DBUG_RETURN(0); } void QUICK_RANGE_SELECT::range_end() { if (file->inited != handler::NONE) file->ha_index_end(); } QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT() { DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT"); if (!dont_free) { /* file is NULL for CPK scan on covering ROR-intersection */ if (file) { range_end(); file->extra(HA_EXTRA_NO_KEYREAD); if (free_file) { DBUG_PRINT("info", ("Freeing separate handler %p (free=%d)", file, free_file)); file->reset(); file->close(); } } delete_dynamic(&ranges); /* ranges are allocated in alloc */ free_root(&alloc,MYF(0)); } DBUG_VOID_RETURN; } QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param, TABLE *table) :cur_quick_it(quick_selects),pk_quick_select(NULL),unique(NULL), thd(thd_param) { DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT"); index= MAX_KEY; head= table; bzero(&read_record, sizeof(read_record)); init_sql_alloc(&alloc,1024,0); DBUG_VOID_RETURN; } int QUICK_INDEX_MERGE_SELECT::init() { cur_quick_it.rewind(); cur_quick_select= cur_quick_it++; return 0; } int QUICK_INDEX_MERGE_SELECT::reset() { int result; DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset"); result= cur_quick_select->reset() || prepare_unique(); DBUG_RETURN(result); } bool QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range) { /* Save quick_select that does scan on clustered primary key as it will be processed separately. */ if (head->file->primary_key_is_clustered() && quick_sel_range->index == head->primary_key) pk_quick_select= quick_sel_range; else return quick_selects.push_back(quick_sel_range); return 0; } QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT() { DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT"); delete unique; quick_selects.delete_elements(); delete pk_quick_select; free_root(&alloc,MYF(0)); DBUG_VOID_RETURN; } QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param, TABLE *table, bool retrieve_full_rows, MEM_ROOT *parent_alloc) : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows) { index= MAX_KEY; head= table; record= head->record[0]; if (!parent_alloc) init_sql_alloc(&alloc,1024,0); else bzero(&alloc, sizeof(MEM_ROOT)); last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc, head->file->ref_length); } /* Do post-constructor initialization. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::init() RETURN 0 OK other Error code */ int QUICK_ROR_INTERSECT_SELECT::init() { /* Check if last_rowid was successfully allocated in ctor */ return !last_rowid; } /* Initialize this quick select to be a ROR-merged scan. SYNOPSIS QUICK_RANGE_SELECT::init_ror_merged_scan() reuse_handler If TRUE, use head->file, otherwise create a separate handler object NOTES This function creates and prepares for subsequent use a separate handler object if it can't reuse head->file. The reason for this is that during ROR-merge several key scans are performed simultaneously, and a single handler is only capable of preserving context of a single key scan. In ROR-merge the quick select doing merge does full records retrieval, merged quick selects read only keys. RETURN 0 ROR child scan initialized, ok to use. 1 error */ int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler) { handler *save_file= file; DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan"); if (reuse_handler) { DBUG_PRINT("info", ("Reusing handler %p", file)); if (file->extra(HA_EXTRA_KEYREAD) || file->extra(HA_EXTRA_RETRIEVE_ALL_COLS) | init() || reset()) { DBUG_RETURN(1); } DBUG_RETURN(0); } /* Create a separate handler object for this quick select */ if (free_file) { /* already have own 'handler' object. */ DBUG_RETURN(0); } if (!(file= get_new_handler(head, head->db_type))) goto failure; DBUG_PRINT("info", ("Allocated new handler %p", file)); if (file->ha_open(head->path, head->db_stat, HA_OPEN_IGNORE_IF_LOCKED)) { /* Caller will free the memory */ goto failure; } if (file->extra(HA_EXTRA_KEYREAD) || file->extra(HA_EXTRA_RETRIEVE_ALL_COLS) || init() || reset()) { file->close(); goto failure; } free_file= TRUE; last_rowid= file->ref; DBUG_RETURN(0); failure: file= save_file; DBUG_RETURN(1); } /* Initialize this quick select to be a part of a ROR-merged scan. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan() reuse_handler If TRUE, use head->file, otherwise create separate handler object. RETURN 0 OK other error code */ int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler) { List_iterator_fast quick_it(quick_selects); QUICK_RANGE_SELECT* quick; DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan"); /* Initialize all merged "children" quick selects */ DBUG_ASSERT(!(need_to_fetch_row && !reuse_handler)); if (!need_to_fetch_row && reuse_handler) { quick= quick_it++; /* There is no use of this->file. Use it for the first of merged range selects. */ if (quick->init_ror_merged_scan(TRUE)) DBUG_RETURN(1); quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS); } while((quick= quick_it++)) { if (quick->init_ror_merged_scan(FALSE)) DBUG_RETURN(1); quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS); /* All merged scans share the same record buffer in intersection. */ quick->record= head->record[0]; } if (need_to_fetch_row && head->file->ha_rnd_init(1)) { DBUG_PRINT("error", ("ROR index_merge rnd_init call failed")); DBUG_RETURN(1); } DBUG_RETURN(0); } /* Initialize quick select for row retrieval. SYNOPSIS reset() RETURN 0 OK other Error code */ int QUICK_ROR_INTERSECT_SELECT::reset() { DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset"); DBUG_RETURN(init_ror_merged_scan(TRUE)); } /* Add a merged quick select to this ROR-intersection quick select. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::push_quick_back() quick Quick select to be added. The quick select must return rows in rowid order. NOTES This call can only be made before init() is called. RETURN FALSE OK TRUE Out of memory. */ bool QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick) { return quick_selects.push_back(quick); } QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT() { DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT"); quick_selects.delete_elements(); delete cpk_quick; free_root(&alloc,MYF(0)); if (need_to_fetch_row && head->file->inited != handler::NONE) head->file->ha_rnd_end(); DBUG_VOID_RETURN; } QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param, TABLE *table) :thd(thd_param) { index= MAX_KEY; head= table; rowid_length= table->file->ref_length; record= head->record[0]; init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); my_pthread_setspecific_ptr(THR_MALLOC,&alloc); } /* Do post-constructor initialization. SYNOPSIS QUICK_ROR_UNION_SELECT::init() RETURN 0 OK other Error code */ int QUICK_ROR_UNION_SELECT::init() { if (init_queue(&queue, quick_selects.elements, 0, FALSE , QUICK_ROR_UNION_SELECT::queue_cmp, (void*) this)) { bzero(&queue, sizeof(QUEUE)); return 1; } if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length))) return 1; prev_rowid= cur_rowid + head->file->ref_length; return 0; } /* Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority queue. SYNPOSIS QUICK_ROR_UNION_SELECT::queue_cmp() arg Pointer to QUICK_ROR_UNION_SELECT val1 First merged select val2 Second merged select */ int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2) { QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg; return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid, ((QUICK_SELECT_I*)val2)->last_rowid); } /* Initialize quick select for row retrieval. SYNOPSIS reset() RETURN 0 OK other Error code */ int QUICK_ROR_UNION_SELECT::reset() { QUICK_SELECT_I* quick; int error; DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset"); have_prev_rowid= FALSE; /* Initialize scans for merged quick selects and put all merged quick selects into the queue. */ List_iterator_fast it(quick_selects); while ((quick= it++)) { if (quick->init_ror_merged_scan(FALSE)) DBUG_RETURN(1); if ((error= quick->get_next())) { if (error == HA_ERR_END_OF_FILE) continue; DBUG_RETURN(error); } quick->save_last_pos(); queue_insert(&queue, (byte*)quick); } if (head->file->ha_rnd_init(1)) { DBUG_PRINT("error", ("ROR index_merge rnd_init call failed")); DBUG_RETURN(1); } DBUG_RETURN(0); } bool QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range) { return quick_selects.push_back(quick_sel_range); } QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT() { DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT"); delete_queue(&queue); quick_selects.delete_elements(); if (head->file->inited != handler::NONE) head->file->ha_rnd_end(); free_root(&alloc,MYF(0)); DBUG_VOID_RETURN; } QUICK_RANGE::QUICK_RANGE() :min_key(0),max_key(0),min_length(0),max_length(0), flag(NO_MIN_RANGE | NO_MAX_RANGE) {} SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc() { type=arg.type; min_flag=arg.min_flag; max_flag=arg.max_flag; maybe_flag=arg.maybe_flag; maybe_null=arg.maybe_null; part=arg.part; field=arg.field; min_value=arg.min_value; max_value=arg.max_value; next_key_part=arg.next_key_part; use_count=1; elements=1; } inline void SEL_ARG::make_root() { left=right= &null_element; color=BLACK; next=prev=0; use_count=0; elements=1; } SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg) :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()), elements(1), use_count(1), field(f), min_value((char*) min_value_arg), max_value((char*) max_value_arg), next(0),prev(0), next_key_part(0),color(BLACK),type(KEY_RANGE) { left=right= &null_element; } SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_, uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_) :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_), part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1), field(field_), min_value(min_value_), max_value(max_value_), next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE) { left=right= &null_element; } SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg) { SEL_ARG *tmp; if (type != KEY_RANGE) { if (!(tmp= new SEL_ARG(type))) return 0; // out of memory tmp->prev= *next_arg; // Link into next/prev chain (*next_arg)->next=tmp; (*next_arg)= tmp; } else { if (!(tmp= new SEL_ARG(field,part, min_value,max_value, min_flag, max_flag, maybe_flag))) return 0; // OOM tmp->parent=new_parent; tmp->next_key_part=next_key_part; if (left != &null_element) tmp->left=left->clone(tmp,next_arg); tmp->prev= *next_arg; // Link into next/prev chain (*next_arg)->next=tmp; (*next_arg)= tmp; if (right != &null_element) if (!(tmp->right= right->clone(tmp,next_arg))) return 0; // OOM } increment_use_count(1); tmp->color= color; return tmp; } SEL_ARG *SEL_ARG::first() { SEL_ARG *next_arg=this; if (!next_arg->left) return 0; // MAYBE_KEY while (next_arg->left != &null_element) next_arg=next_arg->left; return next_arg; } SEL_ARG *SEL_ARG::last() { SEL_ARG *next_arg=this; if (!next_arg->right) return 0; // MAYBE_KEY while (next_arg->right != &null_element) next_arg=next_arg->right; return next_arg; } /* Check if a compare is ok, when one takes ranges in account Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2 */ static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag) { int cmp; /* First check if there was a compare to a min or max element */ if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) { if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) == (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))) return 0; return (a_flag & NO_MIN_RANGE) ? -1 : 1; } if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) return (b_flag & NO_MIN_RANGE) ? 1 : -1; if (field->real_maybe_null()) // If null is part of key { if (*a != *b) { return *a ? -1 : 1; } if (*a) goto end; // NULL where equal a++; b++; // Skip NULL marker } cmp=field->key_cmp((byte*) a,(byte*) b); if (cmp) return cmp < 0 ? -1 : 1; // The values differed // Check if the compared equal arguments was defined with open/closed range end: if (a_flag & (NEAR_MIN | NEAR_MAX)) { if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX))) return 0; if (!(b_flag & (NEAR_MIN | NEAR_MAX))) return (a_flag & NEAR_MIN) ? 2 : -2; return (a_flag & NEAR_MIN) ? 1 : -1; } if (b_flag & (NEAR_MIN | NEAR_MAX)) return (b_flag & NEAR_MIN) ? -2 : 2; return 0; // The elements where equal } SEL_ARG *SEL_ARG::clone_tree() { SEL_ARG tmp_link,*next_arg,*root; next_arg= &tmp_link; root= clone((SEL_ARG *) 0, &next_arg); next_arg->next=0; // Fix last link tmp_link.next->prev=0; // Fix first link if (root) // If not OOM root->use_count= 0; return root; } /* Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived objects from table read plans. */ class TABLE_READ_PLAN { public: /* Plan read cost, with or without cost of full row retrieval, depending on plan creation parameters. */ double read_cost; ha_rows records; /* estimate of #rows to be examined */ /* If TRUE, the scan returns rows in rowid order. This is used only for scans that can be both ROR and non-ROR. */ bool is_ror; /* Create quick select for this plan. SYNOPSIS make_quick() param Parameter from test_quick_select retrieve_full_rows If TRUE, created quick select will do full record retrieval. parent_alloc Memory pool to use, if any. NOTES retrieve_full_rows is ignored by some implementations. RETURN created quick select NULL on any error. */ virtual QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc=NULL) = 0; /* Table read plans are allocated on MEM_ROOT and are never deleted */ static void *operator new(size_t size, MEM_ROOT *mem_root) { return (void*) alloc_root(mem_root, (uint) size); } static void operator delete(void *ptr,size_t size) {} }; class TRP_ROR_INTERSECT; class TRP_ROR_UNION; class TRP_INDEX_MERGE; /* Plan for a QUICK_RANGE_SELECT scan. TRP_RANGE::make_quick ignores retrieve_full_rows parameter because QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full record retrieval scans. */ class TRP_RANGE : public TABLE_READ_PLAN { public: SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */ uint key_idx; /* key number in PARAM::key */ TRP_RANGE(SEL_ARG *key_arg, uint idx_arg) : key(key_arg), key_idx(idx_arg) {} QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { DBUG_ENTER("TRP_RANGE::make_quick"); QUICK_RANGE_SELECT *quick; if ((quick= get_quick_select(param, key_idx, key, parent_alloc))) { quick->records= records; quick->read_time= read_cost; } DBUG_RETURN(quick); } }; /* Plan for QUICK_ROR_INTERSECT_SELECT scan. */ class TRP_ROR_INTERSECT : public TABLE_READ_PLAN { public: QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc); /* Array of pointers to ROR range scans used in this intersection */ struct st_ror_scan_info **first_scan; struct st_ror_scan_info **last_scan; /* End of the above array */ struct st_ror_scan_info *cpk_scan; /* Clustered PK scan, if there is one */ bool is_covering; /* TRUE if no row retrieval phase is necessary */ double index_scan_costs; /* SUM(cost(index_scan)) */ }; /* Plan for QUICK_ROR_UNION_SELECT scan. QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows is ignored by make_quick. */ class TRP_ROR_UNION : public TABLE_READ_PLAN { public: QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc); TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */ TABLE_READ_PLAN **last_ror; /* end of the above array */ }; /* Plan for QUICK_INDEX_MERGE_SELECT scan. QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows is ignored by make_quick. */ class TRP_INDEX_MERGE : public TABLE_READ_PLAN { public: QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc); TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */ TRP_RANGE **range_scans_end; /* end of the array */ }; /* Fill param->needed_fields with bitmap of fields used in the query. SYNOPSIS fill_used_fields_bitmap() param Parameter from test_quick_select function. NOTES Clustered PK members are not put into the bitmap as they are implicitly present in all keys (and it is impossible to avoid reading them). RETURN 0 Ok 1 Out of memory. */ static int fill_used_fields_bitmap(PARAM *param) { TABLE *table= param->table; param->fields_bitmap_size= (table->fields/8 + 1); uchar *tmp; uint pk; if (!(tmp= (uchar*)alloc_root(param->mem_root,param->fields_bitmap_size)) || bitmap_init(¶m->needed_fields, tmp, param->fields_bitmap_size*8, FALSE)) return 1; bitmap_clear_all(¶m->needed_fields); for (uint i= 0; i < table->fields; i++) { if (param->thd->query_id == table->field[i]->query_id) bitmap_set_bit(¶m->needed_fields, i+1); } pk= param->table->primary_key; if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY) { /* The table uses clustered PK and it is not internally generated */ KEY_PART_INFO *key_part= param->table->key_info[pk].key_part; KEY_PART_INFO *key_part_end= key_part + param->table->key_info[pk].key_parts; for(;key_part != key_part_end; ++key_part) { bitmap_clear_bit(¶m->needed_fields, key_part->fieldnr); } } return 0; } /* Test if a key can be used in different ranges SYNOPSIS SQL_SELECT::test_quick_select() thd Current thread keys_to_use Keys to use for range retrieval prev_tables Tables assumed to be already read when the scan is performed (but not read at the moment of this call) limit Query limit force_quick_range Prefer to use range (instead of full table scan) even if it is more expensive. NOTES Updates the following in the select parameter: needed_reg - Bits for keys with may be used if all prev regs are read quick - Parameter to use when reading records. In the table struct the following information is updated: quick_keys - Which keys can be used quick_rows - How many rows the key matches TODO Check if this function really needs to modify keys_to_use, and change the code to pass it by reference if it doesn't. In addition to force_quick_range other means can be (an usually are) used to make this function prefer range over full table scan. Figure out if force_quick_range is really needed. RETURN -1 if impossible select (i.e. certainly no rows will be selected) 0 if can't use quick_select 1 if found usable ranges and quick select has been successfully created. */ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use, table_map prev_tables, ha_rows limit, bool force_quick_range) { uint idx; double scan_time; DBUG_ENTER("test_quick_select"); //printf("\nQUERY: %s\n", thd->query); DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu", keys_to_use.to_ulonglong(), (ulong) prev_tables, (ulong) const_tables)); delete quick; quick=0; needed_reg.clear_all(); quick_keys.clear_all(); if (!cond || (specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range || !limit) DBUG_RETURN(0); /* purecov: inspected */ if (keys_to_use.is_clear_all()) DBUG_RETURN(0); records=head->file->records; if (!records) records++; /* purecov: inspected */ scan_time=(double) records / TIME_FOR_COMPARE+1; read_time=(double) head->file->scan_time()+ scan_time + 1.1; if (head->force_index) scan_time= read_time= DBL_MAX; if (limit < records) read_time=(double) records+scan_time+1; // Force to use index else if (read_time <= 2.0 && !force_quick_range) DBUG_RETURN(0); /* No need for quick select */ DBUG_PRINT("info",("Time to scan table: %g", read_time)); keys_to_use.intersect(head->keys_in_use_for_query); if (!keys_to_use.is_clear_all()) { MEM_ROOT *old_root,alloc; SEL_TREE *tree; KEY_PART *key_parts; KEY *key_info; PARAM param; /* set up parameter that is passed to all functions */ param.thd= thd; param.baseflag=head->file->table_flags(); param.prev_tables=prev_tables | const_tables; param.read_tables=read_tables; param.current_table= head->map; param.table=head; param.keys=0; param.mem_root= &alloc; param.needed_reg= &needed_reg; param.imerge_cost_buff_size= 0; thd->no_errors=1; // Don't warn about NULL init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); if (!(param.key_parts = (KEY_PART*) alloc_root(&alloc, sizeof(KEY_PART)* head->key_parts)) || fill_used_fields_bitmap(¶m)) { thd->no_errors=0; free_root(&alloc,MYF(0)); // Return memory & allocator DBUG_RETURN(0); // Can't use range } key_parts= param.key_parts; old_root=my_pthread_getspecific_ptr(MEM_ROOT*,THR_MALLOC); my_pthread_setspecific_ptr(THR_MALLOC,&alloc); /* Make an array with description of all key parts of all table keys. This is used in get_mm_parts function. */ key_info= head->key_info; for (idx=0 ; idx < head->keys ; idx++, key_info++) { KEY_PART_INFO *key_part_info; if (!keys_to_use.is_set(idx)) continue; if (key_info->flags & HA_FULLTEXT) continue; // ToDo: ft-keys in non-ft ranges, if possible SerG param.key[param.keys]=key_parts; key_part_info= key_info->key_part; for (uint part=0 ; part < key_info->key_parts ; part++, key_parts++, key_part_info++) { key_parts->key= param.keys; key_parts->part= part; key_parts->length= key_part_info->length; key_parts->store_length= key_part_info->store_length; key_parts->field= key_part_info->field; key_parts->null_bit= key_part_info->null_bit; key_parts->image_type = (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW; } param.real_keynr[param.keys++]=idx; } param.key_parts_end=key_parts; /* Calculate cost of full index read for the shortest covering index */ if (!head->used_keys.is_clear_all()) { int key_for_use= find_shortest_key(head, &head->used_keys); double key_read_time= (get_index_only_read_time(¶m, records, key_for_use) + (double) records / TIME_FOR_COMPARE); DBUG_PRINT("info", ("'all'+'using index' scan will be using key %d, " "read time %g", key_for_use, key_read_time)); if (key_read_time < read_time) read_time= key_read_time; } if ((tree=get_mm_tree(¶m,cond))) { if (tree->type == SEL_TREE::IMPOSSIBLE) { records=0L; // Return -1 from this function read_time= (double) HA_POS_ERROR; } else if (tree->type == SEL_TREE::KEY || tree->type == SEL_TREE::KEY_SMALLER) { TABLE_READ_PLAN *best_trp; /* It is possible to use a quick select (but maybe it would be slower than 'all' table scan). */ if (tree->merges.is_empty()) { double best_read_time= read_time; TRP_ROR_INTERSECT *new_trp; bool can_build_covering= FALSE; /* Get best 'range' plan and prepare data for making other plans */ if ((best_trp= get_key_scans_params(¶m, tree, FALSE, best_read_time))) best_read_time= best_trp->read_cost; /* Simultaneous key scans and row deletes on several handler objects are not allowed so don't use ROR-intersection for table deletes. */ if ((thd->lex->sql_command != SQLCOM_DELETE) )//&& // (thd->lex->sql_command != SQLCOM_UPDATE)) { /* Get best non-covering ROR-intersection plan and prepare data for building covering ROR-intersection. */ if ((new_trp= get_best_ror_intersect(¶m, tree, best_read_time, &can_build_covering))) { best_trp= new_trp; best_read_time= best_trp->read_cost; } /* Try constructing covering ROR-intersect only if it looks possible and worth doing. */ if (new_trp && !new_trp->is_covering && can_build_covering && (new_trp= get_best_covering_ror_intersect(¶m, tree, best_read_time))) best_trp= new_trp; } } else { /* Try creating index_merge/ROR-union scan. */ SEL_IMERGE *imerge; TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp; LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */ DBUG_PRINT("info",("No range reads possible," " trying to construct index_merge")); List_iterator_fast it(tree->merges); while ((imerge= it++)) { new_conj_trp= get_best_disjunct_quick(¶m, imerge, read_time); if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost < best_conj_trp->read_cost)) best_conj_trp= new_conj_trp; } best_trp= best_conj_trp; } my_pthread_setspecific_ptr(THR_MALLOC, old_root); /* If we got a read plan, create a quick select from it. */ if (best_trp) { records= best_trp->records; if (!(quick= best_trp->make_quick(¶m, TRUE)) || quick->init()) { delete quick; quick= NULL; } } } } my_pthread_setspecific_ptr(THR_MALLOC, old_root); free_root(&alloc,MYF(0)); // Return memory & allocator thd->no_errors=0; } DBUG_EXECUTE("info", print_quick(quick, &needed_reg);); /* Assume that if the user is using 'limit' we will only need to scan limit rows if we are using a key */ DBUG_RETURN(records ? test(quick) : -1); } /* Get cost of 'sweep' full records retrieval. SYNOPSIS get_sweep_read_cost() param Parameter from test_quick_select records # of records to be retrieved RETURN cost of sweep */ double get_sweep_read_cost(const PARAM *param, ha_rows records) { double result; if (param->table->file->primary_key_is_clustered()) { result= param->table->file->read_time(param->table->primary_key, records, records); } else { double n_blocks= ceil((double)param->table->file->data_file_length / IO_SIZE); double busy_blocks= n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records))); if (busy_blocks < 1.0) busy_blocks= 1.0; DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks, busy_blocks)); /* Disabled: Bail out if # of blocks to read is bigger than # of blocks in table data file. if (max_cost != DBL_MAX && (busy_blocks+index_reads_cost) >= n_blocks) return 1; */ JOIN *join= param->thd->lex->select_lex.join; if (!join || join->tables == 1) { /* No join, assume reading is done in one 'sweep' */ result= busy_blocks*(DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/busy_blocks); } else { /* Possibly this is a join with source table being non-last table, so assume that disk seeks are random here. */ result= busy_blocks; } } DBUG_PRINT("info",("returning cost=%g", result)); return result; } /* Get best plan for a SEL_IMERGE disjunctive expression. SYNOPSIS get_best_disjunct_quick() param Parameter from check_quick_select function imerge Expression to use read_time Don't create scans with cost > read_time NOTES index_merge cost is calculated as follows: index_merge_cost = cost(index_reads) + (see #1) cost(rowid_to_row_scan) + (see #2) cost(unique_use) (see #3) 1. cost(index_reads) =SUM_i(cost(index_read_i)) For non-CPK scans, cost(index_read_i) = {cost of ordinary 'index only' scan} For CPK scan, cost(index_read_i) = {cost of non-'index only' scan} 2. cost(rowid_to_row_scan) If table PK is clustered then cost(rowid_to_row_scan) = {cost of ordinary clustered PK scan with n_ranges=n_rows} Otherwise, we use the following model to calculate costs: We need to retrieve n_rows rows from file that occupies n_blocks blocks. We assume that offsets of rows we need are independent variates with uniform distribution in [0..max_file_offset] range. We'll denote block as "busy" if it contains row(s) we need to retrieve and "empty" if doesn't contain rows we need. Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this applies to any block in file). Let x_i be a variate taking value 1 if block #i is empty and 0 otherwise. Then E(x_i) = (1 - 1/n_blocks)^n_rows; E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) = = n_blocks * ((1 - 1/n_blocks)^n_rows) = ~= n_blocks * exp(-n_rows/n_blocks). E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) = ~= n_blocks * (1 - exp(-n_rows/n_blocks)). Average size of "hole" between neighbor non-empty blocks is E(hole_size) = n_blocks/E(n_busy_blocks). The total cost of reading all needed blocks in one "sweep" is: E(n_busy_blocks)* (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)). 3. Cost of Unique use is calculated in Unique::get_use_cost function. ROR-union cost is calculated in the same way index_merge, but instead of Unique a priority queue is used. RETURN Created read plan NULL - Out of memory or no read scan could be built. */ static TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge, double read_time) { SEL_TREE **ptree; TRP_INDEX_MERGE *imerge_trp= NULL; uint n_child_scans= imerge->trees_next - imerge->trees; TRP_RANGE **range_scans; TRP_RANGE **cur_child; TRP_RANGE **cpk_scan= NULL; bool imerge_too_expensive= FALSE; double imerge_cost= 0.0; ha_rows cpk_scan_records= 0; ha_rows non_cpk_scan_records= 0; bool pk_is_clustered= param->table->file->primary_key_is_clustered(); bool all_scans_ror_able= TRUE; bool all_scans_rors= TRUE; uint unique_calc_buff_size; TABLE_READ_PLAN **roru_read_plans; TABLE_READ_PLAN **cur_roru_plan; double roru_index_costs; double blocks_in_index_read; ha_rows roru_total_records; double roru_intersect_part= 1.0; DBUG_ENTER("get_best_disjunct_quick"); DBUG_PRINT("info", ("Full table scan cost =%g", read_time)); if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root, sizeof(TRP_RANGE*)* n_child_scans))) DBUG_RETURN(NULL); /* Collect best 'range' scan for each of disjuncts, and, while doing so, analyze possibility of ROR scans. Also calculate some values needed by other parts of the code. */ for (ptree= imerge->trees, cur_child= range_scans; ptree != imerge->trees_next; ptree++, cur_child++) { DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map, "tree in SEL_IMERGE");); if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time))) { /* One of index scans in this index_merge is more expensive than entire table read for another available option. The entire index_merge (and any possible ROR-union) will be more expensive then, too. We continue here only to update SQL_SELECT members. */ imerge_too_expensive= TRUE; } if (imerge_too_expensive) continue; imerge_cost += (*cur_child)->read_cost; all_scans_ror_able &= ((*ptree)->n_ror_scans > 0); all_scans_rors &= (*cur_child)->is_ror; if (pk_is_clustered && param->real_keynr[(*cur_child)->key_idx] == param->table->primary_key) { cpk_scan= cur_child; cpk_scan_records= (*cur_child)->records; } else non_cpk_scan_records += (*cur_child)->records; } DBUG_PRINT("info", ("index_merge scans cost=%g", imerge_cost)); if (imerge_too_expensive || (imerge_cost > read_time) || (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) && read_time != DBL_MAX) { /* Bail out if it is obvious that both index_merge and ROR-union will be more expensive */ DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than " "full table scan, bailing out")); DBUG_RETURN(NULL); } if (all_scans_rors) { roru_read_plans= (TABLE_READ_PLAN**)range_scans; goto skip_to_ror_scan; } blocks_in_index_read= imerge_cost; if (cpk_scan) { /* Add one ROWID comparison for each row retrieved on non-CPK scan. (it is done in QUICK_RANGE_SELECT::row_in_ranges) */ imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID; } /* Calculate cost(rowid_to_row_scan) */ imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records); DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g", imerge_cost)); if (imerge_cost > read_time) goto build_ror_index_merge; /* Add Unique operations cost */ unique_calc_buff_size= Unique::get_cost_calc_buff_size(non_cpk_scan_records, param->table->file->ref_length, param->thd->variables.sortbuff_size); if (param->imerge_cost_buff_size < unique_calc_buff_size) { if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root, unique_calc_buff_size))) DBUG_RETURN(NULL); param->imerge_cost_buff_size= unique_calc_buff_size; } imerge_cost += Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records, param->table->file->ref_length, param->thd->variables.sortbuff_size); DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)", imerge_cost, read_time)); if (imerge_cost < read_time) { if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE)) { imerge_trp->read_cost= imerge_cost; imerge_trp->records= non_cpk_scan_records + cpk_scan_records; imerge_trp->records= min(imerge_trp->records, param->table->file->records); imerge_trp->range_scans= range_scans; imerge_trp->range_scans_end= range_scans + n_child_scans; read_time= imerge_cost; } } build_ror_index_merge: if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE) DBUG_RETURN(imerge_trp); /* Ok, it is possible to build a ROR-union, try it. */ bool dummy; if (!(roru_read_plans= (TABLE_READ_PLAN**)alloc_root(param->mem_root, sizeof(TABLE_READ_PLAN*)* n_child_scans))) DBUG_RETURN(imerge_trp); skip_to_ror_scan: roru_index_costs= 0.0; roru_total_records= 0; cur_roru_plan= roru_read_plans; /* Find 'best' ROR scan for each of trees in disjunction */ for (ptree= imerge->trees, cur_child= range_scans; ptree != imerge->trees_next; ptree++, cur_child++, cur_roru_plan++) { /* Assume the best ROR scan is the one that has cheapest full-row-retrieval scan cost. Also accumulate index_only scan costs as we'll need them to calculate overall index_intersection cost. */ double cost; if ((*cur_child)->is_ror) { /* Ok, we have index_only cost, now get full rows scan cost */ cost= param->table->file-> read_time(param->real_keynr[(*cur_child)->key_idx], 1, (*cur_child)->records) + rows2double((*cur_child)->records) / TIME_FOR_COMPARE; } else cost= read_time; TABLE_READ_PLAN *prev_plan= *cur_child; if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost, &dummy))) { if (prev_plan->is_ror) *cur_roru_plan= prev_plan; else DBUG_RETURN(imerge_trp); roru_index_costs += (*cur_roru_plan)->read_cost; } else roru_index_costs += ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs; roru_total_records += (*cur_roru_plan)->records; roru_intersect_part *= (*cur_roru_plan)->records / param->table->file->records; } /* rows to retrieve= SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows). This is valid because index_merge construction guarantees that conditions in disjunction do not share key parts. */ roru_total_records -= (ha_rows)(roru_intersect_part* param->table->file->records); /* ok, got a ROR read plan for each of the disjuncts Calculate cost: cost(index_union_scan(scan_1, ... scan_n)) = SUM_i(cost_of_index_only_scan(scan_i)) + queue_use_cost(rowid_len, n) + cost_of_row_retrieval See get_merge_buffers_cost function for queue_use_cost formula derivation. */ double roru_total_cost; roru_total_cost= roru_index_costs + rows2double(roru_total_records)*log((double)n_child_scans) / (TIME_FOR_COMPARE_ROWID * M_LN2) + get_sweep_read_cost(param, roru_total_records); DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost, n_child_scans)); TRP_ROR_UNION* roru; if (roru_total_cost < read_time) { if ((roru= new (param->mem_root) TRP_ROR_UNION)) { roru->first_ror= roru_read_plans; roru->last_ror= roru_read_plans + n_child_scans; roru->read_cost= roru_total_cost; roru->records= roru_total_records; DBUG_RETURN(roru); } } DBUG_RETURN(imerge_trp); } /* Calculate cost of 'index only' scan for given index and number of records. SYNOPSIS get_index_only_read_time() param parameters structure records #of records to read keynr key to read NOTES It is assumed that we will read trough the whole key range and that all key blocks are half full (normally things are much better). TODO: Move this to handler->read_time() by adding a flag 'index-only-read' to this call. The reason for doing this is that the current function doesn't handle the case when the row is stored in the b-tree (like in innodb clustered index) */ inline double get_index_only_read_time(const PARAM* param, ha_rows records, int keynr) { double read_time; uint keys_per_block= (param->table->file->block_size/2/ (param->table->key_info[keynr].key_length+ param->table->file->ref_length) + 1); read_time=((double) (records+keys_per_block-1)/ (double) keys_per_block); return read_time; } typedef struct st_ror_scan_info { uint idx; /* # of used key in param->keys */ uint keynr; /* # of used key in table */ ha_rows records; /* estimate of # records this scan will return */ /* Set of intervals over key fields that will be used for row retrieval. */ SEL_ARG *sel_arg; /* Fields used in the query and covered by this ROR scan. */ MY_BITMAP covered_fields; uint used_fields_covered; /* # of set bits in covered_fields */ int key_rec_length; /* length of key record (including rowid) */ /* Cost of reading all index records with values in sel_arg intervals set (assuming there is no need to access full table records) */ double index_read_cost; uint first_uncovered_field; /* first unused bit in covered_fields */ uint key_components; /* # of parts in the key */ } ROR_SCAN_INFO; /* Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using sel_arg set of intervals. SYNOPSIS make_ror_scan() param Parameter from test_quick_select function idx Index of key in param->keys sel_arg Set of intervals for a given key RETURN NULL - out of memory ROR scan structure containing a scan for {idx, sel_arg} */ static ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg) { ROR_SCAN_INFO *ror_scan; uchar *bitmap_buf; uint keynr; DBUG_ENTER("make_ror_scan"); if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO)))) DBUG_RETURN(NULL); ror_scan->idx= idx; ror_scan->keynr= keynr= param->real_keynr[idx]; ror_scan->key_rec_length= param->table->key_info[keynr].key_length + param->table->file->ref_length; ror_scan->sel_arg= sel_arg; ror_scan->records= param->table->quick_rows[keynr]; if (!(bitmap_buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size))) DBUG_RETURN(NULL); if (bitmap_init(&ror_scan->covered_fields, bitmap_buf, param->fields_bitmap_size*8, FALSE)) DBUG_RETURN(NULL); bitmap_clear_all(&ror_scan->covered_fields); KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part; KEY_PART_INFO *key_part_end= key_part + param->table->key_info[keynr].key_parts; uint n_used_covered= 0; for (;key_part != key_part_end; ++key_part) { if (bitmap_is_set(¶m->needed_fields, key_part->fieldnr)) { n_used_covered++; bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr); } } ror_scan->index_read_cost= get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr], ror_scan->keynr); DBUG_RETURN(ror_scan); } /* Compare two ROR_SCAN_INFO** by E(#records_matched) * key_record_length. SYNOPSIS cmp_ror_scan_info() a ptr to first compared value b ptr to second compared value RETURN -1 a < b 0 a = b 1 a > b */ static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b) { double val1= rows2double((*a)->records) * (*a)->key_rec_length; double val2= rows2double((*b)->records) * (*b)->key_rec_length; return (val1 < val2)? -1: (val1 == val2)? 0 : 1; } /* Compare two ROR_SCAN_INFO** by (#covered fields in F desc, #components asc, number of first not covered component asc) SYNOPSIS cmp_ror_scan_info_covering() a ptr to first compared value b ptr to second compared value RETURN -1 a < b 0 a = b 1 a > b */ static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b) { if ((*a)->used_fields_covered > (*b)->used_fields_covered) return -1; if ((*a)->used_fields_covered < (*b)->used_fields_covered) return 1; if ((*a)->key_components < (*b)->key_components) return -1; if ((*a)->key_components > (*b)->key_components) return 1; if ((*a)->first_uncovered_field < (*b)->first_uncovered_field) return -1; if ((*a)->first_uncovered_field > (*b)->first_uncovered_field) return 1; return 0; } /* Auxiliary structure for incremental ROR-intersection creation */ typedef struct { const PARAM *param; MY_BITMAP covered_fields; /* union of fields covered by all scans */ /* TRUE if covered_fields is a superset of needed_fields */ bool is_covering; double index_scan_costs; /* SUM(cost of 'index-only' scans) */ double total_cost; /* Fraction of table records that satisfies conditions of all scans. This is the number of full records that will be retrieved if a non-index_only index intersection will be employed. */ double records_fract; ha_rows index_records; /* sum(#records to look in indexes) */ } ROR_INTERSECT_INFO; /* Re-initialize an allocated intersect info to contain zero scans. SYNOPSIS info Intersection info structure to re-initialize. */ static void ror_intersect_reinit(ROR_INTERSECT_INFO *info) { info->is_covering= FALSE; info->index_scan_costs= 0.0f; info->records_fract= 1.0f; bitmap_clear_all(&info->covered_fields); } /* Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans. SYNOPSIS ror_intersect_init() param Parameter from test_quick_select is_index_only If TRUE, set ROR_INTERSECT_INFO to be covering RETURN allocated structure NULL on error */ static ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param, bool is_index_only) { ROR_INTERSECT_INFO *info; uchar* buf; if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root, sizeof(ROR_INTERSECT_INFO)))) return NULL; info->param= param; if (!(buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size))) return NULL; if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8, FALSE)) return NULL; ror_intersect_reinit(info); return info; } /* Check if adding a ROR scan to a ROR-intersection reduces its cost of ROR-intersection and if yes, update parameters of ROR-intersection, including its cost. SYNOPSIS ror_intersect_add() param Parameter from test_quick_select info ROR-intersection structure to add the scan to. ror_scan ROR scan info to add. is_cpk_scan If TRUE, add the scan as CPK scan (this can be inferred from other parameters and is passed separately only to avoid duplicating the inference code) NOTES Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR- intersection decreases. The cost of ROR-intersection is caclulated as follows: cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval if (union of indexes used covers all needed fields) cost_of_full_rows_retrieval= 0; else { cost_of_full_rows_retrieval= cost_of_sweep_read(E(rows_to_retrieve), rows_in_table); } E(rows_to_retrieve) is caclulated as follows: Suppose we have a condition on several keys cond=k_11=c_11 AND k_12=c_12 AND ... // parts of first key k_21=c_21 AND k_22=c_22 AND ... // parts of second key ... k_n1=c_n1 AND k_n3=c_n3 AND ... (1) where k_ij may be the same as any k_pq (i.e. keys may have common parts). A full row is retrieved iff entire cond holds. The recursive procedure for finding P(cond) is as follows: First step: Pick 1st part of 1st key and break conjunction (1) into two parts: cond= (k_11=c_11 AND R) Here R may still contain condition(s) equivalent to k_11=c_11. Nevertheless, the following holds: P(k_11=c_11 AND R) = P(k_11=c_11) * P(R|k_11=c_11). Mark k_11 as fixed field (and satisfied condition) F, save P(F), save R to be cond and proceed to recursion step. Recursion step: We have a set of fixed fields/satisfied conditions) F, probability P(F), and remaining conjunction R Pick next key part on current key and its condition "k_ij=c_ij". We will add "k_ij=c_ij" into F and update P(F). Lets denote k_ij as t, R = t AND R1, where R1 may still contain t. Then P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2) (where '|' mean conditional probability, not "or") Consider the first multiplier in (2). One of the following holds: a) F contains condition on field used in t (i.e. t AND F = F). Then P(t|F) = 1 b) F doesn't contain condition on field used in t. Then F and t are considered independent. P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) = = P(t|fields_before_t_in_key). P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) / #records(fields_before_t_in_key, t) The second multiplier is calculated by applying this step recursively. IMPLEMENTATION This function calculates the result of application of the "recursion step" described above for all fixed key members of a single key, accumulating set of covered fields, selectivity, etc. The calculation is conducted as follows: Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate n_{k1} n_{k_2} --------- * --------- * .... (3) n_{k1-1} n_{k2_1} where k1,k2,... are key parts which fields were not yet marked as fixed ( this is result of application of option b) of the recursion step for parts of a single key). Since it is reasonable to expect that most of the fields are not marked as fixed, we calcualate (3) as n_{i1} n_{i_2} (3) = n_{max_key_part} / ( --------- * --------- * .... ) n_{i1-1} n_{i2_1} where i1,i2, .. are key parts that were already marked as fixed. In order to minimize number of expensive records_in_range calls we group and reduce adjacent fractions. RETURN TRUE ROR scan added to ROR-intersection, cost updated. FALSE It doesn't make sense to add this ROR scan to this ROR-intersection. */ bool ror_intersect_add(const PARAM *param, ROR_INTERSECT_INFO *info, ROR_SCAN_INFO* ror_scan, bool is_cpk_scan=FALSE) { int i; SEL_ARG *sel_arg; KEY_PART_INFO *key_part= info->param->table->key_info[ror_scan->keynr].key_part; double selectivity_mult= 1.0; byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */ DBUG_ENTER("ror_intersect_add"); DBUG_PRINT("info", ("Current selectivity= %g", info->records_fract)); DBUG_PRINT("info", ("Adding scan on %s", info->param->table->key_info[ror_scan->keynr].name)); SEL_ARG *tuple_arg= NULL; char *key_ptr= (char*) key_val; bool cur_covered, prev_covered= bitmap_is_set(&info->covered_fields, key_part->fieldnr); ha_rows prev_records= param->table->file->records; key_range min_range; key_range max_range; min_range.key= (byte*) key_val; min_range.flag= HA_READ_KEY_EXACT; max_range.key= (byte*) key_val; max_range.flag= HA_READ_AFTER_KEY; for(i= 0, sel_arg= ror_scan->sel_arg; sel_arg; i++, sel_arg= sel_arg->next_key_part) { cur_covered= bitmap_is_set(&info->covered_fields, (key_part + i)->fieldnr); if (cur_covered != prev_covered) { /* create (part1val, ..., part{n-1}val) tuple. */ { if (!tuple_arg) { tuple_arg= ror_scan->sel_arg; tuple_arg->store_min(key_part->length, &key_ptr, 0); } while (tuple_arg->next_key_part != sel_arg) { tuple_arg= tuple_arg->next_key_part; tuple_arg->store_min(key_part->length, &key_ptr, 0); } } ha_rows records; min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val); records= param->table->file-> records_in_range(ror_scan->keynr, &min_range, &max_range); if (cur_covered) { /* uncovered -> covered */ double tmp= rows2double(records)/rows2double(prev_records); DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp)); selectivity_mult *= tmp; prev_records= HA_POS_ERROR; } else { /* covered -> uncovered */ prev_records= records; } } prev_covered= cur_covered; } if (!prev_covered) { double tmp= rows2double(param->table->quick_rows[ror_scan->keynr]) / rows2double(prev_records); DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp)); selectivity_mult *= tmp; } if (selectivity_mult == 1.0) { /* Don't add this scan if it doesn't improve selectivity. */ DBUG_PRINT("info", ("The scan doesn't improve selectivity.")); DBUG_RETURN(FALSE); } info->records_fract *= selectivity_mult; ha_rows cur_scan_records= info->param->table->quick_rows[ror_scan->keynr]; if (is_cpk_scan) { info->index_scan_costs += rows2double(cur_scan_records)* TIME_FOR_COMPARE_ROWID; } else { info->index_records += cur_scan_records; info->index_scan_costs += ror_scan->index_read_cost; bitmap_union(&info->covered_fields, &ror_scan->covered_fields); } if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields, &info->covered_fields)) { DBUG_PRINT("info", ("ROR-intersect is covering now")); info->is_covering= TRUE; } info->total_cost= info->index_scan_costs; if (!info->is_covering) { ha_rows table_recs= info->param->table->file->records; info->total_cost += get_sweep_read_cost(info->param, (ha_rows)(info->records_fract*table_recs)); } DBUG_PRINT("info", ("New selectivity= %g", info->records_fract)); DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost, info->is_covering?"" : "non-")); DBUG_RETURN(TRUE); } /* Get best ROR-intersection plan using non-covering ROR-intersection search algorithm. The returned plan may be covering. SYNOPSIS get_best_ror_intersect() param Parameter from test_quick_select function. tree Transformed restriction condition to be used to look for ROR scans. read_time Do not return read plans with cost > read_time. are_all_covering [out] set to TRUE if union of all scans covers all fields needed by the query (and it is possible to build a covering ROR-intersection) NOTES get_key_scans_params must be called before for the same SEL_TREE before this function can be called. The approximate best non-covering plan search algorithm is as follows: find_min_ror_intersection_scan() { R= select all ROR scans; order R by (E(#records_matched) * key_record_length). S= first(R); -- set of scans that will be used for ROR-intersection R= R-first(S); min_cost= cost(S); min_scan= make_scan(S); while (R is not empty) { if (!selectivity(S + first(R) < selectivity(S))) continue; S= S + first(R); R= R - first(R); if (cost(S) < min_cost) { min_cost= cost(S); min_scan= make_scan(S); } } return min_scan; } See ror_intersect_add function for ROR intersection costs. Special handling for Clustered PK scans Clustered PK contains all table fields, so using it as a regular scan in index intersection doesn't make sense: a range scan on CPK will be less expensive in this case. Clustered PK scan has special handling in ROR-intersection: it is not used to retrieve rows, instead its condition is used to filter row references we get from scans on other keys. RETURN ROR-intersection table read plan NULL if out of memory or no suitable plan found. */ static TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree, double read_time, bool *are_all_covering) { uint idx; double min_cost= read_time; DBUG_ENTER("get_best_ror_intersect"); if (tree->n_ror_scans < 2) DBUG_RETURN(NULL); /* Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of them. Also find and save clustered PK scan if there is one. */ ROR_SCAN_INFO **cur_ror_scan; ROR_SCAN_INFO *cpk_scan= NULL; bool cpk_scan_used= FALSE; if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)* param->keys))) return NULL; uint cpk_no= (param->table->file->primary_key_is_clustered())? param->table->primary_key : MAX_KEY; for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++) { ROR_SCAN_INFO *scan; if (!tree->ror_scans_map.is_set(idx)) continue; if (!(scan= make_ror_scan(param, idx, tree->keys[idx]))) return NULL; if (param->real_keynr[idx] == cpk_no) { cpk_scan= scan; tree->n_ror_scans--; } else *(cur_ror_scan++)= scan; } tree->ror_scans_end= cur_ror_scan; DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original", tree->ror_scans, tree->ror_scans_end);); /* Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized ROR_SCAN_INFOs. Now, get a minimal key scan using an approximate algorithm. */ qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*), (qsort_cmp)cmp_ror_scan_info); DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered", tree->ror_scans, tree->ror_scans_end);); ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */ ROR_SCAN_INFO **intersect_scans_end; if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)* tree->n_ror_scans))) return NULL; intersect_scans_end= intersect_scans; /* Create and incrementally update ROR intersection. */ ROR_INTERSECT_INFO *intersect; if (!(intersect= ror_intersect_init(param, FALSE))) return NULL; /* [intersect_scans, intersect_scans_best) will hold the best combination */ ROR_SCAN_INFO **intersect_scans_best; ha_rows best_rows; bool is_best_covering; double best_index_scan_costs; LINT_INIT(best_rows); /* protected by intersect_scans_best */ LINT_INIT(is_best_covering); LINT_INIT(best_index_scan_costs); cur_ror_scan= tree->ror_scans; /* Start with one scan */ intersect_scans_best= intersect_scans; while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering) { /* S= S + first(R); */ if (ror_intersect_add(param, intersect, *cur_ror_scan)) *(intersect_scans_end++)= *cur_ror_scan; /* R= R - first(R); */ cur_ror_scan++; if (intersect->total_cost < min_cost) { /* Local minimum found, save it */ min_cost= intersect->total_cost; best_rows= (ha_rows)(intersect->records_fract* rows2double(param->table->file->records)); is_best_covering= intersect->is_covering; intersect_scans_best= intersect_scans_end; best_index_scan_costs= intersect->index_scan_costs; } } DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "best ROR-intersection", intersect_scans, intersect_scans_best);); *are_all_covering= intersect->is_covering; uint best_num= intersect_scans_best - intersect_scans; /* Ok, found the best ROR-intersection of non-CPK key scans. Check if we should add a CPK scan. If the obtained ROR-intersection is covering, it doesn't make sense to add CPK scan - Clustered PK contains all fields and if we're doing CPK scan doing other CPK scans will only add more overhead. */ if (cpk_scan && !intersect->is_covering) { /* Handle the special case: ROR-intersect(PRIMARY, key1) is the best, but cost(range(key1)) > cost(best_non_ror_range_scan) */ if (best_num == 0) { cur_ror_scan= tree->ror_scans; intersect_scans_end= intersect_scans; ror_intersect_reinit(intersect); if (!ror_intersect_add(param, intersect, *cur_ror_scan)) DBUG_RETURN(NULL); /* shouldn't happen actually actually */ *(intersect_scans_end++)= *cur_ror_scan; best_num++; } if (ror_intersect_add(param, intersect, cpk_scan)) { cpk_scan_used= TRUE; min_cost= intersect->total_cost; best_rows= (ha_rows)(intersect->records_fract* rows2double(param->table->file->records)); is_best_covering= intersect->is_covering; best_index_scan_costs= intersect->index_scan_costs; } } /* Ok, return ROR-intersect plan if we have found one */ TRP_ROR_INTERSECT *trp= NULL; if (best_num > 1 || cpk_scan_used) { if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT)) DBUG_RETURN(trp); if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)*best_num))) DBUG_RETURN(NULL); memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*)); trp->last_scan= trp->first_scan + best_num; trp->is_covering= is_best_covering; trp->read_cost= min_cost; trp->records= best_rows? best_rows : 1; trp->index_scan_costs= best_index_scan_costs; trp->cpk_scan= cpk_scan; } DBUG_RETURN(trp); } /* Get best covering ROR-intersection. SYNOPSIS get_best_covering_ror_intersect() param Parameter from test_quick_select function. tree SEL_TREE with sets of intervals for different keys. read_time Don't return table read plans with cost > read_time. RETURN Best covering ROR-intersection plan NULL if no plan found. NOTES get_best_ror_intersect must be called for a tree before calling this function for it. This function invalidates tree->ror_scans member values. The following approximate algorithm is used: I=set of all covering indexes F=set of all fields to cover S={} do { Order I by (#covered fields in F desc, #components asc, number of first not covered component asc); F=F-covered by first(I); S=S+first(I); I=I-first(I); } while F is not empty. */ static TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param, SEL_TREE *tree, double read_time) { ROR_SCAN_INFO **ror_scan_mark; ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end; DBUG_ENTER("get_best_covering_ror_intersect"); uint nbits= param->fields_bitmap_size*8; for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan) (*scan)->key_components= param->table->key_info[(*scan)->keynr].key_parts; /* Run covering-ROR-search algorithm. Assume set I is [ror_scan .. ror_scans_end) */ /*I=set of all covering indexes */ ror_scan_mark= tree->ror_scans; uchar buf[MAX_KEY/8+1]; MY_BITMAP covered_fields; if (bitmap_init(&covered_fields, buf, nbits, FALSE)) DBUG_RETURN(0); bitmap_clear_all(&covered_fields); double total_cost= 0.0f; ha_rows records=0; bool all_covered; DBUG_PRINT("info", ("Building covering ROR-intersection")); DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "building covering ROR-I", ror_scan_mark, ror_scans_end);); do { /* Update changed sorting info: #covered fields, number of first not covered component Calculate and save these values for each of remaining scans. */ for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan) { bitmap_subtract(&(*scan)->covered_fields, &covered_fields); (*scan)->used_fields_covered= bitmap_bits_set(&(*scan)->covered_fields); (*scan)->first_uncovered_field= bitmap_get_first(&(*scan)->covered_fields); } qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*), (qsort_cmp)cmp_ror_scan_info_covering); DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "remaining scans", ror_scan_mark, ror_scans_end);); /* I=I-first(I) */ total_cost += (*ror_scan_mark)->index_read_cost; records += (*ror_scan_mark)->records; DBUG_PRINT("info", ("Adding scan on %s", param->table->key_info[(*ror_scan_mark)->keynr].name)); if (total_cost > read_time) DBUG_RETURN(NULL); /* F=F-covered by first(I) */ bitmap_union(&covered_fields, &(*ror_scan_mark)->covered_fields); all_covered= bitmap_is_subset(¶m->needed_fields, &covered_fields); } while (!all_covered && (++ror_scan_mark < ror_scans_end)); if (!all_covered) DBUG_RETURN(NULL); /* should not happen actually */ /* Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with cost total_cost. */ DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost)); DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "creating covering ROR-intersect", tree->ror_scans, ror_scan_mark);); /* Add priority queue use cost. */ total_cost += rows2double(records)* log((double)(ror_scan_mark - tree->ror_scans)) / (TIME_FOR_COMPARE_ROWID * M_LN2); DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost)); if (total_cost > read_time) DBUG_RETURN(NULL); TRP_ROR_INTERSECT *trp; if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT)) DBUG_RETURN(trp); uint best_num= (ror_scan_mark - tree->ror_scans); if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)* best_num))) DBUG_RETURN(NULL); memcpy(trp->first_scan, ror_scan_mark, best_num*sizeof(ROR_SCAN_INFO*)); trp->last_scan= trp->first_scan + best_num; trp->is_covering= TRUE; trp->read_cost= total_cost; trp->records= records; DBUG_RETURN(trp); } /* Get best "range" table read plan for given SEL_TREE. Also update PARAM members and store ROR scans info in the SEL_TREE. SYNOPSIS get_key_scans_params param parameters from test_quick_select tree make range select for this SEL_TREE index_read_must_be_used if TRUE, assume 'index only' option will be set (except for clustered PK indexes) read_time don't create read plans with cost > read_time. RETURN Best range read plan NULL if no plan found or error occurred */ static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree, bool index_read_must_be_used, double read_time) { int idx; SEL_ARG **key,**end, **key_to_read= NULL; ha_rows best_records; TRP_RANGE* read_plan= NULL; bool pk_is_clustered= param->table->file->primary_key_is_clustered(); DBUG_ENTER("get_key_scans_params"); LINT_INIT(best_records); /* protected by key_to_read */ /* Note that there may be trees that have type SEL_TREE::KEY but contain no key reads at all, e.g. tree for expression "key1 is not null" where key1 is defined as "not null". */ DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map, "tree scans");); tree->ror_scans_map.clear_all(); tree->n_ror_scans= 0; for (idx= 0,key=tree->keys, end=key+param->keys; key != end ; key++,idx++) { ha_rows found_records; double found_read_time; if (*key) { uint keynr= param->real_keynr[idx]; if ((*key)->type == SEL_ARG::MAYBE_KEY || (*key)->maybe_flag) param->needed_reg->set_bit(keynr); bool read_index_only= index_read_must_be_used ? TRUE : (bool) param->table->used_keys.is_set(keynr); found_records= check_quick_select(param, idx, *key); if (param->is_ror_scan) { tree->n_ror_scans++; tree->ror_scans_map.set_bit(idx); } if (found_records != HA_POS_ERROR && found_records > 2 && read_index_only && (param->table->file->index_flags(keynr, param->max_key_part,1) & HA_KEYREAD_ONLY) && !(pk_is_clustered && keynr == param->table->primary_key)) { /* We can resolve this by only reading through this key. */ found_read_time= (get_index_only_read_time(param,found_records,keynr)+ (double) found_records / TIME_FOR_COMPARE); } else { /* cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks) The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function. */ found_read_time= (param->table->file->read_time(keynr, param->range_count, found_records)+ (double) found_records / TIME_FOR_COMPARE); } DBUG_PRINT("info",("read_time: %g found_read_time: %g", read_time, found_read_time)); if (read_time > found_read_time && found_records != HA_POS_ERROR /*|| read_time == DBL_MAX*/ ) { read_time= found_read_time; best_records= found_records; key_to_read= key; } } } DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map, "ROR scans");); if (key_to_read) { idx= key_to_read - tree->keys; if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx))) { read_plan->records= best_records; read_plan->is_ror= tree->ror_scans_map.is_set(idx); read_plan->read_cost= read_time; DBUG_PRINT("info",("Returning range plan for key %s, cost %g", param->table->key_info[param->real_keynr[idx]].name, read_plan->read_cost)); } } else DBUG_PRINT("info", ("No 'range' table read plan found")); DBUG_RETURN(read_plan); } QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { QUICK_INDEX_MERGE_SELECT *quick_imerge; QUICK_RANGE_SELECT *quick; /* index_merge always retrieves full rows, ignore retrieve_full_rows */ if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table))) return NULL; quick_imerge->records= records; quick_imerge->read_time= read_cost; for(TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end; range_scan++) { if (!(quick= (QUICK_RANGE_SELECT*) ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))|| quick_imerge->push_quick_back(quick)) { delete quick; delete quick_imerge; return NULL; } } return quick_imerge; } QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { QUICK_ROR_INTERSECT_SELECT *quick_intrsect; QUICK_RANGE_SELECT *quick; DBUG_ENTER("TRP_ROR_INTERSECT::make_quick"); MEM_ROOT *alloc; if ((quick_intrsect= new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table, retrieve_full_rows? (!is_covering):FALSE, parent_alloc))) { DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "creating ROR-intersect", first_scan, last_scan);); alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc; for(; first_scan != last_scan;++first_scan) { if (!(quick= get_quick_select(param, (*first_scan)->idx, (*first_scan)->sel_arg, alloc)) || quick_intrsect->push_quick_back(quick)) { delete quick_intrsect; DBUG_RETURN(NULL); } } if (cpk_scan) { if (!(quick= get_quick_select(param, cpk_scan->idx, cpk_scan->sel_arg, alloc))) { delete quick_intrsect; DBUG_RETURN(NULL); } quick->file= NULL; quick_intrsect->cpk_quick= quick; } quick_intrsect->records= records; quick_intrsect->read_time= read_cost; } DBUG_RETURN(quick_intrsect); } QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { QUICK_ROR_UNION_SELECT *quick_roru; TABLE_READ_PLAN **scan; QUICK_SELECT_I *quick; DBUG_ENTER("TRP_ROR_UNION::make_quick"); /* It is impossible to construct a ROR-union that will not retrieve full rows, ignore retrieve_full_rows parameter. */ if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table))) { for(scan= first_ror; scan != last_ror; scan++) { if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) || quick_roru->push_quick_back(quick)) DBUG_RETURN(NULL); } quick_roru->records= records; quick_roru->read_time= read_cost; } DBUG_RETURN(quick_roru); } /* Build a SEL_TREE for a simple predicate SYNOPSIS get_func_mm_tree() param PARAM from SQL_SELECT::test_quick_select cond_func item for the predicate field field in the predicate value constant in the predicate cmp_type compare type for the field RETURN Pointer to thre built tree */ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func, Field *field, Item *value, Item_result cmp_type) { SEL_TREE *tree= 0; DBUG_ENTER("get_func_mm_tree"); switch (cond_func->functype()) { case Item_func::NE_FUNC: tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC, value, cmp_type); if (tree) { tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, Item_func::GT_FUNC, value, cmp_type)); } break; case Item_func::BETWEEN: tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC, cond_func->arguments()[1],cmp_type); if (tree) { tree= tree_and(param, tree, get_mm_parts(param, cond_func, field, Item_func::LE_FUNC, cond_func->arguments()[2], cmp_type)); } break; case Item_func::IN_FUNC: { Item_func_in *func=(Item_func_in*) cond_func; tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC, func->arguments()[1], cmp_type); if (tree) { Item **arg, **end; for (arg= func->arguments()+2, end= arg+func->argument_count()-2; arg < end ; arg++) { tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC, *arg, cmp_type)); } } break; } default: { /* Here the function for the following predicates are processed: <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL. If the predicate is of the form (value op field) it is handled as the equivalent predicate (field rev_op value), e.g. 2 <= a is handled as a >= 2. */ Item_func::Functype func_type= (value != cond_func->arguments()[0]) ? cond_func->functype() : ((Item_bool_func2*) cond_func)->rev_functype(); tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type); } } DBUG_RETURN(tree); } /* make a select tree of all keys in condition */ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond) { SEL_TREE *tree=0; SEL_TREE *ftree= 0; Item_field *field_item= 0; Item *value; DBUG_ENTER("get_mm_tree"); if (cond->type() == Item::COND_ITEM) { List_iterator li(*((Item_cond*) cond)->argument_list()); if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { tree=0; Item *item; while ((item=li++)) { SEL_TREE *new_tree=get_mm_tree(param,item); if (param->thd->is_fatal_error) DBUG_RETURN(0); // out of memory tree=tree_and(param,tree,new_tree); if (tree && tree->type == SEL_TREE::IMPOSSIBLE) break; } } else { // COND OR tree=get_mm_tree(param,li++); if (tree) { Item *item; while ((item=li++)) { SEL_TREE *new_tree=get_mm_tree(param,item); if (!new_tree) DBUG_RETURN(0); // out of memory tree=tree_or(param,tree,new_tree); if (!tree || tree->type == SEL_TREE::ALWAYS) break; } } } DBUG_RETURN(tree); } /* Here when simple cond */ if (cond->const_item()) { if (cond->val_int()) DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS)); DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE)); } table_map ref_tables= 0; table_map param_comp= ~(param->prev_tables | param->read_tables | param->current_table); if (cond->type() != Item::FUNC_ITEM) { // Should be a field ref_tables= cond->used_tables(); if ((ref_tables & param->current_table) || (ref_tables & ~(param->prev_tables | param->read_tables))) DBUG_RETURN(0); DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); } Item_func *cond_func= (Item_func*) cond; if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE) DBUG_RETURN(0); // Can't be calculated switch (cond_func->functype()) { case Item_func::BETWEEN: if (cond_func->arguments()[0]->type() != Item::FIELD_ITEM) DBUG_RETURN(0); field_item= (Item_field*) (cond_func->arguments()[0]); value= NULL; break; case Item_func::IN_FUNC: { Item_func_in *func=(Item_func_in*) cond_func; if (func->key_item()->type() != Item::FIELD_ITEM) DBUG_RETURN(0); field_item= (Item_field*) (func->key_item()); value= NULL; break; } case Item_func::MULT_EQUAL_FUNC: { Item_equal *item_equal= (Item_equal *) cond; if (!(value= item_equal->get_const())) DBUG_RETURN(0); Item_equal_iterator it(*item_equal); ref_tables= value->used_tables(); while ((field_item= it++)) { Field *field= field_item->field; Item_result cmp_type= field->cmp_type(); if (!((ref_tables | field->table->map) & param_comp)) { tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC, value,cmp_type); ftree= !ftree ? tree : tree_and(param, ftree, tree); } } DBUG_RETURN(ftree); } static SEL_TREE * get_mm_parts(PARAM *param, COND *cond_func, Field *field, Item_func::Functype type, Item *value, Item_result cmp_type) { DBUG_ENTER("get_mm_parts"); if (field->table != param->table) DBUG_RETURN(0); KEY_PART *key_part = param->key_parts; KEY_PART *end = param->key_parts_end; SEL_TREE *tree=0; if (value && value->used_tables() & ~(param->prev_tables | param->read_tables)) DBUG_RETURN(0); for (; key_part != end ; key_part++) { if (field->eq(key_part->field)) { SEL_ARG *sel_arg=0; if (!tree && !(tree=new SEL_TREE())) DBUG_RETURN(0); // OOM if (!value || !(value->used_tables() & ~param->read_tables)) { sel_arg=get_mm_leaf(param,cond_func, key_part->field,key_part,type,value); if (!sel_arg) continue; if (sel_arg->type == SEL_ARG::IMPOSSIBLE) { tree->type=SEL_TREE::IMPOSSIBLE; DBUG_RETURN(tree); } } else { // This key may be used later if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY))) DBUG_RETURN(0); // OOM } sel_arg->part=(uchar) key_part->part; tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg); tree->keys_map.set_bit(key_part->key); } } DBUG_RETURN(tree); } static SEL_ARG * get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part, Item_func::Functype type,Item *value) { uint maybe_null=(uint) field->real_maybe_null(), copies; uint field_length=field->pack_length()+maybe_null; bool optimize_range; SEL_ARG *tree; char *str, *str2; DBUG_ENTER("get_mm_leaf"); if (!value) // IS NULL or IS NOT NULL { if (field->table->outer_join) // Can't use a key on this DBUG_RETURN(0); if (!maybe_null) // Not null field DBUG_RETURN(type == Item_func::ISNULL_FUNC ? &null_element : 0); if (!(tree=new SEL_ARG(field,is_null_string,is_null_string))) DBUG_RETURN(0); // out of memory if (type == Item_func::ISNOTNULL_FUNC) { tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */ tree->max_flag=NO_MAX_RANGE; } DBUG_RETURN(tree); } /* We can't use an index when comparing strings of different collations */ if (field->result_type() == STRING_RESULT && value->result_type() == STRING_RESULT && key_part->image_type == Field::itRAW && ((Field_str*)field)->charset() != conf_func->compare_collation()) DBUG_RETURN(0); optimize_range= field->optimize_range(param->real_keynr[key_part->key], key_part->part); if (type == Item_func::LIKE_FUNC) { bool like_error; char buff1[MAX_FIELD_WIDTH],*min_str,*max_str; String tmp(buff1,sizeof(buff1),value->collation.collation),*res; uint length,offset,min_length,max_length; if (!optimize_range) DBUG_RETURN(0); // Can't optimize this if (!(res= value->val_str(&tmp))) DBUG_RETURN(&null_element); /* TODO: Check if this was a function. This should have be optimized away in the sql_select.cc */ if (res != &tmp) { tmp.copy(*res); // Get own copy res= &tmp; } if (field->cmp_type() != STRING_RESULT) DBUG_RETURN(0); // Can only optimize strings offset=maybe_null; length=key_part->store_length; if (length != key_part->length + maybe_null) { /* key packed with length prefix */ offset+= HA_KEY_BLOB_LENGTH; field_length= length - HA_KEY_BLOB_LENGTH; } else { if (unlikely(length < field_length)) { /* This can only happen in a table created with UNIREG where one key overlaps many fields */ length= field_length; } else field_length= length; } length+=offset; if (!(min_str= (char*) alloc_root(param->mem_root, length*2))) DBUG_RETURN(0); max_str=min_str+length; if (maybe_null) max_str[0]= min_str[0]=0; like_error= my_like_range(field->charset(), res->ptr(), res->length(), ((Item_func_like*)(param->cond))->escape, wild_one, wild_many, field_length-maybe_null, min_str+offset, max_str+offset, &min_length, &max_length); if (like_error) // Can't optimize with LIKE DBUG_RETURN(0); if (offset != maybe_null) // Blob { int2store(min_str+maybe_null,min_length); int2store(max_str+maybe_null,max_length); } DBUG_RETURN(new SEL_ARG(field,min_str,max_str)); } if (!optimize_range && type != Item_func::EQ_FUNC && type != Item_func::EQUAL_FUNC) DBUG_RETURN(0); // Can't optimize this /* We can't always use indexes when comparing a string index to a number cmp_type() is checked to allow compare of dates to numbers */ if (field->result_type() == STRING_RESULT && value->result_type() != STRING_RESULT && field->cmp_type() != value->result_type()) DBUG_RETURN(0); if (value->save_in_field_no_warnings(field, 1) < 0) { /* This happens when we try to insert a NULL field in a not null column */ DBUG_RETURN(&null_element); // cmp with NULL is never TRUE } /* Get local copy of key */ copies= 1; if (field->key_type() == HA_KEYTYPE_VARTEXT) copies= 2; str= str2= (char*) alloc_root(param->mem_root, (key_part->store_length)*copies+1); if (!str) DBUG_RETURN(0); if (maybe_null) *str= (char) field->is_real_null(); // Set to 1 if null field->get_key_image(str+maybe_null, key_part->length, field->charset(), key_part->image_type); if (copies == 2) { /* The key is stored as 2 byte length + key key doesn't match end space. In other words, a key 'X ' should match all rows between 'X' and 'X ...' */ uint length= uint2korr(str+maybe_null); str2= str+ key_part->store_length; /* remove end space */ while (length > 0 && str[length+HA_KEY_BLOB_LENGTH+maybe_null-1] == ' ') length--; int2store(str+maybe_null, length); /* Create key that is space filled */ memcpy(str2, str, length + HA_KEY_BLOB_LENGTH + maybe_null); my_fill_8bit(field->charset(), str2+ length+ HA_KEY_BLOB_LENGTH +maybe_null, key_part->length-length, ' '); int2store(str2+maybe_null, key_part->length); } if (!(tree=new SEL_ARG(field,str,str2))) DBUG_RETURN(0); // out of memory switch (type) { case Item_func::LT_FUNC: if (field_is_equal_to_item(field,value)) tree->max_flag=NEAR_MAX; /* fall through */ case Item_func::LE_FUNC: if (!maybe_null) tree->min_flag=NO_MIN_RANGE; /* From start */ else { // > NULL tree->min_value=is_null_string; tree->min_flag=NEAR_MIN; } break; case Item_func::GT_FUNC: if (field_is_equal_to_item(field,value)) tree->min_flag=NEAR_MIN; /* fall through */ case Item_func::GE_FUNC: tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_EQUALS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_DISJOINT_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_INTERSECTS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_TOUCHES_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_CROSSES_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_WITHIN_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_CONTAINS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_OVERLAPS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; default: break; } DBUG_RETURN(tree); } /****************************************************************************** ** Tree manipulation functions ** If tree is 0 it means that the condition can't be tested. It refers ** to a non existent table or to a field in current table with isn't a key. ** The different tree flags: ** IMPOSSIBLE: Condition is never TRUE ** ALWAYS: Condition is always TRUE ** MAYBE: Condition may exists when tables are read ** MAYBE_KEY: Condition refers to a key that may be used in join loop ** KEY_RANGE: Condition uses a key ******************************************************************************/ /* Add a new key test to a key when scanning through all keys This will never be called for same key parts. */ static SEL_ARG * sel_add(SEL_ARG *key1,SEL_ARG *key2) { SEL_ARG *root,**key_link; if (!key1) return key2; if (!key2) return key1; key_link= &root; while (key1 && key2) { if (key1->part < key2->part) { *key_link= key1; key_link= &key1->next_key_part; key1=key1->next_key_part; } else { *key_link= key2; key_link= &key2->next_key_part; key2=key2->next_key_part; } } *key_link=key1 ? key1 : key2; return root; } #define CLONE_KEY1_MAYBE 1 #define CLONE_KEY2_MAYBE 2 #define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1) static SEL_TREE * tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2) { DBUG_ENTER("tree_and"); if (!tree1) DBUG_RETURN(tree2); if (!tree2) DBUG_RETURN(tree1); if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree1); if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree2); if (tree1->type == SEL_TREE::MAYBE) { if (tree2->type == SEL_TREE::KEY) tree2->type=SEL_TREE::KEY_SMALLER; DBUG_RETURN(tree2); } if (tree2->type == SEL_TREE::MAYBE) { tree1->type=SEL_TREE::KEY_SMALLER; DBUG_RETURN(tree1); } key_map result_keys; result_keys.clear_all(); /* Join the trees key per key */ SEL_ARG **key1,**key2,**end; for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ; key1 != end ; key1++,key2++) { uint flag=0; if (*key1 || *key2) { if (*key1 && !(*key1)->simple_key()) flag|=CLONE_KEY1_MAYBE; if (*key2 && !(*key2)->simple_key()) flag|=CLONE_KEY2_MAYBE; *key1=key_and(*key1,*key2,flag); if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE) { tree1->type= SEL_TREE::IMPOSSIBLE; DBUG_RETURN(tree1); } result_keys.set_bit(key1 - tree1->keys); #ifdef EXTRA_DEBUG if (*key1) (*key1)->test_use_count(*key1); #endif } } tree1->keys_map= result_keys; /* dispose index_merge if there is a "range" option */ if (!result_keys.is_clear_all()) { tree1->merges.empty(); DBUG_RETURN(tree1); } /* ok, both trees are index_merge trees */ imerge_list_and_list(&tree1->merges, &tree2->merges); DBUG_RETURN(tree1); } /* Check if two SEL_TREES can be combined into one (i.e. a single key range read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without using index_merge. */ bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param) { key_map common_keys= tree1->keys_map; DBUG_ENTER("sel_trees_can_be_ored"); common_keys.intersect(tree2->keys_map); if (common_keys.is_clear_all()) DBUG_RETURN(FALSE); /* trees have a common key, check if they refer to same key part */ SEL_ARG **key1,**key2; for (uint key_no=0; key_no < param->keys; key_no++) { if (common_keys.is_set(key_no)) { key1= tree1->keys + key_no; key2= tree2->keys + key_no; if ((*key1)->part == (*key2)->part) { DBUG_RETURN(TRUE); } } } DBUG_RETURN(FALSE); } static SEL_TREE * tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2) { DBUG_ENTER("tree_or"); if (!tree1 || !tree2) DBUG_RETURN(0); if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree2); if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree1); if (tree1->type == SEL_TREE::MAYBE) DBUG_RETURN(tree1); // Can't use this if (tree2->type == SEL_TREE::MAYBE) DBUG_RETURN(tree2); SEL_TREE *result= 0; key_map result_keys; result_keys.clear_all(); if (sel_trees_can_be_ored(tree1, tree2, param)) { /* Join the trees key per key */ SEL_ARG **key1,**key2,**end; for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ; key1 != end ; key1++,key2++) { *key1=key_or(*key1,*key2); if (*key1) { result=tree1; // Added to tree1 result_keys.set_bit(key1 - tree1->keys); #ifdef EXTRA_DEBUG (*key1)->test_use_count(*key1); #endif } } if (result) result->keys_map= result_keys; } else { /* ok, two trees have KEY type but cannot be used without index merge */ if (tree1->merges.is_empty() && tree2->merges.is_empty()) { SEL_IMERGE *merge; /* both trees are "range" trees, produce new index merge structure */ if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) || (result->merges.push_back(merge)) || (merge->or_sel_tree(param, tree1)) || (merge->or_sel_tree(param, tree2))) result= NULL; else result->type= tree1->type; } else if (!tree1->merges.is_empty() && !tree2->merges.is_empty()) { if (imerge_list_or_list(param, &tree1->merges, &tree2->merges)) result= new SEL_TREE(SEL_TREE::ALWAYS); else result= tree1; } else { /* one tree is index merge tree and another is range tree */ if (tree1->merges.is_empty()) swap_variables(SEL_TREE*, tree1, tree2); /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */ if (imerge_list_or_tree(param, &tree1->merges, tree2)) result= new SEL_TREE(SEL_TREE::ALWAYS); else result= tree1; } } DBUG_RETURN(result); } /* And key trees where key1->part < key2 -> part */ static SEL_ARG * and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag) { SEL_ARG *next; ulong use_count=key1->use_count; if (key1->elements != 1) { key2->use_count+=key1->elements-1; key2->increment_use_count((int) key1->elements-1); } if (key1->type == SEL_ARG::MAYBE_KEY) { key1->right= key1->left= &null_element; key1->next= key1->prev= 0; } for (next=key1->first(); next ; next=next->next) { if (next->next_key_part) { SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag); if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE) { key1=key1->tree_delete(next); continue; } next->next_key_part=tmp; if (use_count) next->increment_use_count(use_count); } else next->next_key_part=key2; } if (!key1) return &null_element; // Impossible ranges key1->use_count++; return key1; } static SEL_ARG * key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag) { if (!key1) return key2; if (!key2) return key1; if (key1->part != key2->part) { if (key1->part > key2->part) { swap_variables(SEL_ARG *, key1, key2); clone_flag=swap_clone_flag(clone_flag); } // key1->part < key2->part key1->use_count--; if (key1->use_count > 0) if (!(key1= key1->clone_tree())) return 0; // OOM return and_all_keys(key1,key2,clone_flag); } if (((clone_flag & CLONE_KEY2_MAYBE) && !(clone_flag & CLONE_KEY1_MAYBE) && key2->type != SEL_ARG::MAYBE_KEY) || key1->type == SEL_ARG::MAYBE_KEY) { // Put simple key in key2 swap_variables(SEL_ARG *, key1, key2); clone_flag=swap_clone_flag(clone_flag); } // If one of the key is MAYBE_KEY then the found region may be smaller if (key2->type == SEL_ARG::MAYBE_KEY) { if (key1->use_count > 1) { key1->use_count--; if (!(key1=key1->clone_tree())) return 0; // OOM key1->use_count++; } if (key1->type == SEL_ARG::MAYBE_KEY) { // Both are maybe key key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part, clone_flag); if (key1->next_key_part && key1->next_key_part->type == SEL_ARG::IMPOSSIBLE) return key1; } else { key1->maybe_smaller(); if (key2->next_key_part) { key1->use_count--; // Incremented in and_all_keys return and_all_keys(key1,key2,clone_flag); } key2->use_count--; // Key2 doesn't have a tree } return key1; } if ((key1->min_flag | key2->min_flag) & GEOM_FLAG) { key1->free_tree(); key2->free_tree(); return 0; // Can't optimize this } key1->use_count--; key2->use_count--; SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0; while (e1 && e2) { int cmp=e1->cmp_min_to_min(e2); if (cmp < 0) { if (get_range(&e1,&e2,key1)) continue; } else if (get_range(&e2,&e1,key2)) continue; SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag); e1->increment_use_count(1); e2->increment_use_count(1); if (!next || next->type != SEL_ARG::IMPOSSIBLE) { SEL_ARG *new_arg= e1->clone_and(e2); if (!new_arg) return &null_element; // End of memory new_arg->next_key_part=next; if (!new_tree) { new_tree=new_arg; } else new_tree=new_tree->insert(new_arg); } if (e1->cmp_max_to_max(e2) < 0) e1=e1->next; // e1 can't overlapp next e2 else e2=e2->next; } key1->free_tree(); key2->free_tree(); if (!new_tree) return &null_element; // Impossible range return new_tree; } static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1) { (*e1)=root1->find_range(*e2); // first e1->min < e2->min if ((*e1)->cmp_max_to_min(*e2) < 0) { if (!((*e1)=(*e1)->next)) return 1; if ((*e1)->cmp_min_to_max(*e2) > 0) { (*e2)=(*e2)->next; return 1; } } return 0; } static SEL_ARG * key_or(SEL_ARG *key1,SEL_ARG *key2) { if (!key1) { if (key2) { key2->use_count--; key2->free_tree(); } return 0; } if (!key2) { key1->use_count--; key1->free_tree(); return 0; } key1->use_count--; key2->use_count--; if (key1->part != key2->part || (key1->min_flag | key2->min_flag) & GEOM_FLAG) { key1->free_tree(); key2->free_tree(); return 0; // Can't optimize this } // If one of the key is MAYBE_KEY then the found region may be bigger if (key1->type == SEL_ARG::MAYBE_KEY) { key2->free_tree(); key1->use_count++; return key1; } if (key2->type == SEL_ARG::MAYBE_KEY) { key1->free_tree(); key2->use_count++; return key2; } if (key1->use_count > 0) { if (key2->use_count == 0 || key1->elements > key2->elements) { swap_variables(SEL_ARG *,key1,key2); } if (key1->use_count > 0 || !(key1=key1->clone_tree())) return 0; // OOM } // Add tree at key2 to tree at key1 bool key2_shared=key2->use_count != 0; key1->maybe_flag|=key2->maybe_flag; for (key2=key2->first(); key2; ) { SEL_ARG *tmp=key1->find_range(key2); // Find key1.min <= key2.min int cmp; if (!tmp) { tmp=key1->first(); // tmp.min > key2.min cmp= -1; } else if ((cmp=tmp->cmp_max_to_min(key2)) < 0) { // Found tmp.max < key2.min SEL_ARG *next=tmp->next; if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part)) { // Join near ranges like tmp.max < 0 and key2.min >= 0 SEL_ARG *key2_next=key2->next; if (key2_shared) { if (!(key2=new SEL_ARG(*key2))) return 0; // out of memory key2->increment_use_count(key1->use_count+1); key2->next=key2_next; // New copy of key2 } key2->copy_min(tmp); if (!(key1=key1->tree_delete(tmp))) { // Only one key in tree key1=key2; key1->make_root(); key2=key2_next; break; } } if (!(tmp=next)) // tmp.min > key2.min break; // Copy rest of key2 } if (cmp < 0) { // tmp.min > key2.min int tmp_cmp; if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max { if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part)) { // ranges are connected tmp->copy_min_to_min(key2); key1->merge_flags(key2); if (tmp->min_flag & NO_MIN_RANGE && tmp->max_flag & NO_MAX_RANGE) { if (key1->maybe_flag) return new SEL_ARG(SEL_ARG::MAYBE_KEY); return 0; } key2->increment_use_count(-1); // Free not used tree key2=key2->next; continue; } else { SEL_ARG *next=key2->next; // Keys are not overlapping if (key2_shared) { SEL_ARG *cpy= new SEL_ARG(*key2); // Must make copy if (!cpy) return 0; // OOM key1=key1->insert(cpy); key2->increment_use_count(key1->use_count+1); } else key1=key1->insert(key2); // Will destroy key2_root key2=next; continue; } } } // tmp.max >= key2.min && tmp.min <= key.max (overlapping ranges) if (eq_tree(tmp->next_key_part,key2->next_key_part)) { if (tmp->is_same(key2)) { tmp->merge_flags(key2); // Copy maybe flags key2->increment_use_count(-1); // Free not used tree } else { SEL_ARG *last=tmp; while (last->next && last->next->cmp_min_to_max(key2) <= 0 && eq_tree(last->next->next_key_part,key2->next_key_part)) { SEL_ARG *save=last; last=last->next; key1=key1->tree_delete(save); } if (last->copy_min(key2) || last->copy_max(key2)) { // Full range key1->free_tree(); for (; key2 ; key2=key2->next) key2->increment_use_count(-1); // Free not used tree if (key1->maybe_flag) return new SEL_ARG(SEL_ARG::MAYBE_KEY); return 0; } } key2=key2->next; continue; } if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0) { // tmp.min <= x < key2.min SEL_ARG *new_arg=tmp->clone_first(key2); if (!new_arg) return 0; // OOM if ((new_arg->next_key_part= key1->next_key_part)) new_arg->increment_use_count(key1->use_count+1); tmp->copy_min_to_min(key2); key1=key1->insert(new_arg); } // tmp.min >= key2.min && tmp.min <= key2.max SEL_ARG key(*key2); // Get copy we can modify for (;;) { if (tmp->cmp_min_to_min(&key) > 0) { // key.min <= x < tmp.min SEL_ARG *new_arg=key.clone_first(tmp); if (!new_arg) return 0; // OOM if ((new_arg->next_key_part=key.next_key_part)) new_arg->increment_use_count(key1->use_count+1); key1=key1->insert(new_arg); } if ((cmp=tmp->cmp_max_to_max(&key)) <= 0) { // tmp.min. <= x <= tmp.max tmp->maybe_flag|= key.maybe_flag; key.increment_use_count(key1->use_count+1); tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part); if (!cmp) // Key2 is ready break; key.copy_max_to_min(tmp); if (!(tmp=tmp->next)) { SEL_ARG *tmp2= new SEL_ARG(key); if (!tmp2) return 0; // OOM key1=key1->insert(tmp2); key2=key2->next; goto end; } if (tmp->cmp_min_to_max(&key) > 0) { SEL_ARG *tmp2= new SEL_ARG(key); if (!tmp2) return 0; // OOM key1=key1->insert(tmp2); break; } } else { SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max if (!new_arg) return 0; // OOM tmp->copy_max_to_min(&key); tmp->increment_use_count(key1->use_count+1); /* Increment key count as it may be used for next loop */ key.increment_use_count(1); new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part); key1=key1->insert(new_arg); break; } } key2=key2->next; } end: while (key2) { SEL_ARG *next=key2->next; if (key2_shared) { SEL_ARG *tmp=new SEL_ARG(*key2); // Must make copy if (!tmp) return 0; key2->increment_use_count(key1->use_count+1); key1=key1->insert(tmp); } else key1=key1->insert(key2); // Will destroy key2_root key2=next; } key1->use_count++; return key1; } /* Compare if two trees are equal */ static bool eq_tree(SEL_ARG* a,SEL_ARG *b) { if (a == b) return 1; if (!a || !b || !a->is_same(b)) return 0; if (a->left != &null_element && b->left != &null_element) { if (!eq_tree(a->left,b->left)) return 0; } else if (a->left != &null_element || b->left != &null_element) return 0; if (a->right != &null_element && b->right != &null_element) { if (!eq_tree(a->right,b->right)) return 0; } else if (a->right != &null_element || b->right != &null_element) return 0; if (a->next_key_part != b->next_key_part) { // Sub range if (!a->next_key_part != !b->next_key_part || !eq_tree(a->next_key_part, b->next_key_part)) return 0; } return 1; } SEL_ARG * SEL_ARG::insert(SEL_ARG *key) { SEL_ARG *element,**par,*last_element; LINT_INIT(par); LINT_INIT(last_element); for (element= this; element != &null_element ; ) { last_element=element; if (key->cmp_min_to_min(element) > 0) { par= &element->right; element= element->right; } else { par = &element->left; element= element->left; } } *par=key; key->parent=last_element; /* Link in list */ if (par == &last_element->left) { key->next=last_element; if ((key->prev=last_element->prev)) key->prev->next=key; last_element->prev=key; } else { if ((key->next=last_element->next)) key->next->prev=key; key->prev=last_element; last_element->next=key; } key->left=key->right= &null_element; SEL_ARG *root=rb_insert(key); // rebalance tree root->use_count=this->use_count; // copy root info root->elements= this->elements+1; root->maybe_flag=this->maybe_flag; return root; } /* ** Find best key with min <= given key ** Because the call context this should never return 0 to get_range */ SEL_ARG * SEL_ARG::find_range(SEL_ARG *key) { SEL_ARG *element=this,*found=0; for (;;) { if (element == &null_element) return found; int cmp=element->cmp_min_to_min(key); if (cmp == 0) return element; if (cmp < 0) { found=element; element=element->right; } else element=element->left; } } /* Remove a element from the tree SYNOPSIS tree_delete() key Key that is to be deleted from tree (this) NOTE This also frees all sub trees that is used by the element RETURN root of new tree (with key deleted) */ SEL_ARG * SEL_ARG::tree_delete(SEL_ARG *key) { enum leaf_color remove_color; SEL_ARG *root,*nod,**par,*fix_par; DBUG_ENTER("tree_delete"); root=this; this->parent= 0; /* Unlink from list */ if (key->prev) key->prev->next=key->next; if (key->next) key->next->prev=key->prev; key->increment_use_count(-1); if (!key->parent) par= &root; else par=key->parent_ptr(); if (key->left == &null_element) { *par=nod=key->right; fix_par=key->parent; if (nod != &null_element) nod->parent=fix_par; remove_color= key->color; } else if (key->right == &null_element) { *par= nod=key->left; nod->parent=fix_par=key->parent; remove_color= key->color; } else { SEL_ARG *tmp=key->next; // next bigger key (exist!) nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree fix_par=tmp->parent; if (nod != &null_element) nod->parent=fix_par; remove_color= tmp->color; tmp->parent=key->parent; // Move node in place of key (tmp->left=key->left)->parent=tmp; if ((tmp->right=key->right) != &null_element) tmp->right->parent=tmp; tmp->color=key->color; *par=tmp; if (fix_par == key) // key->right == key->next fix_par=tmp; // new parent of nod } if (root == &null_element) DBUG_RETURN(0); // Maybe root later if (remove_color == BLACK) root=rb_delete_fixup(root,nod,fix_par); test_rb_tree(root,root->parent); root->use_count=this->use_count; // Fix root counters root->elements=this->elements-1; root->maybe_flag=this->maybe_flag; DBUG_RETURN(root); } /* Functions to fix up the tree after insert and delete */ static void left_rotate(SEL_ARG **root,SEL_ARG *leaf) { SEL_ARG *y=leaf->right; leaf->right=y->left; if (y->left != &null_element) y->left->parent=leaf; if (!(y->parent=leaf->parent)) *root=y; else *leaf->parent_ptr()=y; y->left=leaf; leaf->parent=y; } static void right_rotate(SEL_ARG **root,SEL_ARG *leaf) { SEL_ARG *y=leaf->left; leaf->left=y->right; if (y->right != &null_element) y->right->parent=leaf; if (!(y->parent=leaf->parent)) *root=y; else *leaf->parent_ptr()=y; y->right=leaf; leaf->parent=y; } SEL_ARG * SEL_ARG::rb_insert(SEL_ARG *leaf) { SEL_ARG *y,*par,*par2,*root; root= this; root->parent= 0; leaf->color=RED; while (leaf != root && (par= leaf->parent)->color == RED) { // This can't be root or 1 level under if (par == (par2= leaf->parent->parent)->left) { y= par2->right; if (y->color == RED) { par->color=BLACK; y->color=BLACK; leaf=par2; leaf->color=RED; /* And the loop continues */ } else { if (leaf == par->right) { left_rotate(&root,leaf->parent); par=leaf; /* leaf is now parent to old leaf */ } par->color=BLACK; par2->color=RED; right_rotate(&root,par2); break; } } else { y= par2->left; if (y->color == RED) { par->color=BLACK; y->color=BLACK; leaf=par2; leaf->color=RED; /* And the loop continues */ } else { if (leaf == par->left) { right_rotate(&root,par); par=leaf; } par->color=BLACK; par2->color=RED; left_rotate(&root,par2); break; } } } root->color=BLACK; test_rb_tree(root,root->parent); return root; } SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par) { SEL_ARG *x,*w; root->parent=0; x= key; while (x != root && x->color == SEL_ARG::BLACK) { if (x == par->left) { w=par->right; if (w->color == SEL_ARG::RED) { w->color=SEL_ARG::BLACK; par->color=SEL_ARG::RED; left_rotate(&root,par); w=par->right; } if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK) { w->color=SEL_ARG::RED; x=par; } else { if (w->right->color == SEL_ARG::BLACK) { w->left->color=SEL_ARG::BLACK; w->color=SEL_ARG::RED; right_rotate(&root,w); w=par->right; } w->color=par->color; par->color=SEL_ARG::BLACK; w->right->color=SEL_ARG::BLACK; left_rotate(&root,par); x=root; break; } } else { w=par->left; if (w->color == SEL_ARG::RED) { w->color=SEL_ARG::BLACK; par->color=SEL_ARG::RED; right_rotate(&root,par); w=par->left; } if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK) { w->color=SEL_ARG::RED; x=par; } else { if (w->left->color == SEL_ARG::BLACK) { w->right->color=SEL_ARG::BLACK; w->color=SEL_ARG::RED; left_rotate(&root,w); w=par->left; } w->color=par->color; par->color=SEL_ARG::BLACK; w->left->color=SEL_ARG::BLACK; right_rotate(&root,par); x=root; break; } } par=x->parent; } x->color=SEL_ARG::BLACK; return root; } /* Test that the properties for a red-black tree hold */ #ifdef EXTRA_DEBUG int test_rb_tree(SEL_ARG *element,SEL_ARG *parent) { int count_l,count_r; if (element == &null_element) return 0; // Found end of tree if (element->parent != parent) { sql_print_error("Wrong tree: Parent doesn't point at parent"); return -1; } if (element->color == SEL_ARG::RED && (element->left->color == SEL_ARG::RED || element->right->color == SEL_ARG::RED)) { sql_print_error("Wrong tree: Found two red in a row"); return -1; } if (element->left == element->right && element->left != &null_element) { // Dummy test sql_print_error("Wrong tree: Found right == left"); return -1; } count_l=test_rb_tree(element->left,element); count_r=test_rb_tree(element->right,element); if (count_l >= 0 && count_r >= 0) { if (count_l == count_r) return count_l+(element->color == SEL_ARG::BLACK); sql_print_error("Wrong tree: Incorrect black-count: %d - %d", count_l,count_r); } return -1; // Error, no more warnings } static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key) { ulong count= 0; for (root=root->first(); root ; root=root->next) { if (root->next_key_part) { if (root->next_key_part == key) count++; if (root->next_key_part->part < key->part) count+=count_key_part_usage(root->next_key_part,key); } } return count; } void SEL_ARG::test_use_count(SEL_ARG *root) { uint e_count=0; if (this == root && use_count != 1) { sql_print_error("Note: Use_count: Wrong count %lu for root",use_count); return; } if (this->type != SEL_ARG::KEY_RANGE) return; for (SEL_ARG *pos=first(); pos ; pos=pos->next) { e_count++; if (pos->next_key_part) { ulong count=count_key_part_usage(root,pos->next_key_part); if (count > pos->next_key_part->use_count) { sql_print_error("Note: Use_count: Wrong count for key at 0x%lx, %lu should be %lu", pos,pos->next_key_part->use_count,count); return; } pos->next_key_part->test_use_count(root); } } if (e_count != elements) sql_print_error("Warning: Wrong use count: %u (should be %u) for tree at 0x%lx", e_count, elements, (gptr) this); } #endif /* Calculate estimate of number records that will be retrieved by a range scan on given index using given SEL_ARG intervals tree. SYNOPSIS check_quick_select param Parameter from test_quick_select idx Number of index to use in PARAM::key SEL_TREE::key tree Transformed selection condition, tree->key[idx] holds intervals tree to be used for scanning. NOTES param->is_ror_scan is set to reflect if the key scan is a ROR (see is_key_scan_ror function for more info) param->table->quick_*, param->range_count (and maybe others) are updated with data of given key scan, see check_quick_keys for details. RETURN Estimate # of records to be retrieved. HA_POS_ERROR if estimate calculation failed due to table handler problems. */ static ha_rows check_quick_select(PARAM *param,uint idx,SEL_ARG *tree) { ha_rows records; bool cpk_scan; uint key; DBUG_ENTER("check_quick_select"); param->is_ror_scan= FALSE; if (!tree) DBUG_RETURN(HA_POS_ERROR); // Can't use it param->max_key_part=0; param->range_count=0; key= param->real_keynr[idx]; if (tree->type == SEL_ARG::IMPOSSIBLE) DBUG_RETURN(0L); // Impossible select. return if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0) DBUG_RETURN(HA_POS_ERROR); // Don't use tree enum ha_key_alg key_alg= param->table->key_info[key].algorithm; if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF)) { /* Records are not ordered by rowid for other types of indexes. */ cpk_scan= FALSE; } else { /* Clustered PK scan is a special case, check_quick_keys doesn't recognize CPK scans as ROR scans (while actually any CPK scan is a ROR scan). */ cpk_scan= (param->table->primary_key == param->real_keynr[idx]) && param->table->file->primary_key_is_clustered(); param->is_ror_scan= !cpk_scan; } records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0); if (records != HA_POS_ERROR) { param->table->quick_keys.set_bit(key); param->table->quick_rows[key]=records; param->table->quick_key_parts[key]=param->max_key_part+1; if (cpk_scan) param->is_ror_scan= TRUE; } DBUG_PRINT("exit", ("Records: %lu", (ulong) records)); DBUG_RETURN(records); } /* Recursively calculate estimate of # rows that will be retrieved by key scan on key idx. SYNOPSIS check_quick_keys() param Parameter from test_quick select function. idx Number of key to use in PARAM::keys in list of used keys (param->real_keynr[idx] holds the key number in table) key_tree SEL_ARG tree being examined. min_key Buffer with partial min key value tuple min_key_flag max_key Buffer with partial max key value tuple max_key_flag NOTES The function does the recursive descent on the tree via SEL_ARG::left, SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates are calculated using records_in_range calls at the leaf nodes and then summed. param->min_key and param->max_key are used to hold prefixes of key value tuples. The side effects are: param->max_key_part is updated to hold the maximum number of key parts used in scan minus 1. param->range_count is incremented if the function finds a range that wasn't counted by the caller. param->is_ror_scan is cleared if the function detects that the key scan is not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror function for description of which key scans are ROR scans) */ static ha_rows check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree, char *min_key,uint min_key_flag, char *max_key, uint max_key_flag) { ha_rows records=0,tmp; param->max_key_part=max(param->max_key_part,key_tree->part); if (key_tree->left != &null_element) { /* There are at least two intervals for current key part, i.e. condition was converted to something like (keyXpartY less/equals c1) OR (keyXpartY more/equals c2). This is not a ROR scan if the key is not Clustered Primary Key. */ param->is_ror_scan= FALSE; records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag, max_key,max_key_flag); if (records == HA_POS_ERROR) // Impossible return records; } uint tmp_min_flag,tmp_max_flag,keynr; char *tmp_min_key=min_key,*tmp_max_key=max_key; key_tree->store(param->key[idx][key_tree->part].store_length, &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag); uint min_key_length= (uint) (tmp_min_key- param->min_key); uint max_key_length= (uint) (tmp_max_key- param->max_key); if (param->is_ror_scan) { /* If the index doesn't cover entire key, mark the scan as non-ROR scan. Actually we're cutting off some ROR scans here. */ uint16 fieldnr= param->table->key_info[param->real_keynr[idx]]. key_part[key_tree->part].fieldnr - 1; if (param->table->field[fieldnr]->key_length() != param->key[idx][key_tree->part].length) param->is_ror_scan= FALSE; } if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) { // const key as prefix if (min_key_length == max_key_length && !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) && !key_tree->min_flag && !key_tree->max_flag) { tmp=check_quick_keys(param,idx,key_tree->next_key_part, tmp_min_key, min_key_flag | key_tree->min_flag, tmp_max_key, max_key_flag | key_tree->max_flag); goto end; // Ugly, but efficient } else { /* The interval for current key part is not c1 <= keyXpartY <= c1 */ param->is_ror_scan= FALSE; } tmp_min_flag=key_tree->min_flag; tmp_max_flag=key_tree->max_flag; if (!tmp_min_flag) key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key, &tmp_min_flag); if (!tmp_max_flag) key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key, &tmp_max_flag); min_key_length= (uint) (tmp_min_key- param->min_key); max_key_length= (uint) (tmp_max_key- param->max_key); } else { tmp_min_flag=min_key_flag | key_tree->min_flag; tmp_max_flag=max_key_flag | key_tree->max_flag; } keynr=param->real_keynr[idx]; param->range_count++; if (!tmp_min_flag && ! tmp_max_flag && (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts && (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME && min_key_length == max_key_length && !memcmp(param->min_key,param->max_key,min_key_length)) tmp=1; // Max one record else { if (param->is_ror_scan) { /* If we get here, the condition on the key was converted to form "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND somecond(keyXpart{key_tree->part})" Check if somecond is "keyXpart{key_tree->part} = const" and uncovered "tail" of KeyX parts is either empty or is identical to first members of clustered primary key. */ if (!(min_key_length == max_key_length && !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) && !key_tree->min_flag && !key_tree->max_flag && is_key_scan_ror(param, keynr, key_tree->part + 1))) param->is_ror_scan= FALSE; } if (tmp_min_flag & GEOM_FLAG) { key_range min_range; min_range.key= (byte*) param->min_key; min_range.length= min_key_length; /* In this case tmp_min_flag contains the handler-read-function */ min_range.flag= (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG); tmp= param->table->file->records_in_range(keynr, &min_range, (key_range*) 0); } else { key_range min_range, max_range; min_range.key= (byte*) param->min_key; min_range.length= min_key_length; min_range.flag= (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY : HA_READ_KEY_EXACT); max_range.key= (byte*) param->max_key; max_range.length= max_key_length; max_range.flag= (tmp_max_flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY); tmp=param->table->file->records_in_range(keynr, (min_key_length ? &min_range : (key_range*) 0), (max_key_length ? &max_range : (key_range*) 0)); } } end: if (tmp == HA_POS_ERROR) // Impossible range return tmp; records+=tmp; if (key_tree->right != &null_element) { /* There are at least two intervals for current key part, i.e. condition was converted to something like (keyXpartY less/equals c1) OR (keyXpartY more/equals c2). This is not a ROR scan if the key is not Clustered Primary Key. */ param->is_ror_scan= FALSE; tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag, max_key,max_key_flag); if (tmp == HA_POS_ERROR) return tmp; records+=tmp; } return records; } /* Check if key scan on given index with equality conditions on first n key parts is a ROR scan. SYNOPSIS is_key_scan_ror() param Parameter from test_quick_select keynr Number of key in the table. The key must not be a clustered primary key. nparts Number of first key parts for which equality conditions are present. NOTES ROR (Rowid Ordered Retrieval) key scan is a key scan that produces ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function) An index scan is a ROR scan if it is done using a condition in form "key1_1=c_1 AND ... AND key1_n=c_n" (1) where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n]) and the table has a clustered Primary Key PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being identical to uncovered parts ot the key being scanned (2) Scans on HASH indexes are not ROR scans, any range scan on clustered primary key is ROR scan (3) Check (1) is made in check_quick_keys() Check (3) is made check_quick_select() Check (2) is made by this function. RETURN TRUE If the scan is ROR-scan FALSE otherwise */ static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts) { KEY *table_key= param->table->key_info + keynr; KEY_PART_INFO *key_part= table_key->key_part + nparts; KEY_PART_INFO *key_part_end= table_key->key_part + table_key->key_parts; if (key_part == key_part_end) return TRUE; uint pk_number= param->table->primary_key; if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY) return FALSE; KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part; KEY_PART_INFO *pk_part_end= pk_part + param->table->key_info[pk_number].key_parts; for(;(key_part!=key_part_end) && (pk_part != pk_part_end); ++key_part, ++pk_part) { if ((key_part->field != pk_part->field) || (key_part->length != pk_part->length)) return FALSE; } return (key_part == key_part_end); } /* Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key. SYNOPSIS get_quick_select() param idx Index of used key in param->key. key_tree SEL_ARG tree for the used key parent_alloc If not NULL, use it to allocate memory for quick select data. Otherwise use quick->alloc. RETURN NULL on error otherwise created quick select NOTES The caller must call QUICK_SELCT::init for returned quick select CAUTION! This function may change THR_MALLOC to a MEM_ROOT which will be deallocated when the returned quick select is deleted. */ QUICK_RANGE_SELECT * get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree, MEM_ROOT *parent_alloc) { QUICK_RANGE_SELECT *quick; DBUG_ENTER("get_quick_select"); if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL) quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table, param->real_keynr[idx], test(parent_alloc), parent_alloc); else quick=new QUICK_RANGE_SELECT(param->thd, param->table, param->real_keynr[idx], test(parent_alloc), parent_alloc); if (quick) { if (quick->error || get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0, param->max_key,0)) { delete quick; quick=0; } else { quick->key_parts=(KEY_PART*) memdup_root(parent_alloc? parent_alloc : &quick->alloc, (char*) param->key[idx], sizeof(KEY_PART)* param->table->key_info[param->real_keynr[idx]].key_parts); } } DBUG_RETURN(quick); } /* ** Fix this to get all possible sub_ranges */ bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key, SEL_ARG *key_tree,char *min_key,uint min_key_flag, char *max_key, uint max_key_flag) { QUICK_RANGE *range; uint flag; if (key_tree->left != &null_element) { if (get_quick_keys(param,quick,key,key_tree->left, min_key,min_key_flag, max_key, max_key_flag)) return 1; } char *tmp_min_key=min_key,*tmp_max_key=max_key; key_tree->store(key[key_tree->part].store_length, &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag); if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) { // const key as prefix if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) || memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) || key_tree->min_flag || key_tree->max_flag)) { if (get_quick_keys(param,quick,key,key_tree->next_key_part, tmp_min_key, min_key_flag | key_tree->min_flag, tmp_max_key, max_key_flag | key_tree->max_flag)) return 1; goto end; // Ugly, but efficient } { uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag; if (!tmp_min_flag) key_tree->next_key_part->store_min_key(key, &tmp_min_key, &tmp_min_flag); if (!tmp_max_flag) key_tree->next_key_part->store_max_key(key, &tmp_max_key, &tmp_max_flag); flag=tmp_min_flag | tmp_max_flag; } } else { flag = (key_tree->min_flag & GEOM_FLAG) ? key_tree->min_flag : key_tree->min_flag | key_tree->max_flag; } /* Ensure that some part of min_key and max_key are used. If not, regard this as no lower/upper range */ if ((flag & GEOM_FLAG) == 0) { if (tmp_min_key != param->min_key) flag&= ~NO_MIN_RANGE; else flag|= NO_MIN_RANGE; if (tmp_max_key != param->max_key) flag&= ~NO_MAX_RANGE; else flag|= NO_MAX_RANGE; } if (flag == 0) { uint length= (uint) (tmp_min_key - param->min_key); if (length == (uint) (tmp_max_key - param->max_key) && !memcmp(param->min_key,param->max_key,length)) { KEY *table_key=quick->head->key_info+quick->index; flag=EQ_RANGE; if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME && key->part == table_key->key_parts-1) { if (!(table_key->flags & HA_NULL_PART_KEY) || !null_part_in_key(key, param->min_key, (uint) (tmp_min_key - param->min_key))) flag|= UNIQUE_RANGE; else flag|= NULL_RANGE; } } } /* Get range for retrieving rows in QUICK_SELECT::get_next */ if (!(range= new QUICK_RANGE((const char *) param->min_key, (uint) (tmp_min_key - param->min_key), (const char *) param->max_key, (uint) (tmp_max_key - param->max_key), flag))) return 1; // out of memory set_if_bigger(quick->max_used_key_length,range->min_length); set_if_bigger(quick->max_used_key_length,range->max_length); set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1); if (insert_dynamic(&quick->ranges, (gptr)&range)) return 1; end: if (key_tree->right != &null_element) return get_quick_keys(param,quick,key,key_tree->right, min_key,min_key_flag, max_key,max_key_flag); return 0; } /* Return 1 if there is only one range and this uses the whole primary key */ bool QUICK_RANGE_SELECT::unique_key_range() { if (ranges.elements == 1) { QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer); if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE) { KEY *key=head->key_info+index; return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME && key->key_length == tmp->min_length); } } return 0; } /* Returns TRUE if any part of the key is NULL */ static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length) { for (const char *end=key+length ; key < end; key+= key_part++->store_length) { if (key_part->null_bit && *key) return 1; } return 0; } bool QUICK_SELECT_I::check_if_keys_used(List *fields) { return check_if_key_used(head, index, *fields); } bool QUICK_INDEX_MERGE_SELECT::check_if_keys_used(List *fields) { QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (check_if_key_used(head, quick->index, *fields)) return 1; } return 0; } bool QUICK_ROR_INTERSECT_SELECT::check_if_keys_used(List *fields) { QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (check_if_key_used(head, quick->index, *fields)) return 1; } return 0; } bool QUICK_ROR_UNION_SELECT::check_if_keys_used(List *fields) { QUICK_SELECT_I *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (quick->check_if_keys_used(fields)) return 1; } return 0; } /**************************************************************************** Create a QUICK RANGE based on a key ****************************************************************************/ QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, TABLE_REF *ref) { QUICK_RANGE_SELECT *quick=new QUICK_RANGE_SELECT(thd, table, ref->key, 1); KEY *key_info = &table->key_info[ref->key]; KEY_PART *key_part; QUICK_RANGE *range; uint part; if (!quick) return 0; /* no ranges found */ if (quick->init()) { delete quick; return 0; } if (cp_buffer_from_ref(ref)) { if (thd->is_fatal_error) goto err; // out of memory } if (!(range= new QUICK_RANGE())) goto err; // out of memory range->min_key=range->max_key=(char*) ref->key_buff; range->min_length=range->max_length=ref->key_length; range->flag= ((ref->key_length == key_info->key_length && (key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME) ? EQ_RANGE : 0); if (!(quick->key_parts=key_part=(KEY_PART *) alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts))) goto err; for (part=0 ; part < ref->key_parts ;part++,key_part++) { key_part->part=part; key_part->field= key_info->key_part[part].field; key_part->length= key_info->key_part[part].length; key_part->store_length= key_info->key_part[part].store_length; key_part->null_bit= key_info->key_part[part].null_bit; } if (insert_dynamic(&quick->ranges,(gptr)&range)) goto err; /* Add a NULL range if REF_OR_NULL optimization is used. For example: if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above and have ref->null_ref_key set. Will create a new NULL range here. */ if (ref->null_ref_key) { QUICK_RANGE *null_range; *ref->null_ref_key= 1; // Set null byte then create a range if (!(null_range= new QUICK_RANGE((char*)ref->key_buff, ref->key_length, (char*)ref->key_buff, ref->key_length, EQ_RANGE))) goto err; *ref->null_ref_key= 0; // Clear null byte if (insert_dynamic(&quick->ranges,(gptr)&null_range)) goto err; } return quick; err: delete quick; return 0; } /* Fetch all row ids into unique. If table has a clustered primary key that covers all rows (TRUE for bdb and innodb currently) and one of the index_merge scans is a scan on PK, then primary key scan rowids are not put into Unique and also rows that will be retrieved by PK scan are not put into Unique RETURN 0 OK other error */ int QUICK_INDEX_MERGE_SELECT::prepare_unique() { int result; DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique"); /* We're going to just read rowids. */ head->file->extra(HA_EXTRA_KEYREAD); /* Make innodb retrieve all PK member fields, so * ha_innobase::position (which uses them) call works. * We can filter out rows that will be retrieved by clustered PK. (This also creates a deficiency - it is possible that we will retrieve parts of key that are not used by current query at all.) */ head->file->extra(HA_EXTRA_RETRIEVE_ALL_COLS); cur_quick_select->init(); unique= new Unique(refpos_order_cmp, (void *)head->file, head->file->ref_length, thd->variables.sortbuff_size); if (!unique) DBUG_RETURN(1); for (;;) { while ((result= cur_quick_select->get_next()) == HA_ERR_END_OF_FILE) { cur_quick_select->range_end(); cur_quick_select= cur_quick_it++; if (!cur_quick_select) break; if (cur_quick_select->init()) DBUG_RETURN(1); /* QUICK_RANGE_SELECT::reset never fails */ cur_quick_select->reset(); } if (result) { if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); break; } if (thd->killed) DBUG_RETURN(1); /* skip row if it will be retrieved by clustered PK scan */ if (pk_quick_select && pk_quick_select->row_in_ranges()) continue; cur_quick_select->file->position(cur_quick_select->record); result= unique->unique_add((char*)cur_quick_select->file->ref); if (result) DBUG_RETURN(1); } /* ok, all row ids are in Unique */ result= unique->get(head); doing_pk_scan= FALSE; /* start table scan */ init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1); /* index_merge currently doesn't support "using index" at all */ head->file->extra(HA_EXTRA_NO_KEYREAD); DBUG_RETURN(result); } /* Get next row for index_merge. NOTES The rows are read from 1. rowids stored in Unique. 2. QUICK_RANGE_SELECT with clustered primary key (if any). The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint. */ int QUICK_INDEX_MERGE_SELECT::get_next() { int result; DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next"); if (doing_pk_scan) DBUG_RETURN(pk_quick_select->get_next()); result= read_record.read_record(&read_record); if (result == -1) { result= HA_ERR_END_OF_FILE; end_read_record(&read_record); /* All rows from Unique have been retrieved, do a clustered PK scan */ if (pk_quick_select) { doing_pk_scan= TRUE; if ((result= pk_quick_select->init())) DBUG_RETURN(result); DBUG_RETURN(pk_quick_select->get_next()); } } DBUG_RETURN(result); } /* Retrieve next record. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::get_next() NOTES Invariant on enter/exit: all intersected selects have retrieved all index records with rowid <= some_rowid_val and no intersected select has retrieved any index records with rowid > some_rowid_val. We start fresh and loop until we have retrieved the same rowid in each of the key scans or we got an error. If a Clustered PK scan is present, it is used only to check if row satisfies its condition (and never used for row retrieval). RETURN 0 - Ok other - Error code if any error occurred. */ int QUICK_ROR_INTERSECT_SELECT::get_next() { List_iterator_fast quick_it(quick_selects); QUICK_RANGE_SELECT* quick; int error, cmp; uint last_rowid_count=0; DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next"); /* Get a rowid for first quick and save it as a 'candidate' */ quick= quick_it++; if (cpk_quick) { do { error= quick->get_next(); }while (!error && !cpk_quick->row_in_ranges()); } else error= quick->get_next(); if (error) DBUG_RETURN(error); quick->file->position(quick->record); memcpy(last_rowid, quick->file->ref, head->file->ref_length); last_rowid_count= 1; while (last_rowid_count < quick_selects.elements) { if (!(quick= quick_it++)) { quick_it.rewind(); quick= quick_it++; } do { if ((error= quick->get_next())) DBUG_RETURN(error); quick->file->position(quick->record); cmp= head->file->cmp_ref(quick->file->ref, last_rowid); } while (cmp < 0); /* Ok, current select 'caught up' and returned ref >= cur_ref */ if (cmp > 0) { /* Found a row with ref > cur_ref. Make it a new 'candidate' */ if (cpk_quick) { while (!cpk_quick->row_in_ranges()) { if ((error= quick->get_next())) DBUG_RETURN(error); } } memcpy(last_rowid, quick->file->ref, head->file->ref_length); last_rowid_count= 1; } else { /* current 'candidate' row confirmed by this select */ last_rowid_count++; } } /* We get here iff we got the same row ref in all scans. */ if (need_to_fetch_row) error= head->file->rnd_pos(head->record[0], last_rowid); DBUG_RETURN(error); } /* Retrieve next record. SYNOPSIS QUICK_ROR_UNION_SELECT::get_next() NOTES Enter/exit invariant: For each quick select in the queue a {key,rowid} tuple has been retrieved but the corresponding row hasn't been passed to output. RETURN 0 - Ok other - Error code if any error occurred. */ int QUICK_ROR_UNION_SELECT::get_next() { int error, dup_row; QUICK_SELECT_I *quick; byte *tmp; DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next"); do { if (!queue.elements) DBUG_RETURN(HA_ERR_END_OF_FILE); /* Ok, we have a queue with >= 1 scans */ quick= (QUICK_SELECT_I*)queue_top(&queue); memcpy(cur_rowid, quick->last_rowid, rowid_length); /* put into queue rowid from the same stream as top element */ if ((error= quick->get_next())) { if (error != HA_ERR_END_OF_FILE) DBUG_RETURN(error); queue_remove(&queue, 0); } else { quick->save_last_pos(); queue_replaced(&queue); } if (!have_prev_rowid) { /* No rows have been returned yet */ dup_row= FALSE; have_prev_rowid= TRUE; } else dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid); }while (dup_row); tmp= cur_rowid; cur_rowid= prev_rowid; prev_rowid= tmp; error= head->file->rnd_pos(quick->record, prev_rowid); DBUG_RETURN(error); } /* get next possible record using quick-struct */ int QUICK_RANGE_SELECT::get_next() { DBUG_ENTER("QUICK_RANGE_SELECT::get_next"); for (;;) { int result; key_range start_key, end_key; if (range) { // Already read through key result= file->read_range_next(); if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); } if (!cur_range) range= *(cur_range= (QUICK_RANGE**) ranges.buffer); else range= (cur_range == ((QUICK_RANGE**) ranges.buffer + ranges.elements - 1)) ? (QUICK_RANGE*) 0 : *(++cur_range); if (!range) DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used start_key.key= (const byte*) range->min_key; start_key.length= range->min_length; start_key.flag= ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY : (range->flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT); end_key.key= (const byte*) range->max_key; end_key.length= range->max_length; /* We use READ_AFTER_KEY here because if we are reading on a key prefix we want to find all keys with this prefix */ end_key.flag= (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY); result= file->read_range_first(range->min_length ? &start_key : 0, range->max_length ? &end_key : 0, test(range->flag & EQ_RANGE), sorted); if (range->flag == (UNIQUE_RANGE | EQ_RANGE)) range=0; // Stop searching if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); range=0; // No matching rows; go to next range } } /* Get next for geometrical indexes */ int QUICK_RANGE_SELECT_GEOM::get_next() { DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next"); for (;;) { int result; if (range) { // Already read through key result= file->index_next_same(record, (byte*) range->min_key, range->min_length); if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); } if (!cur_range) range= *(cur_range= (QUICK_RANGE**) ranges.buffer); else range= (cur_range == ((QUICK_RANGE**) ranges.buffer + ranges.elements - 1)) ? (QUICK_RANGE*) 0 : *(++cur_range); if (!range) DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used result= file->index_read(record, (byte*) range->min_key, range->min_length, (ha_rkey_function)(range->flag ^ GEOM_FLAG)); if (result != HA_ERR_KEY_NOT_FOUND) DBUG_RETURN(result); range=0; // Not found, to next range } } /* Check if current row will be retrieved by this QUICK_RANGE_SELECT NOTES It is assumed that currently a scan is being done on another index which reads all necessary parts of the index that is scanned by this quick select. The implementation does a binary search on sorted array of disjoint ranges, without taking size of range into account. This function is used to filter out clustered PK scan rows in index_merge quick select. RETURN TRUE if current row will be retrieved by this quick select FALSE if not */ bool QUICK_RANGE_SELECT::row_in_ranges() { QUICK_RANGE *range; uint min= 0; uint max= ranges.elements - 1; uint mid= (max + min)/2; while (min != max) { if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid))) { /* current row value > mid->max */ min= mid + 1; } else max= mid; mid= (min + max) / 2; } range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid); return (!cmp_next(range) && !cmp_prev(range)); } /* This is a hack: we inherit from QUICK_SELECT so that we can use the get_next() interface, but we have to hold a pointer to the original QUICK_SELECT because its data are used all over the place. What should be done is to factor out the data that is needed into a base class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC) which handle the ranges and implement the get_next() function. But for now, this seems to work right at least. */ QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint used_key_parts) : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges) { QUICK_RANGE *r; QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer; QUICK_RANGE **last_range= pr + ranges.elements; for (; pr!=last_range; pr++) rev_ranges.push_front(*pr); /* Remove EQ_RANGE flag for keys that are not using the full key */ for (r = rev_it++; r; r = rev_it++) { if ((r->flag & EQ_RANGE) && head->key_info[index].key_length != r->max_length) r->flag&= ~EQ_RANGE; } rev_it.rewind(); q->dont_free=1; // Don't free shared mem delete q; } int QUICK_SELECT_DESC::get_next() { DBUG_ENTER("QUICK_SELECT_DESC::get_next"); /* The max key is handled as follows: * - if there is NO_MAX_RANGE, start at the end and move backwards * - if it is an EQ_RANGE, which means that max key covers the entire * key, go directly to the key and read through it (sorting backwards is * same as sorting forwards) * - if it is NEAR_MAX, go to the key or next, step back once, and * move backwards * - otherwise (not NEAR_MAX == include the key), go after the key, * step back once, and move backwards */ for (;;) { int result; if (range) { // Already read through key result = ((range->flag & EQ_RANGE) ? file->index_next_same(record, (byte*) range->min_key, range->min_length) : file->index_prev(record)); if (!result) { if (cmp_prev(*rev_it.ref()) == 0) DBUG_RETURN(0); } else if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); } if (!(range=rev_it++)) DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used if (range->flag & NO_MAX_RANGE) // Read last record { int local_error; if ((local_error=file->index_last(record))) DBUG_RETURN(local_error); // Empty table if (cmp_prev(range) == 0) DBUG_RETURN(0); range=0; // No matching records; go to next range continue; } if (range->flag & EQ_RANGE) { result = file->index_read(record, (byte*) range->max_key, range->max_length, HA_READ_KEY_EXACT); } else { DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range)); result=file->index_read(record, (byte*) range->max_key, range->max_length, ((range->flag & NEAR_MAX) ? HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV)); } if (result) { if (result != HA_ERR_KEY_NOT_FOUND) DBUG_RETURN(result); range=0; // Not found, to next range continue; } if (cmp_prev(range) == 0) { if (range->flag == (UNIQUE_RANGE | EQ_RANGE)) range = 0; // Stop searching DBUG_RETURN(0); // Found key is in range } range = 0; // To next range } } /* Compare if found key is over max-value Returns 0 if key <= range->max_key */ int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg) { if (range_arg->flag & NO_MAX_RANGE) return 0; /* key can't be to large */ KEY_PART *key_part=key_parts; uint store_length; for (char *key=range_arg->max_key, *end=key+range_arg->max_length; key < end; key+= store_length, key_part++) { int cmp; store_length= key_part->store_length; if (key_part->null_bit) { if (*key) { if (!key_part->field->is_null()) return 1; continue; } else if (key_part->field->is_null()) return 0; key++; // Skip null byte store_length--; } if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0) return 0; if (cmp > 0) return 1; } return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match } /* Returns 0 if found key is inside range (found key >= range->min_key). */ int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg) { int cmp; if (range_arg->flag & NO_MIN_RANGE) return 0; /* key can't be to small */ cmp= key_cmp(key_part_info, (byte*) range_arg->min_key, range_arg->min_length); if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN)) return 0; return 1; // outside of range } /* * TRUE if this range will require using HA_READ_AFTER_KEY See comment in get_next() about this */ bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg) { return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) || !(range_arg->flag & EQ_RANGE) || head->key_info[index].key_length != range_arg->max_length) ? 1 : 0; } /* TRUE if we are reading over a key that may have a NULL value */ #ifdef NOT_USED bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg, uint used_key_parts) { uint offset, end; KEY_PART *key_part = key_parts, *key_part_end= key_part+used_key_parts; for (offset= 0, end = min(range_arg->min_length, range_arg->max_length) ; offset < end && key_part != key_part_end ; offset+= key_part++->store_length) { if (!memcmp((char*) range_arg->min_key+offset, (char*) range_arg->max_key+offset, key_part->store_length)) continue; if (key_part->null_bit && range_arg->min_key[offset]) return 1; // min_key is null and max_key isn't // Range doesn't cover NULL. This is ok if there is no more null parts break; } /* If the next min_range is > NULL, then we can use this, even if it's a NULL key Example: SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC; */ if (key_part != key_part_end && key_part->null_bit) { if (offset >= range_arg->min_length || range_arg->min_key[offset]) return 1; // Could be null key_part++; } /* If any of the key parts used in the ORDER BY could be NULL, we can't use the key to sort the data. */ for (; key_part != key_part_end ; key_part++) if (key_part->null_bit) return 1; // Covers null part return 0; } #endif void QUICK_RANGE_SELECT::add_info_string(String *str) { KEY *key_info= head->key_info + index; str->append(key_info->name); } void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str) { QUICK_RANGE_SELECT *quick; bool first= TRUE; List_iterator_fast it(quick_selects); str->append("sort_union("); while ((quick= it++)) { if (!first) str->append(','); else first= FALSE; quick->add_info_string(str); } if (pk_quick_select) { str->append(','); pk_quick_select->add_info_string(str); } str->append(')'); } void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str) { bool first= TRUE; QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); str->append("intersect("); while ((quick= it++)) { KEY *key_info= head->key_info + quick->index; if (!first) str->append(','); else first= FALSE; str->append(key_info->name); } if (cpk_quick) { KEY *key_info= head->key_info + cpk_quick->index; str->append(','); str->append(key_info->name); } str->append(')'); } void QUICK_ROR_UNION_SELECT::add_info_string(String *str) { bool first= TRUE; QUICK_SELECT_I *quick; List_iterator_fast it(quick_selects); str->append("union("); while ((quick= it++)) { if (!first) str->append(','); else first= FALSE; quick->add_info_string(str); } str->append(')'); } void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { char buf[64]; uint length; KEY *key_info= head->key_info + index; key_names->append(key_info->name); length= longlong2str(max_used_key_length, buf, 10) - buf; used_lengths->append(buf, length); } void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { char buf[64]; uint length; bool first= TRUE; QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (first) first= FALSE; else { key_names->append(','); used_lengths->append(','); } KEY *key_info= head->key_info + quick->index; key_names->append(key_info->name); length= longlong2str(quick->max_used_key_length, buf, 10) - buf; used_lengths->append(buf, length); } if (pk_quick_select) { KEY *key_info= head->key_info + pk_quick_select->index; key_names->append(','); key_names->append(key_info->name); length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf; used_lengths->append(','); used_lengths->append(buf, length); } } void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { char buf[64]; uint length; bool first= TRUE; QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { KEY *key_info= head->key_info + quick->index; if (first) first= FALSE; else { key_names->append(','); used_lengths->append(','); } key_names->append(key_info->name); length= longlong2str(quick->max_used_key_length, buf, 10) - buf; used_lengths->append(buf, length); } if (cpk_quick) { KEY *key_info= head->key_info + cpk_quick->index; key_names->append(','); key_names->append(key_info->name); length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf; used_lengths->append(','); used_lengths->append(buf, length); } } void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { bool first= TRUE; QUICK_SELECT_I *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (first) first= FALSE; else { used_lengths->append(','); key_names->append(','); } quick->add_keys_and_lengths(key_names, used_lengths); } } #ifndef DBUG_OFF static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map, const char *msg) { SEL_ARG **key,**end; int idx; char buff[1024]; DBUG_ENTER("print_sel_tree"); if (! _db_on_) DBUG_VOID_RETURN; String tmp(buff,sizeof(buff),&my_charset_bin); tmp.length(0); for (idx= 0,key=tree->keys, end=key+param->keys ; key != end ; key++,idx++) { if (tree_map->is_set(idx)) { uint keynr= param->real_keynr[idx]; if (tmp.length()) tmp.append(','); tmp.append(param->table->key_info[keynr].name); } } if (!tmp.length()) tmp.append("(empty)"); DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr())); DBUG_VOID_RETURN; } static void print_ror_scans_arr(TABLE *table, const char *msg, struct st_ror_scan_info **start, struct st_ror_scan_info **end) { DBUG_ENTER("print_ror_scans"); if (! _db_on_) DBUG_VOID_RETURN; char buff[1024]; String tmp(buff,sizeof(buff),&my_charset_bin); tmp.length(0); for(;start != end; start++) { if (tmp.length()) tmp.append(','); tmp.append(table->key_info[(*start)->keynr].name); } if (!tmp.length()) tmp.append("(empty)"); DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr())); DBUG_VOID_RETURN; } /***************************************************************************** ** Print a quick range for debugging ** TODO: ** This should be changed to use a String to store each row instead ** of locking the DEBUG stream ! *****************************************************************************/ static void print_key(KEY_PART *key_part,const char *key,uint used_length) { char buff[1024]; const char *key_end= key+used_length; String tmp(buff,sizeof(buff),&my_charset_bin); uint store_length; for (; key < key_end; key+=store_length, key_part++) { Field *field= key_part->field; store_length= key_part->store_length; if (field->real_maybe_null()) { if (*key) { fwrite("NULL",sizeof(char),4,DBUG_FILE); continue; } key++; // Skip null byte store_length--; } field->set_key_image((char*) key, key_part->length, field->charset()); field->val_str(&tmp); fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE); if (key+store_length < key_end) fputc('/',DBUG_FILE); } } static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg) { char buf[MAX_KEY/8+1]; DBUG_ENTER("print_param"); if (! _db_on_ || !quick) DBUG_VOID_RETURN; DBUG_LOCK_FILE; quick->dbug_dump(0, TRUE); fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf)); DBUG_UNLOCK_FILE; DBUG_VOID_RETURN; } static void print_rowid(byte* val, int len) { byte *pb; DBUG_LOCK_FILE; fputc('\"', DBUG_FILE); for (pb= val; pb!= val + len; ++pb) fprintf(DBUG_FILE, "%c", *pb); fprintf(DBUG_FILE, "\", hex: "); for (pb= val; pb!= val + len; ++pb) fprintf(DBUG_FILE, "%x ", *pb); fputc('\n', DBUG_FILE); DBUG_UNLOCK_FILE; } void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose) { fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n", indent, "", head->key_info[index].name, max_used_key_length); if (verbose) { QUICK_RANGE *range; QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer; QUICK_RANGE **last_range= pr + ranges.elements; for (; pr!=last_range; ++pr) { fprintf(DBUG_FILE, "%*s", indent + 2, ""); range= *pr; if (!(range->flag & NO_MIN_RANGE)) { print_key(key_parts,range->min_key,range->min_length); if (range->flag & NEAR_MIN) fputs(" < ",DBUG_FILE); else fputs(" <= ",DBUG_FILE); } fputs("X",DBUG_FILE); if (!(range->flag & NO_MAX_RANGE)) { if (range->flag & NEAR_MAX) fputs(" < ",DBUG_FILE); else fputs(" <= ",DBUG_FILE); print_key(key_parts,range->max_key,range->max_length); } fputs("\n",DBUG_FILE); } } } void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose) { List_iterator_fast it(quick_selects); QUICK_RANGE_SELECT *quick; fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, ""); fprintf(DBUG_FILE, "%*smerged scans {\n", indent, ""); while ((quick= it++)) quick->dbug_dump(indent+2, verbose); if (pk_quick_select) { fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, ""); pk_quick_select->dbug_dump(indent+2, verbose); } fprintf(DBUG_FILE, "%*s}\n", indent, ""); } void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose) { List_iterator_fast it(quick_selects); QUICK_RANGE_SELECT *quick; fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n", indent, "", need_to_fetch_row? "":"non-"); fprintf(DBUG_FILE, "%*smerged scans {\n", indent, ""); while ((quick= it++)) quick->dbug_dump(indent+2, verbose); if (cpk_quick) { fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, ""); cpk_quick->dbug_dump(indent+2, verbose); } fprintf(DBUG_FILE, "%*s}\n", indent, ""); } void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose) { List_iterator_fast it(quick_selects); QUICK_SELECT_I *quick; fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, ""); fprintf(DBUG_FILE, "%*smerged scans {\n", indent, ""); while ((quick= it++)) quick->dbug_dump(indent+2, verbose); fprintf(DBUG_FILE, "%*s}\n", indent, ""); } #endif /***************************************************************************** ** Instantiate templates *****************************************************************************/ #ifdef __GNUC__ template class List; template class List_iterator; #endif