/* Copyright (C) 2000-2006 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /***************************************************************************** ** ** This file implements classes defined in sql_class.h ** Especially the classes to handle a result from a select ** *****************************************************************************/ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include #include "log_event.h" #include #include #include #ifdef __WIN__ #include #endif #include #include "sp_rcontext.h" #include "sp_cache.h" /* The following is used to initialise Table_ident with a internal table name */ char internal_table_name[2]= "*"; char empty_c_string[1]= {0}; /* used for not defined db */ const char * const THD::DEFAULT_WHERE= "field list"; /***************************************************************************** ** Instansiate templates *****************************************************************************/ #ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION /* Used templates */ template class List; template class List_iterator; template class List; template class List_iterator; template class List; template class List_iterator; template class List; template class List_iterator; #endif /**************************************************************************** ** User variables ****************************************************************************/ extern "C" byte *get_var_key(user_var_entry *entry, uint *length, my_bool not_used __attribute__((unused))) { *length=(uint) entry->name.length; return (byte*) entry->name.str; } extern "C" void free_user_var(user_var_entry *entry) { char *pos= (char*) entry+ALIGN_SIZE(sizeof(*entry)); if (entry->value && entry->value != pos) my_free(entry->value, MYF(0)); my_free((char*) entry,MYF(0)); } bool key_part_spec::operator==(const key_part_spec& other) const { return length == other.length && !strcmp(field_name, other.field_name); } /* Test if a foreign key (= generated key) is a prefix of the given key (ignoring key name, key type and order of columns) NOTES: This is only used to test if an index for a FOREIGN KEY exists IMPLEMENTATION We only compare field names RETURN 0 Generated key is a prefix of other key 1 Not equal */ bool foreign_key_prefix(Key *a, Key *b) { /* Ensure that 'a' is the generated key */ if (a->generated) { if (b->generated && a->columns.elements > b->columns.elements) swap_variables(Key*, a, b); // Put shorter key in 'a' } else { if (!b->generated) return TRUE; // No foreign key swap_variables(Key*, a, b); // Put generated key in 'a' } /* Test if 'a' is a prefix of 'b' */ if (a->columns.elements > b->columns.elements) return TRUE; // Can't be prefix List_iterator col_it1(a->columns); List_iterator col_it2(b->columns); const key_part_spec *col1, *col2; #ifdef ENABLE_WHEN_INNODB_CAN_HANDLE_SWAPED_FOREIGN_KEY_COLUMNS while ((col1= col_it1++)) { bool found= 0; col_it2.rewind(); while ((col2= col_it2++)) { if (*col1 == *col2) { found= TRUE; break; } } if (!found) return TRUE; // Error } return FALSE; // Is prefix #else while ((col1= col_it1++)) { col2= col_it2++; if (!(*col1 == *col2)) return TRUE; } return FALSE; // Is prefix #endif } /**************************************************************************** ** Thread specific functions ****************************************************************************/ Open_tables_state::Open_tables_state(ulong version_arg) :version(version_arg), state_flags(0U) { reset_open_tables_state(); } my_bool thd_in_lock_tables(const THD *thd) { return thd->in_lock_tables; } my_bool thd_tablespace_op(const THD *thd) { return thd->tablespace_op; } const char *thd_proc_info(THD *thd, const char *info) { const char *old_info= thd->proc_info; thd->proc_info= info; return old_info; } void **thd_ha_data(const THD *thd, const struct handlerton *hton) { return (void **) thd->ha_data + hton->slot; } THD::THD() :Statement(&main_lex, &main_mem_root, CONVENTIONAL_EXECUTION, /* statement id */ 0), Open_tables_state(refresh_version), rli_fake(0), lock_id(&main_lock_id), user_time(0), in_sub_stmt(0), binlog_table_maps(0), global_read_lock(0), is_fatal_error(0), rand_used(0), time_zone_used(0), arg_of_last_insert_id_function(FALSE), first_successful_insert_id_in_prev_stmt(0), first_successful_insert_id_in_prev_stmt_for_binlog(0), first_successful_insert_id_in_cur_stmt(0), in_lock_tables(0), bootstrap(0), derived_tables_processing(FALSE), stmt_depends_on_first_successful_insert_id_in_prev_stmt(FALSE), spcont(NULL) { ulong tmp; /* Pass nominal parameters to init_alloc_root only to ensure that the destructor works OK in case of an error. The main_mem_root will be re-initialized in init_for_queries(). */ init_sql_alloc(&main_mem_root, ALLOC_ROOT_MIN_BLOCK_SIZE, 0); stmt_arena= this; thread_stack= 0; db= 0; catalog= (char*)"std"; // the only catalog we have for now main_security_ctx.init(); security_ctx= &main_security_ctx; locked=some_tables_deleted=no_errors=password= 0; query_start_used= 0; count_cuted_fields= CHECK_FIELD_IGNORE; killed= NOT_KILLED; db_length= col_access=0; query_error= tmp_table_used= 0; hash_clear(&handler_tables_hash); tmp_table=0; used_tables=0; cuted_fields= sent_row_count= row_count= 0L; limit_found_rows= 0; statement_id_counter= 0UL; #ifdef ERROR_INJECT_SUPPORT error_inject_value= 0UL; #endif // Must be reset to handle error with THD's created for init of mysqld lex->current_select= 0; start_time=(time_t) 0; time_after_lock=(time_t) 0; current_linfo = 0; slave_thread = 0; thread_id= variables.pseudo_thread_id= 0; one_shot_set= 0; file_id = 0; query_id= 0; warn_id= 0; db_charset= global_system_variables.collation_database; bzero(ha_data, sizeof(ha_data)); mysys_var=0; binlog_evt_union.do_union= FALSE; enable_slow_log= 0; #ifndef DBUG_OFF dbug_sentry=THD_SENTRY_MAGIC; #endif #ifndef EMBEDDED_LIBRARY net.vio=0; #endif client_capabilities= 0; // minimalistic client net.last_error[0]=0; // If error on boot #ifdef HAVE_QUERY_CACHE query_cache_init_query(&net); // If error on boot #endif ull=0; system_thread= NON_SYSTEM_THREAD; cleanup_done= abort_on_warning= no_warnings_for_error= 0; peer_port= 0; // For SHOW PROCESSLIST transaction.m_pending_rows_event= 0; #ifdef SIGNAL_WITH_VIO_CLOSE active_vio = 0; #endif pthread_mutex_init(&LOCK_delete, MY_MUTEX_INIT_FAST); /* Variables with default values */ proc_info="login"; where= THD::DEFAULT_WHERE; server_id = ::server_id; slave_net = 0; command=COM_CONNECT; *scramble= '\0'; init(); /* Initialize sub structures */ init_sql_alloc(&warn_root, WARN_ALLOC_BLOCK_SIZE, WARN_ALLOC_PREALLOC_SIZE); user_connect=(USER_CONN *)0; hash_init(&user_vars, system_charset_info, USER_VARS_HASH_SIZE, 0, 0, (hash_get_key) get_var_key, (hash_free_key) free_user_var, 0); sp_proc_cache= NULL; sp_func_cache= NULL; /* For user vars replication*/ if (opt_bin_log) my_init_dynamic_array(&user_var_events, sizeof(BINLOG_USER_VAR_EVENT *), 16, 16); else bzero((char*) &user_var_events, sizeof(user_var_events)); /* Protocol */ protocol= &protocol_text; // Default protocol protocol_text.init(this); protocol_binary.init(this); tablespace_op=FALSE; tmp= sql_rnd_with_mutex(); randominit(&rand, tmp + (ulong) &rand, tmp + (ulong) ::global_query_id); substitute_null_with_insert_id = FALSE; thr_lock_info_init(&lock_info); /* safety: will be reset after start */ thr_lock_owner_init(&main_lock_id, &lock_info); m_internal_handler= NULL; } void THD::push_internal_handler(Internal_error_handler *handler) { /* TODO: The current implementation is limited to 1 handler at a time only. THD and sp_rcontext need to be modified to use a common handler stack. */ DBUG_ASSERT(m_internal_handler == NULL); m_internal_handler= handler; } bool THD::handle_error(uint sql_errno, MYSQL_ERROR::enum_warning_level level) { if (m_internal_handler) { return m_internal_handler->handle_error(sql_errno, level, this); } return FALSE; // 'FALSE', as per coding style } void THD::pop_internal_handler() { DBUG_ASSERT(m_internal_handler != NULL); m_internal_handler= NULL; } /* Init common variables that has to be reset on start and on change_user */ void THD::init(void) { pthread_mutex_lock(&LOCK_global_system_variables); variables= global_system_variables; variables.time_format= date_time_format_copy((THD*) 0, variables.time_format); variables.date_format= date_time_format_copy((THD*) 0, variables.date_format); variables.datetime_format= date_time_format_copy((THD*) 0, variables.datetime_format); pthread_mutex_unlock(&LOCK_global_system_variables); server_status= SERVER_STATUS_AUTOCOMMIT; if (variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES) server_status|= SERVER_STATUS_NO_BACKSLASH_ESCAPES; options= thd_startup_options; open_options=ha_open_options; update_lock_default= (variables.low_priority_updates ? TL_WRITE_LOW_PRIORITY : TL_WRITE); session_tx_isolation= (enum_tx_isolation) variables.tx_isolation; warn_list.empty(); bzero((char*) warn_count, sizeof(warn_count)); total_warn_count= 0; update_charset(); reset_current_stmt_binlog_row_based(); bzero((char *) &status_var, sizeof(status_var)); variables.lc_time_names = &my_locale_en_US; } /* Init THD for query processing. This has to be called once before we call mysql_parse. See also comments in sql_class.h. */ void THD::init_for_queries() { set_time(); ha_enable_transaction(this,TRUE); reset_root_defaults(mem_root, variables.query_alloc_block_size, variables.query_prealloc_size); #ifdef USING_TRANSACTIONS reset_root_defaults(&transaction.mem_root, variables.trans_alloc_block_size, variables.trans_prealloc_size); #endif transaction.xid_state.xid.null(); transaction.xid_state.in_thd=1; } /* Do what's needed when one invokes change user SYNOPSIS change_user() IMPLEMENTATION Reset all resources that are connection specific */ void THD::change_user(void) { cleanup(); cleanup_done= 0; init(); stmt_map.reset(); hash_init(&user_vars, system_charset_info, USER_VARS_HASH_SIZE, 0, 0, (hash_get_key) get_var_key, (hash_free_key) free_user_var, 0); sp_cache_clear(&sp_proc_cache); sp_cache_clear(&sp_func_cache); } /* Do operations that may take a long time */ void THD::cleanup(void) { DBUG_ENTER("THD::cleanup"); DBUG_ASSERT(cleanup_done == 0); #ifdef ENABLE_WHEN_BINLOG_WILL_BE_ABLE_TO_PREPARE if (transaction.xid_state.xa_state == XA_PREPARED) { #error xid_state in the cache should be replaced by the allocated value } #endif { ha_rollback(this); xid_cache_delete(&transaction.xid_state); } if (locked_tables) { lock=locked_tables; locked_tables=0; close_thread_tables(this); } mysql_ha_flush(this, (TABLE_LIST*) 0, MYSQL_HA_CLOSE_FINAL | MYSQL_HA_FLUSH_ALL, FALSE); hash_free(&handler_tables_hash); delete_dynamic(&user_var_events); hash_free(&user_vars); close_temporary_tables(this); my_free((char*) variables.time_format, MYF(MY_ALLOW_ZERO_PTR)); my_free((char*) variables.date_format, MYF(MY_ALLOW_ZERO_PTR)); my_free((char*) variables.datetime_format, MYF(MY_ALLOW_ZERO_PTR)); sp_cache_clear(&sp_proc_cache); sp_cache_clear(&sp_func_cache); if (global_read_lock) unlock_global_read_lock(this); if (ull) { pthread_mutex_lock(&LOCK_user_locks); item_user_lock_release(ull); pthread_mutex_unlock(&LOCK_user_locks); } cleanup_done=1; DBUG_VOID_RETURN; } THD::~THD() { THD_CHECK_SENTRY(this); DBUG_ENTER("~THD()"); /* Ensure that no one is using THD */ pthread_mutex_lock(&LOCK_delete); pthread_mutex_unlock(&LOCK_delete); add_to_status(&global_status_var, &status_var); /* Close connection */ #ifndef EMBEDDED_LIBRARY if (net.vio) { vio_delete(net.vio); net_end(&net); } #endif stmt_map.reset(); /* close all prepared statements */ DBUG_ASSERT(lock_info.n_cursors == 0); if (!cleanup_done) cleanup(); ha_close_connection(this); DBUG_PRINT("info", ("freeing security context")); main_security_ctx.destroy(); safeFree(db); free_root(&warn_root,MYF(0)); #ifdef USING_TRANSACTIONS free_root(&transaction.mem_root,MYF(0)); #endif mysys_var=0; // Safety (shouldn't be needed) pthread_mutex_destroy(&LOCK_delete); #ifndef DBUG_OFF dbug_sentry= THD_SENTRY_GONE; #endif #ifndef EMBEDDED_LIBRARY if (rli_fake) delete rli_fake; #endif free_root(&main_mem_root, MYF(0)); DBUG_VOID_RETURN; } /* Add all status variables to another status variable array SYNOPSIS add_to_status() to_var add to this array from_var from this array NOTES This function assumes that all variables are long/ulong. If this assumption will change, then we have to explictely add the other variables after the while loop */ void add_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var) { ulong *end= (ulong*) ((byte*) to_var + offsetof(STATUS_VAR, last_system_status_var) + sizeof(ulong)); ulong *to= (ulong*) to_var, *from= (ulong*) from_var; while (to != end) *(to++)+= *(from++); } /* Add the difference between two status variable arrays to another one. SYNOPSIS add_diff_to_status to_var add to this array from_var from this array dec_var minus this array NOTE This function assumes that all variables are long/ulong. */ void add_diff_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var, STATUS_VAR *dec_var) { ulong *end= (ulong*) ((byte*) to_var + offsetof(STATUS_VAR, last_system_status_var) + sizeof(ulong)); ulong *to= (ulong*) to_var, *from= (ulong*) from_var, *dec= (ulong*) dec_var; while (to != end) *(to++)+= *(from++) - *(dec++); } void THD::awake(THD::killed_state state_to_set) { DBUG_ENTER("THD::awake"); DBUG_PRINT("enter", ("this: 0x%lx", (long) this)); THD_CHECK_SENTRY(this); safe_mutex_assert_owner(&LOCK_delete); killed= state_to_set; if (state_to_set != THD::KILL_QUERY) { thr_alarm_kill(thread_id); if (!slave_thread) thread_scheduler.post_kill_notification(this); #ifdef SIGNAL_WITH_VIO_CLOSE close_active_vio(); #endif } if (mysys_var) { pthread_mutex_lock(&mysys_var->mutex); if (!system_thread) // Don't abort locks mysys_var->abort=1; /* This broadcast could be up in the air if the victim thread exits the cond in the time between read and broadcast, but that is ok since all we want to do is to make the victim thread get out of waiting on current_cond. If we see a non-zero current_cond: it cannot be an old value (because then exit_cond() should have run and it can't because we have mutex); so it is the true value but maybe current_mutex is not yet non-zero (we're in the middle of enter_cond() and there is a "memory order inversion"). So we test the mutex too to not lock 0. Note that there is a small chance we fail to kill. If victim has locked current_mutex, but hasn't yet entered enter_cond() (which means that current_cond and current_mutex are 0), then the victim will not get a signal and it may wait "forever" on the cond (until we issue a second KILL or the status it's waiting for happens). It's true that we have set its thd->killed but it may not see it immediately and so may have time to reach the cond_wait(). */ if (mysys_var->current_cond && mysys_var->current_mutex) { pthread_mutex_lock(mysys_var->current_mutex); pthread_cond_broadcast(mysys_var->current_cond); pthread_mutex_unlock(mysys_var->current_mutex); } pthread_mutex_unlock(&mysys_var->mutex); } DBUG_VOID_RETURN; } /* Remember the location of thread info, the structure needed for sql_alloc() and the structure for the net buffer */ bool THD::store_globals() { /* Assert that thread_stack is initialized: it's necessary to be able to track stack overrun. */ DBUG_ASSERT(thread_stack); if (my_pthread_setspecific_ptr(THR_THD, this) || my_pthread_setspecific_ptr(THR_MALLOC, &mem_root)) return 1; mysys_var=my_thread_var; /* Let mysqld define the thread id (not mysys) This allows us to move THD to different threads if needed. */ mysys_var->id= thread_id; real_id= pthread_self(); // For debugging /* We have to call thr_lock_info_init() again here as THD may have been created in another thread */ thr_lock_info_init(&lock_info); return 0; } /* Cleanup after query. SYNOPSIS THD::cleanup_after_query() DESCRIPTION This function is used to reset thread data to its default state. NOTE This function is not suitable for setting thread data to some non-default values, as there is only one replication thread, so different master threads may overwrite data of each other on slave. */ void THD::cleanup_after_query() { /* Reset rand_used so that detection of calls to rand() will save random seeds if needed by the slave. Do not reset rand_used if inside a stored function or trigger because only the call to these operations is logged. Thus only the calling statement needs to detect rand() calls made by its substatements. These substatements must not set rand_used to 0 because it would remove the detection of rand() by the calling statement. */ if (!in_sub_stmt) /* stored functions and triggers are a special case */ { /* Forget those values, for next binlogger: */ stmt_depends_on_first_successful_insert_id_in_prev_stmt= 0; auto_inc_intervals_in_cur_stmt_for_binlog.empty(); rand_used= 0; } if (first_successful_insert_id_in_cur_stmt > 0) { /* set what LAST_INSERT_ID() will return */ first_successful_insert_id_in_prev_stmt= first_successful_insert_id_in_cur_stmt; first_successful_insert_id_in_cur_stmt= 0; substitute_null_with_insert_id= TRUE; } arg_of_last_insert_id_function= 0; /* Free Items that were created during this execution */ free_items(); /* Reset where. */ where= THD::DEFAULT_WHERE; } /* Convert a string to another character set SYNOPSIS convert_string() to Store new allocated string here to_cs New character set for allocated string from String to convert from_length Length of string to convert from_cs Original character set NOTES to will be 0-terminated to make it easy to pass to system funcs RETURN 0 ok 1 End of memory. In this case to->str will point to 0 and to->length will be 0. */ bool THD::convert_string(LEX_STRING *to, CHARSET_INFO *to_cs, const char *from, uint from_length, CHARSET_INFO *from_cs) { DBUG_ENTER("convert_string"); size_s new_length= to_cs->mbmaxlen * from_length; uint dummy_errors; if (!(to->str= alloc(new_length+1))) { to->length= 0; // Safety fix DBUG_RETURN(1); // EOM } to->length= copy_and_convert((char*) to->str, new_length, to_cs, from, from_length, from_cs, &dummy_errors); to->str[to->length]=0; // Safety DBUG_RETURN(0); } /* Convert string from source character set to target character set inplace. SYNOPSIS THD::convert_string DESCRIPTION Convert string using convert_buffer - buffer for character set conversion shared between all protocols. RETURN 0 ok !0 out of memory */ bool THD::convert_string(String *s, CHARSET_INFO *from_cs, CHARSET_INFO *to_cs) { uint dummy_errors; if (convert_buffer.copy(s->ptr(), s->length(), from_cs, to_cs, &dummy_errors)) return TRUE; /* If convert_buffer >> s copying is more efficient long term */ if (convert_buffer.alloced_length() >= convert_buffer.length() * 2 || !s->is_alloced()) { return s->copy(convert_buffer); } s->swap(convert_buffer); return FALSE; } /* Update some cache variables when character set changes */ void THD::update_charset() { uint32 not_used; charset_is_system_charset= !String::needs_conversion(0,charset(), system_charset_info, ¬_used); charset_is_collation_connection= !String::needs_conversion(0,charset(),variables.collation_connection, ¬_used); charset_is_character_set_filesystem= !String::needs_conversion(0, charset(), variables.character_set_filesystem, ¬_used); } /* routings to adding tables to list of changed in transaction tables */ inline static void list_include(CHANGED_TABLE_LIST** prev, CHANGED_TABLE_LIST* curr, CHANGED_TABLE_LIST* new_table) { if (new_table) { *prev = new_table; (*prev)->next = curr; } } /* add table to list of changed in transaction tables */ void THD::add_changed_table(TABLE *table) { DBUG_ENTER("THD::add_changed_table(table)"); DBUG_ASSERT((options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)) && table->file->has_transactions()); add_changed_table(table->s->table_cache_key.str, table->s->table_cache_key.length); DBUG_VOID_RETURN; } void THD::add_changed_table(const char *key, long key_length) { DBUG_ENTER("THD::add_changed_table(key)"); CHANGED_TABLE_LIST **prev_changed = &transaction.changed_tables; CHANGED_TABLE_LIST *curr = transaction.changed_tables; for (; curr; prev_changed = &(curr->next), curr = curr->next) { int cmp = (long)curr->key_length - (long)key_length; if (cmp < 0) { list_include(prev_changed, curr, changed_table_dup(key, key_length)); DBUG_PRINT("info", ("key_length %ld %u", key_length, (*prev_changed)->key_length)); DBUG_VOID_RETURN; } else if (cmp == 0) { cmp = memcmp(curr->key, key, curr->key_length); if (cmp < 0) { list_include(prev_changed, curr, changed_table_dup(key, key_length)); DBUG_PRINT("info", ("key_length %ld %u", key_length, (*prev_changed)->key_length)); DBUG_VOID_RETURN; } else if (cmp == 0) { DBUG_PRINT("info", ("already in list")); DBUG_VOID_RETURN; } } } *prev_changed = changed_table_dup(key, key_length); DBUG_PRINT("info", ("key_length %ld %u", key_length, (*prev_changed)->key_length)); DBUG_VOID_RETURN; } CHANGED_TABLE_LIST* THD::changed_table_dup(const char *key, long key_length) { CHANGED_TABLE_LIST* new_table = (CHANGED_TABLE_LIST*) trans_alloc(ALIGN_SIZE(sizeof(CHANGED_TABLE_LIST))+ key_length + 1); if (!new_table) { my_error(EE_OUTOFMEMORY, MYF(ME_BELL), ALIGN_SIZE(sizeof(TABLE_LIST)) + key_length + 1); killed= KILL_CONNECTION; return 0; } new_table->key = (char *) (((byte*)new_table)+ ALIGN_SIZE(sizeof(CHANGED_TABLE_LIST))); new_table->next = 0; new_table->key_length = key_length; ::memcpy(new_table->key, key, key_length); return new_table; } int THD::send_explain_fields(select_result *result) { List field_list; Item *item; CHARSET_INFO *cs= system_charset_info; field_list.push_back(new Item_return_int("id",3, MYSQL_TYPE_LONGLONG)); field_list.push_back(new Item_empty_string("select_type", 19, cs)); field_list.push_back(item= new Item_empty_string("table", NAME_LEN, cs)); item->maybe_null= 1; if (lex->describe & DESCRIBE_PARTITIONS) { /* Maximum length of string that make_used_partitions_str() can produce */ item= new Item_empty_string("partitions", MAX_PARTITIONS * (1 + FN_LEN), cs); field_list.push_back(item); item->maybe_null= 1; } field_list.push_back(item= new Item_empty_string("type", 10, cs)); item->maybe_null= 1; field_list.push_back(item=new Item_empty_string("possible_keys", NAME_LEN*MAX_KEY, cs)); item->maybe_null=1; field_list.push_back(item=new Item_empty_string("key", NAME_LEN, cs)); item->maybe_null=1; field_list.push_back(item=new Item_empty_string("key_len", NAME_LEN*MAX_KEY)); item->maybe_null=1; field_list.push_back(item=new Item_empty_string("ref", NAME_LEN*MAX_REF_PARTS, cs)); item->maybe_null=1; field_list.push_back(item= new Item_return_int("rows", 10, MYSQL_TYPE_LONGLONG)); if (lex->describe & DESCRIBE_EXTENDED) { field_list.push_back(item= new Item_float("filtered", 0.1234, 2, 4)); item->maybe_null=1; } item->maybe_null= 1; field_list.push_back(new Item_empty_string("Extra", 255, cs)); return (result->send_fields(field_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)); } #ifdef SIGNAL_WITH_VIO_CLOSE void THD::close_active_vio() { DBUG_ENTER("close_active_vio"); safe_mutex_assert_owner(&LOCK_delete); #ifndef EMBEDDED_LIBRARY if (active_vio) { vio_close(active_vio); active_vio = 0; } #endif DBUG_VOID_RETURN; } #endif struct Item_change_record: public ilink { Item **place; Item *old_value; /* Placement new was hidden by `new' in ilink (TODO: check): */ static void *operator new(size_t size, void *mem) { return mem; } static void operator delete(void *ptr, size_t size) {} static void operator delete(void *ptr, void *mem) { /* never called */ } }; /* Register an item tree tree transformation, performed by the query optimizer. We need a pointer to runtime_memroot because it may be != thd->mem_root (due to possible set_n_backup_active_arena called for thd). */ void THD::nocheck_register_item_tree_change(Item **place, Item *old_value, MEM_ROOT *runtime_memroot) { Item_change_record *change; /* Now we use one node per change, which adds some memory overhead, but still is rather fast as we use alloc_root for allocations. A list of item tree changes of an average query should be short. */ void *change_mem= alloc_root(runtime_memroot, sizeof(*change)); if (change_mem == 0) { /* OOM, thd->fatal_error() is called by the error handler of the memroot. Just return. */ return; } change= new (change_mem) Item_change_record; change->place= place; change->old_value= old_value; change_list.append(change); } void THD::rollback_item_tree_changes() { I_List_iterator it(change_list); Item_change_record *change; DBUG_ENTER("rollback_item_tree_changes"); while ((change= it++)) *change->place= change->old_value; /* We can forget about changes memory: it's allocated in runtime memroot */ change_list.empty(); DBUG_VOID_RETURN; } /***************************************************************************** ** Functions to provide a interface to select results *****************************************************************************/ select_result::select_result() { thd=current_thd; } void select_result::send_error(uint errcode,const char *err) { my_message(errcode, err, MYF(0)); } void select_result::cleanup() { /* do nothing */ } bool select_result::check_simple_select() const { my_error(ER_SP_BAD_CURSOR_QUERY, MYF(0)); return TRUE; } static String default_line_term("\n",default_charset_info); static String default_escaped("\\",default_charset_info); static String default_field_term("\t",default_charset_info); sql_exchange::sql_exchange(char *name,bool flag) :file_name(name), opt_enclosed(0), dumpfile(flag), skip_lines(0) { field_term= &default_field_term; enclosed= line_start= &my_empty_string; line_term= &default_line_term; escaped= &default_escaped; cs= NULL; } bool select_send::send_fields(List &list, uint flags) { bool res; if (!(res= thd->protocol->send_fields(&list, flags))) status= 1; return res; } void select_send::abort() { DBUG_ENTER("select_send::abort"); if (status && thd->spcont && thd->spcont->find_handler(thd->net.last_errno, MYSQL_ERROR::WARN_LEVEL_ERROR)) { /* Executing stored procedure without a handler. Here we should actually send an error to the client, but as an error will break a multiple result set, the only thing we can do for now is to nicely end the current data set and remembering the error so that the calling routine will abort */ thd->net.report_error= 0; send_eof(); thd->net.report_error= 1; // Abort SP } DBUG_VOID_RETURN; } /* Send data to client. Returns 0 if ok */ bool select_send::send_data(List &items) { if (unit->offset_limit_cnt) { // using limit offset,count unit->offset_limit_cnt--; return 0; } /* We may be passing the control from mysqld to the client: release the InnoDB adaptive hash S-latch to avoid thread deadlocks if it was reserved by thd */ ha_release_temporary_latches(thd); List_iterator_fast li(items); Protocol *protocol= thd->protocol; char buff[MAX_FIELD_WIDTH]; String buffer(buff, sizeof(buff), &my_charset_bin); DBUG_ENTER("select_send::send_data"); protocol->prepare_for_resend(); Item *item; while ((item=li++)) { if (item->send(protocol, &buffer)) { protocol->free(); // Free used buffer my_message(ER_OUT_OF_RESOURCES, ER(ER_OUT_OF_RESOURCES), MYF(0)); break; } } thd->sent_row_count++; if (!thd->vio_ok()) DBUG_RETURN(0); if (!thd->net.report_error) DBUG_RETURN(protocol->write()); protocol->remove_last_row(); DBUG_RETURN(1); } bool select_send::send_eof() { /* We may be passing the control from mysqld to the client: release the InnoDB adaptive hash S-latch to avoid thread deadlocks if it was reserved by thd */ ha_release_temporary_latches(thd); /* Unlock tables before sending packet to gain some speed */ if (thd->lock) { mysql_unlock_tables(thd, thd->lock); thd->lock=0; } if (!thd->net.report_error) { ::send_eof(thd); status= 0; return 0; } else return 1; } /************************************************************************ Handling writing to file ************************************************************************/ void select_to_file::send_error(uint errcode,const char *err) { my_message(errcode, err, MYF(0)); if (file > 0) { (void) end_io_cache(&cache); (void) my_close(file,MYF(0)); (void) my_delete(path,MYF(0)); // Delete file on error file= -1; } } bool select_to_file::send_eof() { int error= test(end_io_cache(&cache)); if (my_close(file,MYF(MY_WME))) error= 1; if (!error) ::send_ok(thd,row_count); file= -1; return error; } void select_to_file::cleanup() { /* In case of error send_eof() may be not called: close the file here. */ if (file >= 0) { (void) end_io_cache(&cache); (void) my_close(file,MYF(0)); file= -1; } path[0]= '\0'; row_count= 0; } select_to_file::~select_to_file() { if (file >= 0) { // This only happens in case of error (void) end_io_cache(&cache); (void) my_close(file,MYF(0)); file= -1; } } /*************************************************************************** ** Export of select to textfile ***************************************************************************/ select_export::~select_export() { thd->sent_row_count=row_count; } /* Create file with IO cache SYNOPSIS create_file() thd Thread handle path File name exchange Excange class cache IO cache RETURN >= 0 File handle -1 Error */ static File create_file(THD *thd, char *path, sql_exchange *exchange, IO_CACHE *cache) { File file; uint option= MY_UNPACK_FILENAME | MY_RELATIVE_PATH; #ifdef DONT_ALLOW_FULL_LOAD_DATA_PATHS option|= MY_REPLACE_DIR; // Force use of db directory #endif if (!dirname_length(exchange->file_name)) { strxnmov(path, FN_REFLEN-1, mysql_real_data_home, thd->db ? thd->db : "", NullS); (void) fn_format(path, exchange->file_name, path, "", option); } else (void) fn_format(path, exchange->file_name, mysql_real_data_home, "", option); if (opt_secure_file_priv && strncmp(opt_secure_file_priv, path, strlen(opt_secure_file_priv))) { /* Write only allowed to dir or subdir specified by secure_file_priv */ my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0), "--secure-file-priv"); return -1; } if (!access(path, F_OK)) { my_error(ER_FILE_EXISTS_ERROR, MYF(0), exchange->file_name); return -1; } /* Create the file world readable */ if ((file= my_create(path, 0666, O_WRONLY|O_EXCL, MYF(MY_WME))) < 0) return file; #ifdef HAVE_FCHMOD (void) fchmod(file, 0666); // Because of umask() #else (void) chmod(path, 0666); #endif if (init_io_cache(cache, file, 0L, WRITE_CACHE, 0L, 1, MYF(MY_WME))) { my_close(file, MYF(0)); my_delete(path, MYF(0)); // Delete file on error, it was just created return -1; } return file; } int select_export::prepare(List &list, SELECT_LEX_UNIT *u) { bool blob_flag=0; unit= u; if ((uint) strlen(exchange->file_name) + NAME_LEN >= FN_REFLEN) strmake(path,exchange->file_name,FN_REFLEN-1); if ((file= create_file(thd, path, exchange, &cache)) < 0) return 1; /* Check if there is any blobs in data */ { List_iterator_fast li(list); Item *item; while ((item=li++)) { if (item->max_length >= MAX_BLOB_WIDTH) { blob_flag=1; break; } } } field_term_length=exchange->field_term->length(); if (!exchange->line_term->length()) exchange->line_term=exchange->field_term; // Use this if it exists field_sep_char= (exchange->enclosed->length() ? (*exchange->enclosed)[0] : field_term_length ? (*exchange->field_term)[0] : INT_MAX); escape_char= (exchange->escaped->length() ? (*exchange->escaped)[0] : -1); line_sep_char= (exchange->line_term->length() ? (*exchange->line_term)[0] : INT_MAX); if (!field_term_length) exchange->opt_enclosed=0; if (!exchange->enclosed->length()) exchange->opt_enclosed=1; // A little quicker loop fixed_row_size= (!field_term_length && !exchange->enclosed->length() && !blob_flag); return 0; } bool select_export::send_data(List &items) { DBUG_ENTER("select_export::send_data"); char buff[MAX_FIELD_WIDTH],null_buff[2],space[MAX_FIELD_WIDTH]; bool space_inited=0; String tmp(buff,sizeof(buff),&my_charset_bin),*res; tmp.length(0); if (unit->offset_limit_cnt) { // using limit offset,count unit->offset_limit_cnt--; DBUG_RETURN(0); } row_count++; Item *item; uint used_length=0,items_left=items.elements; List_iterator_fast li(items); if (my_b_write(&cache,(byte*) exchange->line_start->ptr(), exchange->line_start->length())) goto err; while ((item=li++)) { Item_result result_type=item->result_type(); res=item->str_result(&tmp); if (res && (!exchange->opt_enclosed || result_type == STRING_RESULT)) { if (my_b_write(&cache,(byte*) exchange->enclosed->ptr(), exchange->enclosed->length())) goto err; } if (!res) { // NULL if (!fixed_row_size) { if (escape_char != -1) // Use \N syntax { null_buff[0]=escape_char; null_buff[1]='N'; if (my_b_write(&cache,(byte*) null_buff,2)) goto err; } else if (my_b_write(&cache,(byte*) "NULL",4)) goto err; } else { used_length=0; // Fill with space } } else { if (fixed_row_size) used_length=min(res->length(),item->max_length); else used_length=res->length(); if (result_type == STRING_RESULT && escape_char != -1) { char *pos,*start,*end; for (start=pos=(char*) res->ptr(),end=pos+used_length ; pos != end ; pos++) { #ifdef USE_MB CHARSET_INFO *res_charset=res->charset(); if (use_mb(res_charset)) { int l; if ((l=my_ismbchar(res_charset, pos, end))) { pos += l-1; continue; } } #endif if ((int) *pos == escape_char || (int) *pos == field_sep_char || (int) *pos == line_sep_char || !*pos) { char tmp_buff[2]; tmp_buff[0]= escape_char; tmp_buff[1]= *pos ? *pos : '0'; if (my_b_write(&cache,(byte*) start,(uint) (pos-start)) || my_b_write(&cache,(byte*) tmp_buff,2)) goto err; start=pos+1; } } if (my_b_write(&cache,(byte*) start,(uint) (pos-start))) goto err; } else if (my_b_write(&cache,(byte*) res->ptr(),used_length)) goto err; } if (fixed_row_size) { // Fill with space if (item->max_length > used_length) { /* QQ: Fix by adding a my_b_fill() function */ if (!space_inited) { space_inited=1; bfill(space,sizeof(space),' '); } uint length=item->max_length-used_length; for (; length > sizeof(space) ; length-=sizeof(space)) { if (my_b_write(&cache,(byte*) space,sizeof(space))) goto err; } if (my_b_write(&cache,(byte*) space,length)) goto err; } } if (res && (!exchange->opt_enclosed || result_type == STRING_RESULT)) { if (my_b_write(&cache, (byte*) exchange->enclosed->ptr(), exchange->enclosed->length())) goto err; } if (--items_left) { if (my_b_write(&cache, (byte*) exchange->field_term->ptr(), field_term_length)) goto err; } } if (my_b_write(&cache,(byte*) exchange->line_term->ptr(), exchange->line_term->length())) goto err; DBUG_RETURN(0); err: DBUG_RETURN(1); } /*************************************************************************** ** Dump of select to a binary file ***************************************************************************/ int select_dump::prepare(List &list __attribute__((unused)), SELECT_LEX_UNIT *u) { unit= u; return (int) ((file= create_file(thd, path, exchange, &cache)) < 0); } bool select_dump::send_data(List &items) { List_iterator_fast li(items); char buff[MAX_FIELD_WIDTH]; String tmp(buff,sizeof(buff),&my_charset_bin),*res; tmp.length(0); Item *item; DBUG_ENTER("select_dump::send_data"); if (unit->offset_limit_cnt) { // using limit offset,count unit->offset_limit_cnt--; DBUG_RETURN(0); } if (row_count++ > 1) { my_message(ER_TOO_MANY_ROWS, ER(ER_TOO_MANY_ROWS), MYF(0)); goto err; } while ((item=li++)) { res=item->str_result(&tmp); if (!res) // If NULL { if (my_b_write(&cache,(byte*) "",1)) goto err; } else if (my_b_write(&cache,(byte*) res->ptr(),res->length())) { my_error(ER_ERROR_ON_WRITE, MYF(0), path, my_errno); goto err; } } DBUG_RETURN(0); err: DBUG_RETURN(1); } select_subselect::select_subselect(Item_subselect *item_arg) { item= item_arg; } bool select_singlerow_subselect::send_data(List &items) { DBUG_ENTER("select_singlerow_subselect::send_data"); Item_singlerow_subselect *it= (Item_singlerow_subselect *)item; if (it->assigned()) { my_message(ER_SUBQUERY_NO_1_ROW, ER(ER_SUBQUERY_NO_1_ROW), MYF(0)); DBUG_RETURN(1); } if (unit->offset_limit_cnt) { // Using limit offset,count unit->offset_limit_cnt--; DBUG_RETURN(0); } List_iterator_fast li(items); Item *val_item; for (uint i= 0; (val_item= li++); i++) it->store(i, val_item); it->assigned(1); DBUG_RETURN(0); } void select_max_min_finder_subselect::cleanup() { DBUG_ENTER("select_max_min_finder_subselect::cleanup"); cache= 0; DBUG_VOID_RETURN; } bool select_max_min_finder_subselect::send_data(List &items) { DBUG_ENTER("select_max_min_finder_subselect::send_data"); Item_maxmin_subselect *it= (Item_maxmin_subselect *)item; List_iterator_fast li(items); Item *val_item= li++; it->register_value(); if (it->assigned()) { cache->store(val_item); if ((this->*op)()) it->store(0, cache); } else { if (!cache) { cache= Item_cache::get_cache(val_item->result_type()); switch (val_item->result_type()) { case REAL_RESULT: op= &select_max_min_finder_subselect::cmp_real; break; case INT_RESULT: op= &select_max_min_finder_subselect::cmp_int; break; case STRING_RESULT: op= &select_max_min_finder_subselect::cmp_str; break; case DECIMAL_RESULT: op= &select_max_min_finder_subselect::cmp_decimal; break; case ROW_RESULT: // This case should never be choosen DBUG_ASSERT(0); op= 0; } } cache->store(val_item); it->store(0, cache); } it->assigned(1); DBUG_RETURN(0); } bool select_max_min_finder_subselect::cmp_real() { Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0); double val1= cache->val_real(), val2= maxmin->val_real(); if (fmax) return (cache->null_value && !maxmin->null_value) || (!cache->null_value && !maxmin->null_value && val1 > val2); return (maxmin->null_value && !cache->null_value) || (!cache->null_value && !maxmin->null_value && val1 < val2); } bool select_max_min_finder_subselect::cmp_int() { Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0); longlong val1= cache->val_int(), val2= maxmin->val_int(); if (fmax) return (cache->null_value && !maxmin->null_value) || (!cache->null_value && !maxmin->null_value && val1 > val2); return (maxmin->null_value && !cache->null_value) || (!cache->null_value && !maxmin->null_value && val1 < val2); } bool select_max_min_finder_subselect::cmp_decimal() { Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0); my_decimal cval, *cvalue= cache->val_decimal(&cval); my_decimal mval, *mvalue= maxmin->val_decimal(&mval); if (fmax) return (cache->null_value && !maxmin->null_value) || (!cache->null_value && !maxmin->null_value && my_decimal_cmp(cvalue, mvalue) > 0) ; return (maxmin->null_value && !cache->null_value) || (!cache->null_value && !maxmin->null_value && my_decimal_cmp(cvalue,mvalue) < 0); } bool select_max_min_finder_subselect::cmp_str() { String *val1, *val2, buf1, buf2; Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0); /* as far as both operand is Item_cache buf1 & buf2 will not be used, but added for safety */ val1= cache->val_str(&buf1); val2= maxmin->val_str(&buf1); if (fmax) return (cache->null_value && !maxmin->null_value) || (!cache->null_value && !maxmin->null_value && sortcmp(val1, val2, cache->collation.collation) > 0) ; return (maxmin->null_value && !cache->null_value) || (!cache->null_value && !maxmin->null_value && sortcmp(val1, val2, cache->collation.collation) < 0); } bool select_exists_subselect::send_data(List &items) { DBUG_ENTER("select_exists_subselect::send_data"); Item_exists_subselect *it= (Item_exists_subselect *)item; if (unit->offset_limit_cnt) { // Using limit offset,count unit->offset_limit_cnt--; DBUG_RETURN(0); } it->value= 1; it->assigned(1); DBUG_RETURN(0); } /*************************************************************************** Dump of select to variables ***************************************************************************/ int select_dumpvar::prepare(List &list, SELECT_LEX_UNIT *u) { unit= u; if (var_list.elements != list.elements) { my_message(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT, ER(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT), MYF(0)); return 1; } return 0; } bool select_dumpvar::check_simple_select() const { my_error(ER_SP_BAD_CURSOR_SELECT, MYF(0)); return TRUE; } void select_dumpvar::cleanup() { row_count= 0; } Query_arena::Type Query_arena::type() const { DBUG_ASSERT(0); /* Should never be called */ return STATEMENT; } void Query_arena::free_items() { Item *next; DBUG_ENTER("Query_arena::free_items"); /* This works because items are allocated with sql_alloc() */ for (; free_list; free_list= next) { next= free_list->next; free_list->delete_self(); } /* Postcondition: free_list is 0 */ DBUG_VOID_RETURN; } void Query_arena::set_query_arena(Query_arena *set) { mem_root= set->mem_root; free_list= set->free_list; state= set->state; } void Query_arena::cleanup_stmt() { DBUG_ASSERT("Query_arena::cleanup_stmt()" == "not implemented"); } /* Statement functions */ Statement::Statement(LEX *lex_arg, MEM_ROOT *mem_root_arg, enum enum_state state_arg, ulong id_arg) :Query_arena(mem_root_arg, state_arg), id(id_arg), mark_used_columns(MARK_COLUMNS_READ), lex(lex_arg), query(0), query_length(0), cursor(0) { name.str= NULL; } Query_arena::Type Statement::type() const { return STATEMENT; } void Statement::set_statement(Statement *stmt) { id= stmt->id; mark_used_columns= stmt->mark_used_columns; lex= stmt->lex; query= stmt->query; query_length= stmt->query_length; cursor= stmt->cursor; } void Statement::set_n_backup_statement(Statement *stmt, Statement *backup) { DBUG_ENTER("Statement::set_n_backup_statement"); backup->set_statement(this); set_statement(stmt); DBUG_VOID_RETURN; } void Statement::restore_backup_statement(Statement *stmt, Statement *backup) { DBUG_ENTER("Statement::restore_backup_statement"); stmt->set_statement(this); set_statement(backup); DBUG_VOID_RETURN; } void THD::end_statement() { /* Cleanup SQL processing state to reuse this statement in next query. */ lex_end(lex); delete lex->result; lex->result= 0; /* Note that free_list is freed in cleanup_after_query() */ /* Don't free mem_root, as mem_root is freed in the end of dispatch_command (once for any command). */ } void THD::set_n_backup_active_arena(Query_arena *set, Query_arena *backup) { DBUG_ENTER("THD::set_n_backup_active_arena"); DBUG_ASSERT(backup->is_backup_arena == FALSE); backup->set_query_arena(this); set_query_arena(set); #ifndef DBUG_OFF backup->is_backup_arena= TRUE; #endif DBUG_VOID_RETURN; } void THD::restore_active_arena(Query_arena *set, Query_arena *backup) { DBUG_ENTER("THD::restore_active_arena"); DBUG_ASSERT(backup->is_backup_arena); set->set_query_arena(this); set_query_arena(backup); #ifndef DBUG_OFF backup->is_backup_arena= FALSE; #endif DBUG_VOID_RETURN; } Statement::~Statement() { } C_MODE_START static byte * get_statement_id_as_hash_key(const byte *record, uint *key_length, my_bool not_used __attribute__((unused))) { const Statement *statement= (const Statement *) record; *key_length= sizeof(statement->id); return (byte *) &((const Statement *) statement)->id; } static void delete_statement_as_hash_key(void *key) { delete (Statement *) key; } static byte *get_stmt_name_hash_key(Statement *entry, uint *length, my_bool not_used __attribute__((unused))) { *length=(uint) entry->name.length; return (byte*) entry->name.str; } C_MODE_END Statement_map::Statement_map() : last_found_statement(0) { enum { START_STMT_HASH_SIZE = 16, START_NAME_HASH_SIZE = 16 }; hash_init(&st_hash, &my_charset_bin, START_STMT_HASH_SIZE, 0, 0, get_statement_id_as_hash_key, delete_statement_as_hash_key, MYF(0)); hash_init(&names_hash, system_charset_info, START_NAME_HASH_SIZE, 0, 0, (hash_get_key) get_stmt_name_hash_key, NULL,MYF(0)); } /* Insert a new statement to the thread-local statement map. DESCRIPTION If there was an old statement with the same name, replace it with the new one. Otherwise, check if max_prepared_stmt_count is not reached yet, increase prepared_stmt_count, and insert the new statement. It's okay to delete an old statement and fail to insert the new one. POSTCONDITIONS All named prepared statements are also present in names_hash. Statement names in names_hash are unique. The statement is added only if prepared_stmt_count < max_prepard_stmt_count last_found_statement always points to a valid statement or is 0 RETURN VALUE 0 success 1 error: out of resources or max_prepared_stmt_count limit has been reached. An error is sent to the client, the statement is deleted. */ int Statement_map::insert(THD *thd, Statement *statement) { if (my_hash_insert(&st_hash, (byte*) statement)) { /* Delete is needed only in case of an insert failure. In all other cases hash_delete will also delete the statement. */ delete statement; my_error(ER_OUT_OF_RESOURCES, MYF(0)); goto err_st_hash; } if (statement->name.str && my_hash_insert(&names_hash, (byte*) statement)) { my_error(ER_OUT_OF_RESOURCES, MYF(0)); goto err_names_hash; } pthread_mutex_lock(&LOCK_prepared_stmt_count); /* We don't check that prepared_stmt_count is <= max_prepared_stmt_count because we would like to allow to lower the total limit of prepared statements below the current count. In that case no new statements can be added until prepared_stmt_count drops below the limit. */ if (prepared_stmt_count >= max_prepared_stmt_count) { pthread_mutex_unlock(&LOCK_prepared_stmt_count); my_error(ER_MAX_PREPARED_STMT_COUNT_REACHED, MYF(0), max_prepared_stmt_count); goto err_max; } prepared_stmt_count++; pthread_mutex_unlock(&LOCK_prepared_stmt_count); last_found_statement= statement; return 0; err_max: if (statement->name.str) hash_delete(&names_hash, (byte*) statement); err_names_hash: hash_delete(&st_hash, (byte*) statement); err_st_hash: return 1; } void Statement_map::close_transient_cursors() { #ifdef TO_BE_IMPLEMENTED Statement *stmt; while ((stmt= transient_cursor_list.head())) stmt->close_cursor(); /* deletes itself from the list */ #endif } void Statement_map::erase(Statement *statement) { if (statement == last_found_statement) last_found_statement= 0; if (statement->name.str) hash_delete(&names_hash, (byte *) statement); hash_delete(&st_hash, (byte *) statement); pthread_mutex_lock(&LOCK_prepared_stmt_count); DBUG_ASSERT(prepared_stmt_count > 0); prepared_stmt_count--; pthread_mutex_unlock(&LOCK_prepared_stmt_count); } void Statement_map::reset() { /* Must be first, hash_free will reset st_hash.records */ pthread_mutex_lock(&LOCK_prepared_stmt_count); DBUG_ASSERT(prepared_stmt_count >= st_hash.records); prepared_stmt_count-= st_hash.records; pthread_mutex_unlock(&LOCK_prepared_stmt_count); my_hash_reset(&names_hash); my_hash_reset(&st_hash); last_found_statement= 0; } Statement_map::~Statement_map() { /* Must go first, hash_free will reset st_hash.records */ pthread_mutex_lock(&LOCK_prepared_stmt_count); DBUG_ASSERT(prepared_stmt_count >= st_hash.records); prepared_stmt_count-= st_hash.records; pthread_mutex_unlock(&LOCK_prepared_stmt_count); hash_free(&names_hash); hash_free(&st_hash); } bool select_dumpvar::send_data(List &items) { List_iterator_fast var_li(var_list); List_iterator it(items); Item *item; my_var *mv; DBUG_ENTER("select_dumpvar::send_data"); if (unit->offset_limit_cnt) { // using limit offset,count unit->offset_limit_cnt--; DBUG_RETURN(0); } if (row_count++) { my_message(ER_TOO_MANY_ROWS, ER(ER_TOO_MANY_ROWS), MYF(0)); DBUG_RETURN(1); } while ((mv= var_li++) && (item= it++)) { if (mv->local) { if (thd->spcont->set_variable(thd, mv->offset, &item)) DBUG_RETURN(1); } else { Item_func_set_user_var *suv= new Item_func_set_user_var(mv->s, item); suv->fix_fields(thd, 0); suv->check(0); suv->update(); } } DBUG_RETURN(0); } bool select_dumpvar::send_eof() { if (! row_count) push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_SP_FETCH_NO_DATA, ER(ER_SP_FETCH_NO_DATA)); ::send_ok(thd,row_count); return 0; } /**************************************************************************** TMP_TABLE_PARAM ****************************************************************************/ void TMP_TABLE_PARAM::init() { DBUG_ENTER("TMP_TABLE_PARAM::init"); DBUG_PRINT("enter", ("this: 0x%lx", (ulong)this)); field_count= sum_func_count= func_count= hidden_field_count= 0; group_parts= group_length= group_null_parts= 0; quick_group= 1; table_charset= 0; precomputed_group_by= 0; DBUG_VOID_RETURN; } void thd_increment_bytes_sent(ulong length) { THD *thd=current_thd; if (likely(thd != 0)) { /* current_thd==0 when close_connection() calls net_send_error() */ thd->status_var.bytes_sent+= length; } } void thd_increment_bytes_received(ulong length) { current_thd->status_var.bytes_received+= length; } void thd_increment_net_big_packet_count(ulong length) { current_thd->status_var.net_big_packet_count+= length; } void THD::set_status_var_init() { bzero((char*) &status_var, sizeof(status_var)); } void Security_context::init() { host= user= priv_user= ip= 0; host_or_ip= "connecting host"; priv_host[0]= '\0'; #ifndef NO_EMBEDDED_ACCESS_CHECKS db_access= NO_ACCESS; #endif } void Security_context::destroy() { // If not pointer to constant if (host != my_localhost) safeFree(host); if (user != delayed_user) safeFree(user); safeFree(ip); } void Security_context::skip_grants() { /* privileges for the user are unknown everything is allowed */ host_or_ip= (char *)""; master_access= ~NO_ACCESS; priv_user= (char *)""; *priv_host= '\0'; } bool Security_context::set_user(char *user_arg) { safeFree(user); user= my_strdup(user_arg, MYF(0)); return user == 0; } /**************************************************************************** Handling of open and locked tables states. This is used when we want to open/lock (and then close) some tables when we already have a set of tables open and locked. We use these methods for access to mysql.proc table to find definitions of stored routines. ****************************************************************************/ void THD::reset_n_backup_open_tables_state(Open_tables_state *backup) { DBUG_ENTER("reset_n_backup_open_tables_state"); backup->set_open_tables_state(this); reset_open_tables_state(); state_flags|= Open_tables_state::BACKUPS_AVAIL; DBUG_VOID_RETURN; } void THD::restore_backup_open_tables_state(Open_tables_state *backup) { DBUG_ENTER("restore_backup_open_tables_state"); /* Before we will throw away current open tables state we want to be sure that it was properly cleaned up. */ DBUG_ASSERT(open_tables == 0 && temporary_tables == 0 && handler_tables == 0 && derived_tables == 0 && lock == 0 && locked_tables == 0 && prelocked_mode == NON_PRELOCKED); set_open_tables_state(backup); DBUG_VOID_RETURN; } /**************************************************************************** Handling of statement states in functions and triggers. This is used to ensure that the function/trigger gets a clean state to work with and does not cause any side effects of the calling statement. It also allows most stored functions and triggers to replicate even if they are used items that would normally be stored in the binary replication (like last_insert_id() etc...) The following things is done - Disable binary logging for the duration of the statement - Disable multi-result-sets for the duration of the statement - Value of last_insert_id() is saved and restored - Value set by 'SET INSERT_ID=#' is reset and restored - Value for found_rows() is reset and restored - examined_row_count is added to the total - cuted_fields is added to the total - new savepoint level is created and destroyed NOTES: Seed for random() is saved for the first! usage of RAND() We reset examined_row_count and cuted_fields and add these to the result to ensure that if we have a bug that would reset these within a function, we are not loosing any rows from the main statement. We do not reset value of last_insert_id(). ****************************************************************************/ void THD::reset_sub_statement_state(Sub_statement_state *backup, uint new_state) { backup->options= options; backup->in_sub_stmt= in_sub_stmt; backup->no_send_ok= net.no_send_ok; backup->enable_slow_log= enable_slow_log; backup->limit_found_rows= limit_found_rows; backup->examined_row_count= examined_row_count; backup->sent_row_count= sent_row_count; backup->cuted_fields= cuted_fields; backup->client_capabilities= client_capabilities; backup->savepoints= transaction.savepoints; backup->first_successful_insert_id_in_prev_stmt= first_successful_insert_id_in_prev_stmt; backup->first_successful_insert_id_in_cur_stmt= first_successful_insert_id_in_cur_stmt; if ((!lex->requires_prelocking() || is_update_query(lex->sql_command)) && !current_stmt_binlog_row_based) { options&= ~OPTION_BIN_LOG; } if ((backup->options & OPTION_BIN_LOG) && is_update_query(lex->sql_command)&& !current_stmt_binlog_row_based) mysql_bin_log.start_union_events(this, this->query_id); /* Disable result sets */ client_capabilities &= ~CLIENT_MULTI_RESULTS; in_sub_stmt|= new_state; examined_row_count= 0; sent_row_count= 0; cuted_fields= 0; transaction.savepoints= 0; first_successful_insert_id_in_cur_stmt= 0; /* Surpress OK packets in case if we will execute statements */ net.no_send_ok= TRUE; } void THD::restore_sub_statement_state(Sub_statement_state *backup) { /* To save resources we want to release savepoints which were created during execution of function or trigger before leaving their savepoint level. It is enough to release first savepoint set on this level since all later savepoints will be released automatically. */ if (transaction.savepoints) { SAVEPOINT *sv; for (sv= transaction.savepoints; sv->prev; sv= sv->prev) {} /* ha_release_savepoint() never returns error. */ (void)ha_release_savepoint(this, sv); } transaction.savepoints= backup->savepoints; options= backup->options; in_sub_stmt= backup->in_sub_stmt; net.no_send_ok= backup->no_send_ok; enable_slow_log= backup->enable_slow_log; first_successful_insert_id_in_prev_stmt= backup->first_successful_insert_id_in_prev_stmt; first_successful_insert_id_in_cur_stmt= backup->first_successful_insert_id_in_cur_stmt; limit_found_rows= backup->limit_found_rows; sent_row_count= backup->sent_row_count; client_capabilities= backup->client_capabilities; if ((options & OPTION_BIN_LOG) && is_update_query(lex->sql_command) && !current_stmt_binlog_row_based) mysql_bin_log.stop_union_events(this); /* The following is added to the old values as we are interested in the total complexity of the query */ examined_row_count+= backup->examined_row_count; cuted_fields+= backup->cuted_fields; } /*************************************************************************** Handling of XA id cacheing ***************************************************************************/ pthread_mutex_t LOCK_xid_cache; HASH xid_cache; static byte *xid_get_hash_key(const byte *ptr,uint *length, my_bool not_used __attribute__((unused))) { *length=((XID_STATE*)ptr)->xid.key_length(); return ((XID_STATE*)ptr)->xid.key(); } static void xid_free_hash (void *ptr) { if (!((XID_STATE*)ptr)->in_thd) my_free((gptr)ptr, MYF(0)); } bool xid_cache_init() { pthread_mutex_init(&LOCK_xid_cache, MY_MUTEX_INIT_FAST); return hash_init(&xid_cache, &my_charset_bin, 100, 0, 0, xid_get_hash_key, xid_free_hash, 0) != 0; } void xid_cache_free() { if (hash_inited(&xid_cache)) { hash_free(&xid_cache); pthread_mutex_destroy(&LOCK_xid_cache); } } XID_STATE *xid_cache_search(XID *xid) { pthread_mutex_lock(&LOCK_xid_cache); XID_STATE *res=(XID_STATE *)hash_search(&xid_cache, xid->key(), xid->key_length()); pthread_mutex_unlock(&LOCK_xid_cache); return res; } bool xid_cache_insert(XID *xid, enum xa_states xa_state) { XID_STATE *xs; my_bool res; pthread_mutex_lock(&LOCK_xid_cache); if (hash_search(&xid_cache, xid->key(), xid->key_length())) res=0; else if (!(xs=(XID_STATE *)my_malloc(sizeof(*xs), MYF(MY_WME)))) res=1; else { xs->xa_state=xa_state; xs->xid.set(xid); xs->in_thd=0; res=my_hash_insert(&xid_cache, (byte*)xs); } pthread_mutex_unlock(&LOCK_xid_cache); return res; } bool xid_cache_insert(XID_STATE *xid_state) { pthread_mutex_lock(&LOCK_xid_cache); DBUG_ASSERT(hash_search(&xid_cache, xid_state->xid.key(), xid_state->xid.key_length())==0); my_bool res=my_hash_insert(&xid_cache, (byte*)xid_state); pthread_mutex_unlock(&LOCK_xid_cache); return res; } void xid_cache_delete(XID_STATE *xid_state) { pthread_mutex_lock(&LOCK_xid_cache); hash_delete(&xid_cache, (byte *)xid_state); pthread_mutex_unlock(&LOCK_xid_cache); } /* Implementation of interface to write rows to the binary log through the thread. The thread is responsible for writing the rows it has inserted/updated/deleted. */ #ifndef MYSQL_CLIENT /* Template member function for ensuring that there is an rows log event of the apropriate type before proceeding. PRE CONDITION: - Events of type 'RowEventT' have the type code 'type_code'. POST CONDITION: If a non-NULL pointer is returned, the pending event for thread 'thd' will be an event of type 'RowEventT' (which have the type code 'type_code') will either empty or have enough space to hold 'needed' bytes. In addition, the columns bitmap will be correct for the row, meaning that the pending event will be flushed if the columns in the event differ from the columns suppled to the function. RETURNS If no error, a non-NULL pending event (either one which already existed or the newly created one). If error, NULL. */ template Rows_log_event* THD::binlog_prepare_pending_rows_event(TABLE* table, uint32 serv_id, MY_BITMAP const* cols, my_size_t colcnt, my_size_t needed, bool is_transactional, RowsEventT *hint __attribute__((unused))) { DBUG_ENTER("binlog_prepare_pending_rows_event"); /* Pre-conditions */ DBUG_ASSERT(table->s->table_map_id != ~0UL); /* Fetch the type code for the RowsEventT template parameter */ int const type_code= RowsEventT::TYPE_CODE; /* There is no good place to set up the transactional data, so we have to do it here. */ if (binlog_setup_trx_data()) DBUG_RETURN(NULL); Rows_log_event* pending= binlog_get_pending_rows_event(); if (unlikely(pending && !pending->is_valid())) DBUG_RETURN(NULL); /* Check if the current event is non-NULL and a write-rows event. Also check if the table provided is mapped: if it is not, then we have switched to writing to a new table. If there is no pending event, we need to create one. If there is a pending event, but it's not about the same table id, or not of the same type (between Write, Update and Delete), or not the same affected columns, or going to be too big, flush this event to disk and create a new pending event. */ if (!pending || pending->server_id != serv_id || pending->get_table_id() != table->s->table_map_id || pending->get_type_code() != type_code || pending->get_data_size() + needed > opt_binlog_rows_event_max_size || pending->get_width() != colcnt || !bitmap_cmp(pending->get_cols(), cols)) { /* Create a new RowsEventT... */ Rows_log_event* const ev= new RowsEventT(this, table, table->s->table_map_id, cols, is_transactional); if (unlikely(!ev)) DBUG_RETURN(NULL); ev->server_id= serv_id; // I don't like this, it's too easy to forget. /* flush the pending event and replace it with the newly created event... */ if (unlikely(mysql_bin_log.flush_and_set_pending_rows_event(this, ev))) { delete ev; DBUG_RETURN(NULL); } DBUG_RETURN(ev); /* This is the new pending event */ } DBUG_RETURN(pending); /* This is the current pending event */ } #ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION /* Instantiate the versions we need, we have -fno-implicit-template as compiling option. */ template Rows_log_event* THD::binlog_prepare_pending_rows_event(TABLE*, uint32, MY_BITMAP const*, my_size_t, my_size_t, bool, Write_rows_log_event*); template Rows_log_event* THD::binlog_prepare_pending_rows_event(TABLE*, uint32, MY_BITMAP const*, my_size_t colcnt, my_size_t, bool, Delete_rows_log_event *); template Rows_log_event* THD::binlog_prepare_pending_rows_event(TABLE*, uint32, MY_BITMAP const*, my_size_t colcnt, my_size_t, bool, Update_rows_log_event *); #endif #ifdef NOT_USED static char const* field_type_name(enum_field_types type) { switch (type) { case MYSQL_TYPE_DECIMAL: return "MYSQL_TYPE_DECIMAL"; case MYSQL_TYPE_TINY: return "MYSQL_TYPE_TINY"; case MYSQL_TYPE_SHORT: return "MYSQL_TYPE_SHORT"; case MYSQL_TYPE_LONG: return "MYSQL_TYPE_LONG"; case MYSQL_TYPE_FLOAT: return "MYSQL_TYPE_FLOAT"; case MYSQL_TYPE_DOUBLE: return "MYSQL_TYPE_DOUBLE"; case MYSQL_TYPE_NULL: return "MYSQL_TYPE_NULL"; case MYSQL_TYPE_TIMESTAMP: return "MYSQL_TYPE_TIMESTAMP"; case MYSQL_TYPE_LONGLONG: return "MYSQL_TYPE_LONGLONG"; case MYSQL_TYPE_INT24: return "MYSQL_TYPE_INT24"; case MYSQL_TYPE_DATE: return "MYSQL_TYPE_DATE"; case MYSQL_TYPE_TIME: return "MYSQL_TYPE_TIME"; case MYSQL_TYPE_DATETIME: return "MYSQL_TYPE_DATETIME"; case MYSQL_TYPE_YEAR: return "MYSQL_TYPE_YEAR"; case MYSQL_TYPE_NEWDATE: return "MYSQL_TYPE_NEWDATE"; case MYSQL_TYPE_VARCHAR: return "MYSQL_TYPE_VARCHAR"; case MYSQL_TYPE_BIT: return "MYSQL_TYPE_BIT"; case MYSQL_TYPE_NEWDECIMAL: return "MYSQL_TYPE_NEWDECIMAL"; case MYSQL_TYPE_ENUM: return "MYSQL_TYPE_ENUM"; case MYSQL_TYPE_SET: return "MYSQL_TYPE_SET"; case MYSQL_TYPE_TINY_BLOB: return "MYSQL_TYPE_TINY_BLOB"; case MYSQL_TYPE_MEDIUM_BLOB: return "MYSQL_TYPE_MEDIUM_BLOB"; case MYSQL_TYPE_LONG_BLOB: return "MYSQL_TYPE_LONG_BLOB"; case MYSQL_TYPE_BLOB: return "MYSQL_TYPE_BLOB"; case MYSQL_TYPE_VAR_STRING: return "MYSQL_TYPE_VAR_STRING"; case MYSQL_TYPE_STRING: return "MYSQL_TYPE_STRING"; case MYSQL_TYPE_GEOMETRY: return "MYSQL_TYPE_GEOMETRY"; } return "Unknown"; } #endif my_size_t THD::max_row_length_blob(TABLE *table, const byte *data) const { my_size_t length= 0; TABLE_SHARE *table_s= table->s; uint* const beg= table_s->blob_field; uint* const end= beg + table_s->blob_fields; for (uint *ptr= beg ; ptr != end ; ++ptr) { Field_blob* const blob= (Field_blob*) table->field[*ptr]; length+= blob->get_length((const char*) (data + blob->offset(table->record[0]))) + HA_KEY_BLOB_LENGTH; } return length; } /* Pack a record of data for a table into a format suitable for transfer via the binary log. SYNOPSIS THD::pack_row() table Table describing the format of the record cols Bitmap with a set bit for each column that should be stored in the row row_data Pointer to memory where row will be written record Pointer to record that should be packed. It is assumed that the pointer refers to either record[0] or record[1], but no such check is made since the code does not rely on that. DESCRIPTION The format for a row in transfer with N fields is the following: ceil(N/8) null bytes: One null bit for every column *regardless of whether it can be null or not*. This simplifies the decoding. Observe that the number of null bits is equal to the number of set bits in the 'cols' bitmap. The number of null bytes is the smallest number of bytes necessary to store the null bits. Padding bits are 1. N packets: Each field is stored in packed format. RETURN VALUE The number of bytes written at 'row_data'. */ my_size_t THD::pack_row(TABLE *table, MY_BITMAP const* cols, byte *const row_data, const byte *record) const { Field **p_field= table->field, *field; int const null_byte_count= (bitmap_bits_set(cols) + 7) / 8; byte *pack_ptr = row_data + null_byte_count; byte *null_ptr = row_data; my_ptrdiff_t const rec_offset= record - table->record[0]; my_ptrdiff_t const def_offset= table->s->default_values - table->record[0]; /* We write the null bits and the packed records using one pass through all the fields. The null bytes are written little-endian, i.e., the first fields are in the first byte. */ unsigned int null_bits= (1U << 8) - 1; // Mask to mask out the correct but among the null bits unsigned int null_mask= 1U; for ( ; (field= *p_field) ; p_field++) { DBUG_PRINT("debug", ("null_mask=%d; null_ptr=%p; row_data=%p; null_byte_count=%d", null_mask, null_ptr, row_data, null_byte_count)); if (bitmap_is_set(cols, p_field - table->field)) { my_ptrdiff_t offset; if (field->is_null(rec_offset)) { offset= def_offset; null_bits |= null_mask; } else { offset= rec_offset; null_bits &= ~null_mask; /* We only store the data of the field if it is non-null */ pack_ptr= (byte*)field->pack((char *) pack_ptr, field->ptr + offset); } null_mask <<= 1; if ((null_mask & 0xFF) == 0) { DBUG_ASSERT(null_ptr < row_data + null_byte_count); null_mask = 1U; *null_ptr++ = null_bits; null_bits= (1U << 8) - 1; } } } /* Write the last (partial) byte, if there is one */ if ((null_mask & 0xFF) > 1) { DBUG_ASSERT(null_ptr < row_data + null_byte_count); *null_ptr++ = null_bits; } /* The null pointer should now point to the first byte of the packed data. If it doesn't, something is very wrong. */ DBUG_ASSERT(null_ptr == row_data + null_byte_count); return static_cast(pack_ptr - row_data); } namespace { /** Class to handle temporary allocation of memory for row data. The responsibilities of the class is to provide memory for packing one or two rows of packed data (depending on what constructor is called). In order to make the allocation more efficient for "simple" rows, i.e., rows that do not contain any blobs, a pointer to the allocated memory is of memory is stored in the table structure for simple rows. If memory for a table containing a blob field is requested, only memory for that is allocated, and subsequently released when the object is destroyed. */ class Row_data_memory { public: /** Build an object to keep track of a block-local piece of memory for storing a row of data. @param table Table where the pre-allocated memory is stored. @param length Length of data that is needed, if the record contain blobs. */ Row_data_memory(TABLE *table, my_size_t const len1) : m_memory(0) { #ifndef DBUG_OFF m_alloc_checked= FALSE; #endif allocate_memory(table, len1); m_ptr[0]= has_memory() ? m_memory : 0; m_ptr[1]= 0; } Row_data_memory(TABLE *table, my_size_t const len1, my_size_t const len2) : m_memory(0) { #ifndef DBUG_OFF m_alloc_checked= FALSE; #endif allocate_memory(table, len1 + len2); m_ptr[0]= has_memory() ? m_memory : 0; m_ptr[1]= has_memory() ? m_memory + len1 : 0; } ~Row_data_memory() { if (m_memory != 0 && m_release_memory_on_destruction) my_free((gptr) m_memory, MYF(MY_WME)); } /** Is there memory allocated? @retval true There is memory allocated @retval false Memory allocation failed */ bool has_memory() const { #ifndef DBUG_OFF m_alloc_checked= TRUE; #endif return m_memory != 0; } byte *slot(uint s) { DBUG_ASSERT(s < sizeof(m_ptr)/sizeof(*m_ptr)); DBUG_ASSERT(m_ptr[s] != 0); DBUG_ASSERT(m_alloc_checked == TRUE); return m_ptr[s]; } private: void allocate_memory(TABLE *const table, my_size_t const total_length) { if (table->s->blob_fields == 0) { /* The maximum length of a packed record is less than this length. We use this value instead of the supplied length when allocating memory for records, since we don't know how the memory will be used in future allocations. Since table->s->reclength is for unpacked records, we have to add two bytes for each field, which can potentially be added to hold the length of a packed field. */ my_size_t const maxlen= table->s->reclength + 2 * table->s->fields; /* Allocate memory for two records if memory hasn't been allocated. We allocate memory for two records so that it can be used when processing update rows as well. */ if (table->write_row_record == 0) table->write_row_record= (byte *) alloc_root(&table->mem_root, 2 * maxlen); m_memory= table->write_row_record; m_release_memory_on_destruction= FALSE; } else { m_memory= (byte *) my_malloc(total_length, MYF(MY_WME)); m_release_memory_on_destruction= TRUE; } } #ifndef DBUG_OFF mutable bool m_alloc_checked; #endif bool m_release_memory_on_destruction; byte *m_memory; byte *m_ptr[2]; }; } int THD::binlog_write_row(TABLE* table, bool is_trans, MY_BITMAP const* cols, my_size_t colcnt, byte const *record) { DBUG_ASSERT(current_stmt_binlog_row_based && mysql_bin_log.is_open()); /* Pack records into format for transfer. We are allocating more memory than needed, but that doesn't matter. */ Row_data_memory memory(table, max_row_length(table, record)); if (!memory.has_memory()) return HA_ERR_OUT_OF_MEM; byte *row_data= memory.slot(0); my_size_t const len= pack_row(table, cols, row_data, record); Rows_log_event* const ev= binlog_prepare_pending_rows_event(table, server_id, cols, colcnt, len, is_trans, static_cast(0)); if (unlikely(ev == 0)) return HA_ERR_OUT_OF_MEM; return ev->add_row_data(row_data, len); } int THD::binlog_update_row(TABLE* table, bool is_trans, MY_BITMAP const* cols, my_size_t colcnt, const byte *before_record, const byte *after_record) { DBUG_ASSERT(current_stmt_binlog_row_based && mysql_bin_log.is_open()); my_size_t const before_maxlen = max_row_length(table, before_record); my_size_t const after_maxlen = max_row_length(table, after_record); Row_data_memory row_data(table, before_maxlen, after_maxlen); if (!row_data.has_memory()) return HA_ERR_OUT_OF_MEM; byte *before_row= row_data.slot(0); byte *after_row= row_data.slot(1); my_size_t const before_size= pack_row(table, cols, before_row, before_record); my_size_t const after_size= pack_row(table, cols, after_row, after_record); /* Don't print debug messages when running valgrind since they can trigger false warnings. */ #ifndef HAVE_purify DBUG_DUMP("before_record", (const char *)before_record, table->s->reclength); DBUG_DUMP("after_record", (const char *)after_record, table->s->reclength); DBUG_DUMP("before_row", (const char *)before_row, before_size); DBUG_DUMP("after_row", (const char *)after_row, after_size); #endif Rows_log_event* const ev= binlog_prepare_pending_rows_event(table, server_id, cols, colcnt, before_size + after_size, is_trans, static_cast(0)); if (unlikely(ev == 0)) return HA_ERR_OUT_OF_MEM; return ev->add_row_data(before_row, before_size) || ev->add_row_data(after_row, after_size); } int THD::binlog_delete_row(TABLE* table, bool is_trans, MY_BITMAP const* cols, my_size_t colcnt, byte const *record) { DBUG_ASSERT(current_stmt_binlog_row_based && mysql_bin_log.is_open()); /* Pack records into format for transfer. We are allocating more memory than needed, but that doesn't matter. */ Row_data_memory memory(table, max_row_length(table, record)); if (unlikely(!memory.has_memory())) return HA_ERR_OUT_OF_MEM; byte *row_data= memory.slot(0); my_size_t const len= pack_row(table, cols, row_data, record); Rows_log_event* const ev= binlog_prepare_pending_rows_event(table, server_id, cols, colcnt, len, is_trans, static_cast(0)); if (unlikely(ev == 0)) return HA_ERR_OUT_OF_MEM; return ev->add_row_data(row_data, len); } int THD::binlog_flush_pending_rows_event(bool stmt_end) { DBUG_ENTER("THD::binlog_flush_pending_rows_event"); /* We shall flush the pending event even if we are not in row-based mode: it might be the case that we left row-based mode before flushing anything (e.g., if we have explicitly locked tables). */ if (!mysql_bin_log.is_open()) DBUG_RETURN(0); /* Mark the event as the last event of a statement if the stmt_end flag is set. */ int error= 0; if (Rows_log_event *pending= binlog_get_pending_rows_event()) { if (stmt_end) { pending->set_flags(Rows_log_event::STMT_END_F); pending->flags|= LOG_EVENT_UPDATE_TABLE_MAP_VERSION_F; binlog_table_maps= 0; } error= mysql_bin_log.flush_and_set_pending_rows_event(this, 0); } DBUG_RETURN(error); } void THD::binlog_delete_pending_rows_event() { if (Rows_log_event *pending= binlog_get_pending_rows_event()) { delete pending; binlog_set_pending_rows_event(0); } } /* Member function that will log query, either row-based or statement-based depending on the value of the 'current_stmt_binlog_row_based' the value of the 'qtype' flag. This function should be called after the all calls to ha_*_row() functions have been issued, but before tables are unlocked and closed. OBSERVE There shall be no writes to any system table after calling binlog_query(), so these writes has to be moved to before the call of binlog_query() for correct functioning. This is necessesary not only for RBR, but the master might crash after binlogging the query but before changing the system tables. This means that the slave and the master are not in the same state (after the master has restarted), so therefore we have to eliminate this problem. RETURN VALUE Error code, or 0 if no error. */ int THD::binlog_query(THD::enum_binlog_query_type qtype, char const *query, ulong query_len, bool is_trans, bool suppress_use) { DBUG_ENTER("THD::binlog_query"); DBUG_PRINT("enter", ("qtype=%d, query='%s'", qtype, query)); DBUG_ASSERT(query && mysql_bin_log.is_open()); /* If we are not in prelocked mode, mysql_unlock_tables() will be called after this binlog_query(), so we have to flush the pending rows event with the STMT_END_F set to unlock all tables at the slave side as well. If we are in prelocked mode, the flushing will be done inside the top-most close_thread_tables(). */ if (this->prelocked_mode == NON_PRELOCKED) if (int error= binlog_flush_pending_rows_event(TRUE)) DBUG_RETURN(error); switch (qtype) { case THD::ROW_QUERY_TYPE: if (current_stmt_binlog_row_based) DBUG_RETURN(0); /* Otherwise, we fall through */ case THD::MYSQL_QUERY_TYPE: /* Using this query type is a conveniece hack, since we have been moving back and forth between using RBR for replication of system tables and not using it. Make sure to change in check_table_binlog_row_based() according to how you treat this. */ case THD::STMT_QUERY_TYPE: /* The MYSQL_LOG::write() function will set the STMT_END_F flag and flush the pending rows event if necessary. */ { Query_log_event qinfo(this, query, query_len, is_trans, suppress_use); qinfo.flags|= LOG_EVENT_UPDATE_TABLE_MAP_VERSION_F; /* Binlog table maps will be irrelevant after a Query_log_event (they are just removed on the slave side) so after the query log event is written to the binary log, we pretend that no table maps were written. */ int error= mysql_bin_log.write(&qinfo); binlog_table_maps= 0; DBUG_RETURN(error); } break; case THD::QUERY_TYPE_COUNT: default: DBUG_ASSERT(0 <= qtype && qtype < QUERY_TYPE_COUNT); } DBUG_RETURN(0); } bool Discrete_intervals_list::append(ulonglong start, ulonglong val, ulonglong incr) { DBUG_ENTER("Discrete_intervals_list::append"); /* first, see if this can be merged with previous */ if ((head == NULL) || tail->merge_if_contiguous(start, val, incr)) { /* it cannot, so need to add a new interval */ Discrete_interval *new_interval= new Discrete_interval(start, val, incr); if (unlikely(new_interval == NULL)) // out of memory DBUG_RETURN(1); DBUG_PRINT("info",("adding new auto_increment interval")); if (head == NULL) head= current= new_interval; else tail->next= new_interval; tail= new_interval; elements++; } DBUG_RETURN(0); } #endif /* !defined(MYSQL_CLIENT) */