/***************************************************************************** Copyright (c) 1997, 2011, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file eval/eval0eval.cc SQL evaluator: evaluates simple data structures, like expressions, in a query graph Created 12/29/1997 Heikki Tuuri *******************************************************/ #include "eval0eval.h" #ifdef UNIV_NONINL #include "eval0eval.ic" #endif #include "data0data.h" #include "row0sel.h" #include "rem0cmp.h" /** The RND function seed */ static ulint eval_rnd = 128367121; /** Dummy adress used when we should allocate a buffer of size 0 in eval_node_alloc_val_buf */ static byte eval_dummy; /************************************************************************* Gets the like node from the node */ UNIV_INLINE que_node_t* que_node_get_like_node( /*===================*/ /* out: next node in a list of nodes */ que_node_t* node) /* in: node in a list */ { return(((sym_node_t*) node)->like_node); } /*****************************************************************//** Allocate a buffer from global dynamic memory for a value of a que_node. NOTE that this memory must be explicitly freed when the query graph is freed. If the node already has an allocated buffer, that buffer is freed here. NOTE that this is the only function where dynamic memory should be allocated for a query node val field. @return pointer to allocated buffer */ UNIV_INTERN byte* eval_node_alloc_val_buf( /*====================*/ que_node_t* node, /*!< in: query graph node; sets the val field data field to point to the new buffer, and len field equal to size */ ulint size) /*!< in: buffer size */ { dfield_t* dfield; byte* data; ut_ad(que_node_get_type(node) == QUE_NODE_SYMBOL || que_node_get_type(node) == QUE_NODE_FUNC); dfield = que_node_get_val(node); data = static_cast(dfield_get_data(dfield)); if (data && data != &eval_dummy) { mem_free(data); } if (size == 0) { data = &eval_dummy; } else { data = static_cast(mem_alloc(size)); } que_node_set_val_buf_size(node, size); dfield_set_data(dfield, data, size); return(data); } /*****************************************************************//** Free the buffer from global dynamic memory for a value of a que_node, if it has been allocated in the above function. The freeing for pushed column values is done in sel_col_prefetch_buf_free. */ UNIV_INTERN void eval_node_free_val_buf( /*===================*/ que_node_t* node) /*!< in: query graph node */ { dfield_t* dfield; byte* data; ut_ad(que_node_get_type(node) == QUE_NODE_SYMBOL || que_node_get_type(node) == QUE_NODE_FUNC); dfield = que_node_get_val(node); data = static_cast(dfield_get_data(dfield)); if (que_node_get_val_buf_size(node) > 0) { ut_a(data); mem_free(data); } } /********************************************************************* Evaluates a LIKE comparison node. @return the result of the comparison */ UNIV_INLINE ibool eval_cmp_like( /*==========*/ que_node_t* arg1, /* !< in: left operand */ que_node_t* arg2) /* !< in: right operand */ { ib_like_t op; int res; que_node_t* arg3; que_node_t* arg4; dfield_t* dfield; dtype_t* dtype; ibool val = TRUE; arg3 = que_node_get_like_node(arg2); /* Get the comparison type operator */ ut_a(arg3); dfield = que_node_get_val(arg3); dtype = dfield_get_type(dfield); ut_a(dtype_get_mtype(dtype) == DATA_INT); op = static_cast(mach_read_from_4(static_cast(dfield_get_data(dfield)))); switch (op) { case IB_LIKE_PREFIX: arg4 = que_node_get_next(arg3); res = cmp_dfield_dfield_like_prefix( que_node_get_val(arg1), que_node_get_val(arg4)); break; case IB_LIKE_SUFFIX: arg4 = que_node_get_next(arg3); res = cmp_dfield_dfield_like_suffix( que_node_get_val(arg1), que_node_get_val(arg4)); break; case IB_LIKE_SUBSTR: arg4 = que_node_get_next(arg3); res = cmp_dfield_dfield_like_substr( que_node_get_val(arg1), que_node_get_val(arg4)); break; case IB_LIKE_EXACT: res = cmp_dfield_dfield( que_node_get_val(arg1), que_node_get_val(arg2)); break; default: ut_error; } if (res != 0) { val = FALSE; } return(val); } /********************************************************************* Evaluates a comparison node. @return the result of the comparison */ ibool eval_cmp( /*=====*/ func_node_t* cmp_node) /*!< in: comparison node */ { que_node_t* arg1; que_node_t* arg2; int res; int func; ibool val = TRUE; ut_ad(que_node_get_type(cmp_node) == QUE_NODE_FUNC); arg1 = cmp_node->args; arg2 = que_node_get_next(arg1); func = cmp_node->func; if (func == PARS_LIKE_TOKEN_EXACT || func == PARS_LIKE_TOKEN_PREFIX || func == PARS_LIKE_TOKEN_SUFFIX || func == PARS_LIKE_TOKEN_SUBSTR) { val = eval_cmp_like(arg1, arg2); } else { res = cmp_dfield_dfield( que_node_get_val(arg1), que_node_get_val(arg2)); if (func == '=') { if (res != 0) { val = FALSE; } } else if (func == '<') { if (res != -1) { val = FALSE; } } else if (func == PARS_LE_TOKEN) { if (res == 1) { val = FALSE; } } else if (func == PARS_NE_TOKEN) { if (res == 0) { val = FALSE; } } else if (func == PARS_GE_TOKEN) { if (res == -1) { val = FALSE; } } else { ut_ad(func == '>'); if (res != 1) { val = FALSE; } } } eval_node_set_ibool_val(cmp_node, val); return(val); } /*****************************************************************//** Evaluates a logical operation node. */ UNIV_INLINE void eval_logical( /*=========*/ func_node_t* logical_node) /*!< in: logical operation node */ { que_node_t* arg1; que_node_t* arg2; ibool val1; ibool val2 = 0; /* remove warning */ ibool val = 0; /* remove warning */ int func; ut_ad(que_node_get_type(logical_node) == QUE_NODE_FUNC); arg1 = logical_node->args; arg2 = que_node_get_next(arg1); /* arg2 is NULL if func is 'NOT' */ val1 = eval_node_get_ibool_val(arg1); if (arg2) { val2 = eval_node_get_ibool_val(arg2); } func = logical_node->func; if (func == PARS_AND_TOKEN) { val = val1 & val2; } else if (func == PARS_OR_TOKEN) { val = val1 | val2; } else if (func == PARS_NOT_TOKEN) { val = TRUE - val1; } else { ut_error; } eval_node_set_ibool_val(logical_node, val); } /*****************************************************************//** Evaluates an arithmetic operation node. */ UNIV_INLINE void eval_arith( /*=======*/ func_node_t* arith_node) /*!< in: arithmetic operation node */ { que_node_t* arg1; que_node_t* arg2; lint val1; lint val2 = 0; /* remove warning */ lint val; int func; ut_ad(que_node_get_type(arith_node) == QUE_NODE_FUNC); arg1 = arith_node->args; arg2 = que_node_get_next(arg1); /* arg2 is NULL if func is unary '-' */ val1 = eval_node_get_int_val(arg1); if (arg2) { val2 = eval_node_get_int_val(arg2); } func = arith_node->func; if (func == '+') { val = val1 + val2; } else if ((func == '-') && arg2) { val = val1 - val2; } else if (func == '-') { val = -val1; } else if (func == '*') { val = val1 * val2; } else { ut_ad(func == '/'); val = val1 / val2; } eval_node_set_int_val(arith_node, val); } /*****************************************************************//** Evaluates an aggregate operation node. */ UNIV_INLINE void eval_aggregate( /*===========*/ func_node_t* node) /*!< in: aggregate operation node */ { que_node_t* arg; lint val; lint arg_val; int func; ut_ad(que_node_get_type(node) == QUE_NODE_FUNC); val = eval_node_get_int_val(node); func = node->func; if (func == PARS_COUNT_TOKEN) { val = val + 1; } else { ut_ad(func == PARS_SUM_TOKEN); arg = node->args; arg_val = eval_node_get_int_val(arg); val = val + arg_val; } eval_node_set_int_val(node, val); } /*****************************************************************//** Evaluates a predefined function node where the function is not relevant in benchmarks. */ static void eval_predefined_2( /*==============*/ func_node_t* func_node) /*!< in: predefined function node */ { que_node_t* arg; que_node_t* arg1; que_node_t* arg2 = 0; /* remove warning (??? bug ???) */ lint int_val; byte* data; ulint len1; ulint len2; int func; ulint i; ut_ad(que_node_get_type(func_node) == QUE_NODE_FUNC); arg1 = func_node->args; if (arg1) { arg2 = que_node_get_next(arg1); } func = func_node->func; if (func == PARS_PRINTF_TOKEN) { arg = arg1; while (arg) { dfield_print(que_node_get_val(arg)); arg = que_node_get_next(arg); } putc('\n', stderr); } else if (func == PARS_ASSERT_TOKEN) { if (!eval_node_get_ibool_val(arg1)) { fputs("SQL assertion fails in a stored procedure!\n", stderr); } ut_a(eval_node_get_ibool_val(arg1)); /* This function, or more precisely, a debug procedure, returns no value */ } else if (func == PARS_RND_TOKEN) { len1 = (ulint) eval_node_get_int_val(arg1); len2 = (ulint) eval_node_get_int_val(arg2); ut_ad(len2 >= len1); if (len2 > len1) { int_val = (lint) (len1 + (eval_rnd % (len2 - len1 + 1))); } else { int_val = (lint) len1; } eval_rnd = ut_rnd_gen_next_ulint(eval_rnd); eval_node_set_int_val(func_node, int_val); } else if (func == PARS_RND_STR_TOKEN) { len1 = (ulint) eval_node_get_int_val(arg1); data = eval_node_ensure_val_buf(func_node, len1); for (i = 0; i < len1; i++) { data[i] = (byte)(97 + (eval_rnd % 3)); eval_rnd = ut_rnd_gen_next_ulint(eval_rnd); } } else { ut_error; } } /*****************************************************************//** Evaluates a notfound-function node. */ UNIV_INLINE void eval_notfound( /*==========*/ func_node_t* func_node) /*!< in: function node */ { sym_node_t* cursor; sel_node_t* sel_node; ibool ibool_val; ut_ad(func_node->func == PARS_NOTFOUND_TOKEN); cursor = static_cast(func_node->args); ut_ad(que_node_get_type(cursor) == QUE_NODE_SYMBOL); if (cursor->token_type == SYM_LIT) { ut_ad(ut_memcmp(dfield_get_data(que_node_get_val(cursor)), "SQL", 3) == 0); sel_node = cursor->sym_table->query_graph->last_sel_node; } else { sel_node = cursor->alias->cursor_def; } if (sel_node->state == SEL_NODE_NO_MORE_ROWS) { ibool_val = TRUE; } else { ibool_val = FALSE; } eval_node_set_ibool_val(func_node, ibool_val); } /*****************************************************************//** Evaluates a substr-function node. */ UNIV_INLINE void eval_substr( /*========*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg1; que_node_t* arg2; que_node_t* arg3; dfield_t* dfield; byte* str1; ulint len1; ulint len2; arg1 = func_node->args; arg2 = que_node_get_next(arg1); ut_ad(func_node->func == PARS_SUBSTR_TOKEN); arg3 = que_node_get_next(arg2); str1 = static_cast(dfield_get_data(que_node_get_val(arg1))); len1 = (ulint) eval_node_get_int_val(arg2); len2 = (ulint) eval_node_get_int_val(arg3); dfield = que_node_get_val(func_node); dfield_set_data(dfield, str1 + len1, len2); } /*****************************************************************//** Evaluates a replstr-procedure node. */ static void eval_replstr( /*=========*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg1; que_node_t* arg2; que_node_t* arg3; que_node_t* arg4; byte* str1; byte* str2; ulint len1; ulint len2; arg1 = func_node->args; arg2 = que_node_get_next(arg1); ut_ad(que_node_get_type(arg1) == QUE_NODE_SYMBOL); arg3 = que_node_get_next(arg2); arg4 = que_node_get_next(arg3); str1 = static_cast(dfield_get_data(que_node_get_val(arg1))); str2 = static_cast(dfield_get_data(que_node_get_val(arg2))); len1 = (ulint) eval_node_get_int_val(arg3); len2 = (ulint) eval_node_get_int_val(arg4); if ((dfield_get_len(que_node_get_val(arg1)) < len1 + len2) || (dfield_get_len(que_node_get_val(arg2)) < len2)) { ut_error; } ut_memcpy(str1 + len1, str2, len2); } /*****************************************************************//** Evaluates an instr-function node. */ static void eval_instr( /*=======*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg1; que_node_t* arg2; dfield_t* dfield1; dfield_t* dfield2; lint int_val; byte* str1; byte* str2; byte match_char; ulint len1; ulint len2; ulint i; ulint j; arg1 = func_node->args; arg2 = que_node_get_next(arg1); dfield1 = que_node_get_val(arg1); dfield2 = que_node_get_val(arg2); str1 = static_cast(dfield_get_data(dfield1)); str2 = static_cast(dfield_get_data(dfield2)); len1 = dfield_get_len(dfield1); len2 = dfield_get_len(dfield2); if (len2 == 0) { ut_error; } match_char = str2[0]; for (i = 0; i < len1; i++) { /* In this outer loop, the number of matched characters is 0 */ if (str1[i] == match_char) { if (i + len2 > len1) { break; } for (j = 1;; j++) { /* We have already matched j characters */ if (j == len2) { int_val = i + 1; goto match_found; } if (str1[i + j] != str2[j]) { break; } } } } int_val = 0; match_found: eval_node_set_int_val(func_node, int_val); } /*****************************************************************//** Evaluates a predefined function node. */ UNIV_INLINE void eval_binary_to_number( /*==================*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg1; dfield_t* dfield; byte* str1; byte* str2; ulint len1; ulint int_val; arg1 = func_node->args; dfield = que_node_get_val(arg1); str1 = static_cast(dfield_get_data(dfield)); len1 = dfield_get_len(dfield); if (len1 > 4) { ut_error; } if (len1 == 4) { str2 = str1; } else { int_val = 0; str2 = (byte*) &int_val; ut_memcpy(str2 + (4 - len1), str1, len1); } eval_node_copy_and_alloc_val(func_node, str2, 4); } /*****************************************************************//** Evaluates a predefined function node. */ static void eval_concat( /*========*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg; dfield_t* dfield; byte* data; ulint len; ulint len1; arg = func_node->args; len = 0; while (arg) { len1 = dfield_get_len(que_node_get_val(arg)); len += len1; arg = que_node_get_next(arg); } data = eval_node_ensure_val_buf(func_node, len); arg = func_node->args; len = 0; while (arg) { dfield = que_node_get_val(arg); len1 = dfield_get_len(dfield); ut_memcpy(data + len, dfield_get_data(dfield), len1); len += len1; arg = que_node_get_next(arg); } } /*****************************************************************//** Evaluates a predefined function node. If the first argument is an integer, this function looks at the second argument which is the integer length in bytes, and converts the integer to a VARCHAR. If the first argument is of some other type, this function converts it to BINARY. */ UNIV_INLINE void eval_to_binary( /*===========*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg1; que_node_t* arg2; dfield_t* dfield; byte* str1; ulint len; ulint len1; arg1 = func_node->args; str1 = static_cast(dfield_get_data(que_node_get_val(arg1))); if (dtype_get_mtype(que_node_get_data_type(arg1)) != DATA_INT) { len = dfield_get_len(que_node_get_val(arg1)); dfield = que_node_get_val(func_node); dfield_set_data(dfield, str1, len); return; } arg2 = que_node_get_next(arg1); len1 = (ulint) eval_node_get_int_val(arg2); if (len1 > 4) { ut_error; } dfield = que_node_get_val(func_node); dfield_set_data(dfield, str1 + (4 - len1), len1); } /*****************************************************************//** Evaluates a predefined function node. */ UNIV_INLINE void eval_predefined( /*============*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg1; lint int_val; byte* data; int func; func = func_node->func; arg1 = func_node->args; if (func == PARS_LENGTH_TOKEN) { int_val = (lint) dfield_get_len(que_node_get_val(arg1)); } else if (func == PARS_TO_CHAR_TOKEN) { /* Convert number to character string as a signed decimal integer. */ ulint uint_val; int int_len; int_val = eval_node_get_int_val(arg1); /* Determine the length of the string. */ if (int_val == 0) { int_len = 1; /* the number 0 occupies 1 byte */ } else { int_len = 0; if (int_val < 0) { uint_val = ((ulint) -int_val - 1) + 1; int_len++; /* reserve space for minus sign */ } else { uint_val = (ulint) int_val; } for (; uint_val > 0; int_len++) { uint_val /= 10; } } /* allocate the string */ data = eval_node_ensure_val_buf(func_node, int_len + 1); /* add terminating NUL character */ data[int_len] = 0; /* convert the number */ if (int_val == 0) { data[0] = '0'; } else { int tmp; if (int_val < 0) { data[0] = '-'; /* preceding minus sign */ uint_val = ((ulint) -int_val - 1) + 1; } else { uint_val = (ulint) int_val; } for (tmp = int_len; uint_val > 0; uint_val /= 10) { data[--tmp] = (byte) ('0' + (byte)(uint_val % 10)); } } dfield_set_len(que_node_get_val(func_node), int_len); return; } else if (func == PARS_TO_NUMBER_TOKEN) { int_val = atoi((char*) dfield_get_data(que_node_get_val(arg1))); } else if (func == PARS_SYSDATE_TOKEN) { int_val = (lint) ut_time(); } else { eval_predefined_2(func_node); return; } eval_node_set_int_val(func_node, int_val); } /*****************************************************************//** Evaluates a function node. */ UNIV_INTERN void eval_func( /*======*/ func_node_t* func_node) /*!< in: function node */ { que_node_t* arg; ulint fclass; ulint func; ut_ad(que_node_get_type(func_node) == QUE_NODE_FUNC); fclass = func_node->fclass; func = func_node->func; arg = func_node->args; /* Evaluate first the argument list */ while (arg) { eval_exp(arg); /* The functions are not defined for SQL null argument values, except for eval_cmp and notfound */ if (dfield_is_null(que_node_get_val(arg)) && (fclass != PARS_FUNC_CMP) && (func != PARS_NOTFOUND_TOKEN) && (func != PARS_PRINTF_TOKEN)) { ut_error; } arg = que_node_get_next(arg); } switch (fclass) { case PARS_FUNC_CMP: eval_cmp(func_node); return; case PARS_FUNC_ARITH: eval_arith(func_node); return; case PARS_FUNC_AGGREGATE: eval_aggregate(func_node); return; case PARS_FUNC_PREDEFINED: switch (func) { case PARS_NOTFOUND_TOKEN: eval_notfound(func_node); return; case PARS_SUBSTR_TOKEN: eval_substr(func_node); return; case PARS_REPLSTR_TOKEN: eval_replstr(func_node); return; case PARS_INSTR_TOKEN: eval_instr(func_node); return; case PARS_BINARY_TO_NUMBER_TOKEN: eval_binary_to_number(func_node); return; case PARS_CONCAT_TOKEN: eval_concat(func_node); return; case PARS_TO_BINARY_TOKEN: eval_to_binary(func_node); return; default: eval_predefined(func_node); return; } case PARS_FUNC_LOGICAL: eval_logical(func_node); return; } ut_error; }