/* Copyright (C) 2005 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* This file was introduced as a container for general functionality related to partitioning introduced in MySQL version 5.1. It contains functionality used by all handlers that support partitioning, which in the first version is the partitioning handler itself and the NDB handler. The first version was written by Mikael Ronstrom. This version supports RANGE partitioning, LIST partitioning, HASH partitioning and composite partitioning (hereafter called subpartitioning) where each RANGE/LIST partitioning is HASH partitioned. The hash function can either be supplied by the user or by only a list of fields (also called KEY partitioning, where the MySQL server will use an internal hash function. There are quite a few defaults that can be used as well. */ /* Some general useful functions */ #include "mysql_priv.h" #include #include #include "md5.h" #ifdef WITH_PARTITION_STORAGE_ENGINE #include "ha_partition.h" /* Partition related functions declarations and some static constants; */ static const char *hash_str= "HASH"; static const char *range_str= "RANGE"; static const char *list_str= "LIST"; static const char *part_str= "PARTITION"; static const char *sub_str= "SUB"; static const char *by_str= "BY"; static const char *key_str= "KEY"; static const char *space_str= " "; static const char *equal_str= "="; static const char *end_paren_str= ")"; static const char *begin_paren_str= "("; static const char *comma_str= ","; static char buff[22]; bool get_partition_id_list(partition_info *part_info, uint32 *part_id); bool get_partition_id_range(partition_info *part_info, uint32 *part_id); bool get_partition_id_hash_nosub(partition_info *part_info, uint32 *part_id); bool get_partition_id_key_nosub(partition_info *part_info, uint32 *part_id); bool get_partition_id_linear_hash_nosub(partition_info *part_info, uint32 *part_id); bool get_partition_id_linear_key_nosub(partition_info *part_info, uint32 *part_id); bool get_partition_id_range_sub_hash(partition_info *part_info, uint32 *part_id); bool get_partition_id_range_sub_key(partition_info *part_info, uint32 *part_id); bool get_partition_id_range_sub_linear_hash(partition_info *part_info, uint32 *part_id); bool get_partition_id_range_sub_linear_key(partition_info *part_info, uint32 *part_id); bool get_partition_id_list_sub_hash(partition_info *part_info, uint32 *part_id); bool get_partition_id_list_sub_key(partition_info *part_info, uint32 *part_id); bool get_partition_id_list_sub_linear_hash(partition_info *part_info, uint32 *part_id); bool get_partition_id_list_sub_linear_key(partition_info *part_info, uint32 *part_id); uint32 get_partition_id_hash_sub(partition_info *part_info); uint32 get_partition_id_key_sub(partition_info *part_info); uint32 get_partition_id_linear_hash_sub(partition_info *part_info); uint32 get_partition_id_linear_key_sub(partition_info *part_info); #endif /* A routine used by the parser to decide whether we are specifying a full partitioning or if only partitions to add or to split. SYNOPSIS is_partition_management() lex Reference to the lex object RETURN VALUE TRUE Yes, it is part of a management partition command FALSE No, not a management partition command DESCRIPTION This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is used from the sql parser that doesn't have any #ifdef's */ my_bool is_partition_management(LEX *lex) { return (lex->sql_command == SQLCOM_ALTER_TABLE && (lex->alter_info.flags == ALTER_ADD_PARTITION || lex->alter_info.flags == ALTER_REORGANISE_PARTITION)); } #ifdef WITH_PARTITION_STORAGE_ENGINE /* A support function to check if a partition name is in a list of strings SYNOPSIS is_partition_in_list() part_name String searched for list_part_names A list of names searched in RETURN VALUES TRUE String found FALSE String not found */ bool is_partition_in_list(char *part_name, List list_part_names) { List_iterator part_names_it(list_part_names); uint no_names= list_part_names.elements; uint i= 0; do { char *list_name= part_names_it++; if (!(my_strcasecmp(system_charset_info, part_name, list_name))) return TRUE; } while (++i < no_names); return FALSE; } /* A support function to check partition names for duplication in a partitioned table SYNOPSIS is_partitions_in_table() new_part_info New partition info old_part_info Old partition info RETURN VALUES TRUE Duplicate names found FALSE Duplicate names not found DESCRIPTION Can handle that the new and old parts are the same in which case it checks that the list of names in the partitions doesn't contain any duplicated names. */ bool is_partitions_in_table(partition_info *new_part_info, partition_info *old_part_info) { uint no_new_parts= new_part_info->partitions.elements, new_count; uint no_old_parts= old_part_info->partitions.elements, old_count; List_iterator new_parts_it(new_part_info->partitions); bool same_part_info= (new_part_info == old_part_info); DBUG_ENTER("is_partitions_in_table"); new_count= 0; do { List_iterator old_parts_it(old_part_info->partitions); char *new_name= (new_parts_it++)->partition_name; new_count++; old_count= 0; do { char *old_name= (old_parts_it++)->partition_name; old_count++; if (same_part_info && old_count == new_count) break; if (!(my_strcasecmp(system_charset_info, old_name, new_name))) { DBUG_RETURN(TRUE); } } while (old_count < no_old_parts); } while (new_count < no_new_parts); DBUG_RETURN(FALSE); } /* Check that the reorganized table will not have duplicate partitions. SYNOPSIS check_reorganise_list() new_part_info New partition info old_part_info Old partition info list_part_names The list of partition names that will go away and can be reused in the new table. RETURN VALUES TRUE Inacceptable name conflict detected. FALSE New names are OK. DESCRIPTION Can handle that the 'new_part_info' and 'old_part_info' the same in which case it checks that the list of names in the partitions doesn't contain any duplicated names. */ bool check_reorganise_list(partition_info *new_part_info, partition_info *old_part_info, List list_part_names) { uint new_count, old_count; uint no_new_parts= new_part_info->partitions.elements; uint no_old_parts= old_part_info->partitions.elements; List_iterator new_parts_it(new_part_info->partitions); bool same_part_info= (new_part_info == old_part_info); DBUG_ENTER("check_reorganise_list"); new_count= 0; do { List_iterator old_parts_it(old_part_info->partitions); char *new_name= (new_parts_it++)->partition_name; new_count++; old_count= 0; do { char *old_name= (old_parts_it++)->partition_name; old_count++; if (same_part_info && old_count == new_count) break; if (!(my_strcasecmp(system_charset_info, old_name, new_name))) { if (!is_partition_in_list(old_name, list_part_names)) DBUG_RETURN(TRUE); } } while (old_count < no_old_parts); } while (new_count < no_new_parts); DBUG_RETURN(FALSE); } /* A useful routine used by update_row for partition handlers to calculate the partition ids of the old and the new record. SYNOPSIS get_part_for_update() old_data Buffer of old record new_data Buffer of new record rec0 Reference to table->record[0] part_info Reference to partition information part_field_array A NULL-terminated array of fields for partition function old_part_id The returned partition id of old record new_part_id The returned partition id of new record RETURN VALUE 0 Success > 0 Error code DESCRIPTION Dependent on whether buf is not record[0] we need to prepare the fields. Then we call the function pointer get_partition_id to calculate the partition ids. */ int get_parts_for_update(const byte *old_data, byte *new_data, const byte *rec0, partition_info *part_info, uint32 *old_part_id, uint32 *new_part_id) { Field **part_field_array= part_info->full_part_field_array; int error; DBUG_ENTER("get_parts_for_update"); DBUG_ASSERT(new_data == rec0); set_field_ptr(part_field_array, old_data, rec0); error= part_info->get_partition_id(part_info, old_part_id); set_field_ptr(part_field_array, rec0, old_data); if (unlikely(error)) // Should never happen { DBUG_ASSERT(0); DBUG_RETURN(error); } #ifdef NOT_NEEDED if (new_data == rec0) #endif { if (unlikely(error= part_info->get_partition_id(part_info,new_part_id))) { DBUG_RETURN(error); } } #ifdef NOT_NEEDED else { /* This branch should never execute but it is written anyways for future use. It will be tested by ensuring that the above condition is false in one test situation before pushing the code. */ set_field_ptr(part_field_array, new_data, rec0); error= part_info->get_partition_id(part_info, new_part_id); set_field_ptr(part_field_array, rec0, new_data); if (unlikely(error)) { DBUG_RETURN(error); } } #endif DBUG_RETURN(0); } /* A useful routine used by delete_row for partition handlers to calculate the partition id. SYNOPSIS get_part_for_delete() buf Buffer of old record rec0 Reference to table->record[0] part_info Reference to partition information part_field_array A NULL-terminated array of fields for partition function part_id The returned partition id to delete from RETURN VALUE 0 Success > 0 Error code DESCRIPTION Dependent on whether buf is not record[0] we need to prepare the fields. Then we call the function pointer get_partition_id to calculate the partition id. */ int get_part_for_delete(const byte *buf, const byte *rec0, partition_info *part_info, uint32 *part_id) { int error; DBUG_ENTER("get_part_for_delete"); if (likely(buf == rec0)) { if (unlikely((error= part_info->get_partition_id(part_info, part_id)))) { DBUG_RETURN(error); } DBUG_PRINT("info", ("Delete from partition %d", *part_id)); } else { Field **part_field_array= part_info->full_part_field_array; set_field_ptr(part_field_array, buf, rec0); error= part_info->get_partition_id(part_info, part_id); set_field_ptr(part_field_array, rec0, buf); if (unlikely(error)) { DBUG_RETURN(error); } DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id)); } DBUG_RETURN(0); } /* This routine allocates an array for all range constants to achieve a fast check what partition a certain value belongs to. At the same time it does also check that the range constants are defined in increasing order and that the expressions are constant integer expressions. SYNOPSIS check_range_constants() part_info RETURN VALUE TRUE An error occurred during creation of range constants FALSE Successful creation of range constant mapping DESCRIPTION This routine is called from check_partition_info to get a quick error before we came too far into the CREATE TABLE process. It is also called from fix_partition_func every time we open the .frm file. It is only called for RANGE PARTITIONed tables. */ static bool check_range_constants(partition_info *part_info) { partition_element* part_def; longlong current_largest_int= LONGLONG_MIN, part_range_value_int; uint no_parts= part_info->no_parts, i; List_iterator it(part_info->partitions); bool result= TRUE; DBUG_ENTER("check_range_constants"); DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts)); part_info->part_result_type= INT_RESULT; part_info->range_int_array= (longlong*)sql_alloc(no_parts * sizeof(longlong)); if (unlikely(part_info->range_int_array == NULL)) { my_error(ER_OUTOFMEMORY, MYF(0), no_parts*sizeof(longlong)); goto end; } i= 0; do { part_def= it++; if ((i != (no_parts - 1)) || !part_info->defined_max_value) part_range_value_int= part_def->range_value; else part_range_value_int= LONGLONG_MAX; if (likely(current_largest_int < part_range_value_int)) { current_largest_int= part_range_value_int; part_info->range_int_array[i]= part_range_value_int; } else { my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0)); goto end; } } while (++i < no_parts); result= FALSE; end: DBUG_RETURN(result); } /* A support routine for check_list_constants used by qsort to sort the constant list expressions. SYNOPSIS list_part_cmp() a First list constant to compare with b Second list constant to compare with RETURN VALUE +1 a > b 0 a == b -1 a < b */ static int list_part_cmp(const void* a, const void* b) { longlong a1, b1; a1= ((LIST_PART_ENTRY*)a)->list_value; b1= ((LIST_PART_ENTRY*)b)->list_value; if (a1 < b1) return -1; else if (a1 > b1) return +1; else return 0; } /* This routine allocates an array for all list constants to achieve a fast check what partition a certain value belongs to. At the same time it does also check that there are no duplicates among the list constants and that that the list expressions are constant integer expressions. SYNOPSIS check_list_constants() part_info RETURN VALUE TRUE An error occurred during creation of list constants FALSE Successful creation of list constant mapping DESCRIPTION This routine is called from check_partition_info to get a quick error before we came too far into the CREATE TABLE process. It is also called from fix_partition_func every time we open the .frm file. It is only called for LIST PARTITIONed tables. */ static bool check_list_constants(partition_info *part_info) { uint i, no_list_values= 0, no_parts, list_index= 0; longlong *list_value; bool not_first, result= TRUE; longlong curr_value, prev_value; partition_element* part_def; List_iterator list_func_it(part_info->partitions); DBUG_ENTER("check_list_constants"); part_info->part_result_type= INT_RESULT; /* We begin by calculating the number of list values that have been defined in the first step. We use this number to allocate a properly sized array of structs to keep the partition id and the value to use in that partition. In the second traversal we assign them values in the struct array. Finally we sort the array of structs in order of values to enable a quick binary search for the proper value to discover the partition id. After sorting the array we check that there are no duplicates in the list. */ no_parts= part_info->no_parts; i= 0; do { part_def= list_func_it++; List_iterator list_val_it1(part_def->list_val_list); while (list_val_it1++) no_list_values++; } while (++i < no_parts); list_func_it.rewind(); part_info->no_list_values= no_list_values; part_info->list_array= (LIST_PART_ENTRY*)sql_alloc(no_list_values*sizeof(LIST_PART_ENTRY)); if (unlikely(part_info->list_array == NULL)) { my_error(ER_OUTOFMEMORY, MYF(0), no_list_values*sizeof(LIST_PART_ENTRY)); goto end; } i= 0; do { part_def= list_func_it++; List_iterator list_val_it2(part_def->list_val_list); while ((list_value= list_val_it2++)) { part_info->list_array[list_index].list_value= *list_value; part_info->list_array[list_index++].partition_id= i; } } while (++i < no_parts); qsort((void*)part_info->list_array, no_list_values, sizeof(LIST_PART_ENTRY), &list_part_cmp); not_first= FALSE; i= prev_value= 0; //prev_value initialised to quiet compiler do { curr_value= part_info->list_array[i].list_value; if (likely(!not_first || prev_value != curr_value)) { prev_value= curr_value; not_first= TRUE; } else { my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); goto end; } } while (++i < no_list_values); result= FALSE; end: DBUG_RETURN(result); } /* Create a memory area where default partition names are stored and fill it up with the names. SYNOPSIS create_default_partition_names() no_parts Number of partitions subpart Is it subpartitions RETURN VALUE A pointer to the memory area of the default partition names DESCRIPTION A support routine for the partition code where default values are generated. The external routine needing this code is check_partition_info */ #define MAX_PART_NAME_SIZE 8 static char *create_default_partition_names(uint no_parts, uint start_no, bool subpart) { char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE); char *move_ptr= ptr; uint i= 0; DBUG_ENTER("create_default_partition_names"); if (likely(ptr != 0)) { do { if (subpart) my_sprintf(move_ptr, (move_ptr,"sp%u", (start_no + i))); else my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i))); move_ptr+=MAX_PART_NAME_SIZE; } while (++i < no_parts); } else { my_error(ER_OUTOFMEMORY, MYF(0), no_parts*MAX_PART_NAME_SIZE); } DBUG_RETURN(ptr); } /* Set up all the default partitions not set-up by the user in the SQL statement. Also perform a number of checks that the user hasn't tried to use default values where no defaults exists. SYNOPSIS set_up_default_partitions() part_info The reference to all partition information file A reference to a handler of the table max_rows Maximum number of rows stored in the table RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION The routine uses the underlying handler of the partitioning to define the default number of partitions. For some handlers this requires knowledge of the maximum number of rows to be stored in the table. This routine only accepts HASH and KEY partitioning and thus there is no subpartitioning if this routine is successful. The external routine needing this code is check_partition_info */ static bool set_up_default_partitions(partition_info *part_info, handler *file, ulonglong max_rows, uint start_no) { uint no_parts, i; char *default_name; bool result= TRUE; DBUG_ENTER("set_up_default_partitions"); if (part_info->part_type != HASH_PARTITION) { const char *error_string; if (part_info->part_type == RANGE_PARTITION) error_string= range_str; else error_string= list_str; my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string); goto end; } if (part_info->no_parts == 0) part_info->no_parts= file->get_default_no_partitions(max_rows); no_parts= part_info->no_parts; part_info->use_default_partitions= FALSE; if (unlikely(no_parts > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } if (unlikely((!(default_name= create_default_partition_names(no_parts, start_no, FALSE))))) goto end; i= 0; do { partition_element *part_elem= new partition_element(); if (likely(part_elem != 0)) { part_elem->engine_type= DB_TYPE_UNKNOWN; part_elem->partition_name= default_name; default_name+=MAX_PART_NAME_SIZE; part_info->partitions.push_back(part_elem); } else { my_error(ER_OUTOFMEMORY, MYF(0), sizeof(partition_element)); goto end; } } while (++i < no_parts); result= FALSE; end: DBUG_RETURN(result); } /* Set up all the default subpartitions not set-up by the user in the SQL statement. Also perform a number of checks that the default partitioning becomes an allowed partitioning scheme. SYNOPSIS set_up_default_subpartitions() part_info The reference to all partition information file A reference to a handler of the table max_rows Maximum number of rows stored in the table RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION The routine uses the underlying handler of the partitioning to define the default number of partitions. For some handlers this requires knowledge of the maximum number of rows to be stored in the table. This routine is only called for RANGE or LIST partitioning and those need to be specified so only subpartitions are specified. The external routine needing this code is check_partition_info */ static bool set_up_default_subpartitions(partition_info *part_info, handler *file, ulonglong max_rows) { uint i, j, no_parts, no_subparts; char *default_name, *name_ptr; bool result= TRUE; partition_element *part_elem; List_iterator part_it(part_info->partitions); DBUG_ENTER("set_up_default_subpartitions"); if (part_info->no_subparts == 0) part_info->no_subparts= file->get_default_no_partitions(max_rows); no_parts= part_info->no_parts; no_subparts= part_info->no_subparts; part_info->use_default_subpartitions= FALSE; if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } if (unlikely((!(default_name= create_default_partition_names(no_subparts, (uint)0, TRUE))))) goto end; i= 0; do { part_elem= part_it++; j= 0; name_ptr= default_name; do { partition_element *subpart_elem= new partition_element(); if (likely(subpart_elem != 0)) { subpart_elem->engine_type= DB_TYPE_UNKNOWN; subpart_elem->partition_name= name_ptr; name_ptr+= MAX_PART_NAME_SIZE; part_elem->subpartitions.push_back(subpart_elem); } else { my_error(ER_OUTOFMEMORY, MYF(0), sizeof(partition_element)); goto end; } } while (++j < no_subparts); } while (++i < no_parts); result= FALSE; end: DBUG_RETURN(result); } /* Set up defaults for partition or subpartition (cannot set-up for both, this will return an error. SYNOPSIS set_up_defaults_for_partitioning() part_info The reference to all partition information file A reference to a handler of the table max_rows Maximum number of rows stored in the table RETURN VALUE TRUE Error, attempted default values not possible FALSE Ok, default partitions set-up DESCRIPTION Support routine for check_partition_info */ bool set_up_defaults_for_partitioning(partition_info *part_info, handler *file, ulonglong max_rows, uint start_no) { DBUG_ENTER("set_up_defaults_for_partitioning"); if (part_info->use_default_partitions) DBUG_RETURN(set_up_default_partitions(part_info, file, max_rows, start_no)); if (is_sub_partitioned(part_info) && part_info->use_default_subpartitions) DBUG_RETURN(set_up_default_subpartitions(part_info, file, max_rows)); DBUG_RETURN(FALSE); } /* Check that all partitions use the same storage engine. This is currently a limitation in this version. SYNOPSIS check_engine_mix() engine_array An array of engine identifiers no_parts Total number of partitions RETURN VALUE TRUE Error, mixed engines FALSE Ok, no mixed engines */ static bool check_engine_mix(u_char *engine_array, uint no_parts) { /* Current check verifies only that all handlers are the same. Later this check will be more sophisticated. */ uint i= 0; bool result= FALSE; DBUG_ENTER("check_engine_mix"); do { if (engine_array[i] != engine_array[0]) { result= TRUE; break; } } while (++i < no_parts); DBUG_RETURN(result); } /* We will check that the partition info requested is possible to set-up in this version. This routine is an extension of the parser one could say. If defaults were used we will generate default data structures for all partitions. SYNOPSIS check_partition_info() part_info The reference to all partition information db_type Default storage engine if no engine specified per partition. file A reference to a handler of the table max_rows Maximum number of rows stored in the table RETURN VALUE TRUE Error, something went wrong FALSE Ok, full partition data structures are now generated DESCRIPTION This code is used early in the CREATE TABLE and ALTER TABLE process. */ bool check_partition_info(partition_info *part_info,enum db_type eng_type, handler *file, ulonglong max_rows) { u_char *engine_array= NULL; uint part_count= 0, i, no_parts, tot_partitions; bool result= TRUE; List_iterator part_it(part_info->partitions); DBUG_ENTER("check_partition_info"); if (unlikely(is_sub_partitioned(part_info) && (!(part_info->part_type == RANGE_PARTITION || part_info->part_type == LIST_PARTITION)))) { /* Only RANGE and LIST partitioning can be subpartitioned */ my_error(ER_SUBPARTITION_ERROR, MYF(0)); goto end; } if (unlikely(set_up_defaults_for_partitioning(part_info, file, max_rows, (uint)0))) goto end; tot_partitions= get_tot_partitions(part_info); if (unlikely(tot_partitions > MAX_PARTITIONS)) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto end; } if (unlikely(is_partitions_in_table(part_info, part_info))) { my_error(ER_SAME_NAME_PARTITION, MYF(0)); goto end; } engine_array= (u_char*)my_malloc(tot_partitions, MYF(MY_WME)); if (unlikely(!engine_array)) goto end; i= 0; no_parts= part_info->no_parts; do { partition_element *part_elem= part_it++; if (!is_sub_partitioned(part_info)) { if (part_elem->engine_type == DB_TYPE_UNKNOWN) part_elem->engine_type= eng_type; DBUG_PRINT("info", ("engine = %u",(uint)part_elem->engine_type)); engine_array[part_count++]= (u_char)part_elem->engine_type; } else { uint j= 0, no_subparts= part_info->no_subparts;; List_iterator sub_it(part_elem->subpartitions); do { part_elem= sub_it++; if (part_elem->engine_type == DB_TYPE_UNKNOWN) part_elem->engine_type= eng_type; DBUG_PRINT("info", ("engine = %u",(uint)part_elem->engine_type)); engine_array[part_count++]= (u_char)part_elem->engine_type; } while (++j < no_subparts); } } while (++i < part_info->no_parts); if (unlikely(check_engine_mix(engine_array, part_count))) { my_error(ER_MIX_HANDLER_ERROR, MYF(0)); goto end; } /* We need to check all constant expressions that they are of the correct type and that they are increasing for ranges and not overlapping for list constants. */ if (unlikely((part_info->part_type == RANGE_PARTITION && check_range_constants(part_info)) || (part_info->part_type == LIST_PARTITION && check_list_constants(part_info)))) goto end; result= FALSE; end: my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR)); DBUG_RETURN(result); } /* A great number of functions below here is part of the fix_partition_func method. It is used to set up the partition structures for execution from openfrm. It is called at the end of the openfrm when the table struct has been set-up apart from the partition information. It involves: 1) Setting arrays of fields for the partition functions. 2) Setting up binary search array for LIST partitioning 3) Setting up array for binary search for RANGE partitioning 4) Setting up key_map's to assist in quick evaluation whether one can deduce anything from a given index of what partition to use 5) Checking whether a set of partitions can be derived from a range on a field in the partition function. As part of doing this there is also a great number of error controls. This is actually the place where most of the things are checked for partition information when creating a table. Things that are checked includes 1) No NULLable fields in partition function 2) All fields of partition function in Primary keys and unique indexes (if not supported) 3) No fields in partition function that are BLOB's or VARCHAR with a collation other than the binary collation. Create an array of partition fields (NULL terminated). Before this method is called fix_fields or find_table_in_sef has been called to set GET_FIXED_FIELDS_FLAG on all fields that are part of the partition function. SYNOPSIS set_up_field_array() table TABLE object for which partition fields are set-up sub_part Is the table subpartitioned as well RETURN VALUE TRUE Error, some field didn't meet requirements FALSE Ok, partition field array set-up DESCRIPTION This method is used to set-up both partition and subpartitioning field array and used for all types of partitioning. It is part of the logic around fix_partition_func. */ static bool set_up_field_array(TABLE *table, bool sub_part) { Field **ptr, *field, **field_array; uint no_fields= 0, size_field_array, i= 0; partition_info *part_info= table->part_info; int result= FALSE; DBUG_ENTER("set_up_field_array"); ptr= table->field; while ((field= *(ptr++))) { if (field->flags & GET_FIXED_FIELDS_FLAG) no_fields++; } size_field_array= (no_fields+1)*sizeof(Field*); field_array= (Field**)sql_alloc(size_field_array); if (unlikely(!field_array)) { my_error(ER_OUTOFMEMORY, MYF(0), size_field_array); result= TRUE; } ptr= table->field; while ((field= *(ptr++))) { if (field->flags & GET_FIXED_FIELDS_FLAG) { field->flags&= ~GET_FIXED_FIELDS_FLAG; field->flags|= FIELD_IN_PART_FUNC_FLAG; if (likely(!result)) { field_array[i++]= field; /* We check that the fields are proper. It is required for each field in a partition function to: 1) Not be a BLOB of any type A BLOB takes too long time to evaluate so we don't want it for performance reasons. 2) Not be a VARCHAR other than VARCHAR with a binary collation A VARCHAR with character sets can have several values being equal with different number of spaces or NULL's. This is not a good ground for a safe and exact partition function. Thus it is not allowed in partition functions. */ if (unlikely(field->flags & BLOB_FLAG)) { my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0)); result= TRUE; } else if (unlikely((!field->flags & BINARY_FLAG) && field->real_type() == MYSQL_TYPE_VARCHAR)) { my_error(ER_CHAR_SET_IN_PART_FIELD_ERROR, MYF(0)); result= TRUE; } } } } field_array[no_fields]= 0; if (!sub_part) { part_info->part_field_array= field_array; part_info->no_part_fields= no_fields; } else { part_info->subpart_field_array= field_array; part_info->no_subpart_fields= no_fields; } DBUG_RETURN(result); } /* Create a field array including all fields of both the partitioning and the subpartitioning functions. SYNOPSIS create_full_part_field_array() table TABLE object for which partition fields are set-up part_info Reference to partitioning data structure RETURN VALUE TRUE Memory allocation of field array failed FALSE Ok DESCRIPTION If there is no subpartitioning then the same array is used as for the partitioning. Otherwise a new array is built up using the flag FIELD_IN_PART_FUNC in the field object. This function is called from fix_partition_func */ static bool create_full_part_field_array(TABLE *table, partition_info *part_info) { bool result= FALSE; DBUG_ENTER("create_full_part_field_array"); if (!is_sub_partitioned(part_info)) { part_info->full_part_field_array= part_info->part_field_array; part_info->no_full_part_fields= part_info->no_part_fields; } else { Field **ptr, *field, **field_array; uint no_part_fields=0, size_field_array; ptr= table->field; while ((field= *(ptr++))) { if (field->flags & FIELD_IN_PART_FUNC_FLAG) no_part_fields++; } size_field_array= (no_part_fields+1)*sizeof(Field*); field_array= (Field**)sql_alloc(size_field_array); if (unlikely(!field_array)) { my_error(ER_OUTOFMEMORY, MYF(0), size_field_array); result= TRUE; goto end; } no_part_fields= 0; ptr= table->field; while ((field= *(ptr++))) { if (field->flags & FIELD_IN_PART_FUNC_FLAG) field_array[no_part_fields++]= field; } field_array[no_part_fields]=0; part_info->full_part_field_array= field_array; part_info->no_full_part_fields= no_part_fields; } end: DBUG_RETURN(result); } /* These support routines is used to set/reset an indicator of all fields in a certain key. It is used in conjunction with another support routine that traverse all fields in the PF to find if all or some fields in the PF is part of the key. This is used to check primary keys and unique keys involve all fields in PF (unless supported) and to derive the key_map's used to quickly decide whether the index can be used to derive which partitions are needed to scan. Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by set_indicator_in_key_fields (always used in pairs). SYNOPSIS clear_indicator_in_key_fields() key_info Reference to find the key fields */ static void clear_indicator_in_key_fields(KEY *key_info) { KEY_PART_INFO *key_part; uint key_parts= key_info->key_parts, i; for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++) key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG); } /* Set flag GET_FIXED_FIELDS_FLAG in all fields of a key. SYNOPSIS set_indicator_in_key_fields key_info Reference to find the key fields */ static void set_indicator_in_key_fields(KEY *key_info) { KEY_PART_INFO *key_part; uint key_parts= key_info->key_parts, i; for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++) key_part->field->flags|= GET_FIXED_FIELDS_FLAG; } /* Check if all or some fields in partition field array is part of a key previously used to tag key fields. SYNOPSIS check_fields_in_PF() ptr Partition field array all_fields Is all fields of partition field array used in key some_fields Is some fields of partition field array used in key RETURN VALUE all_fields, some_fields */ static void check_fields_in_PF(Field **ptr, bool *all_fields, bool *some_fields) { DBUG_ENTER("check_fields_in_PF"); *all_fields= TRUE; *some_fields= FALSE; do { /* Check if the field of the PF is part of the current key investigated */ if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG) *some_fields= TRUE; else *all_fields= FALSE; } while (*(++ptr)); DBUG_VOID_RETURN; } /* Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table. This routine is used for error handling purposes. SYNOPSIS clear_field_flag() table TABLE object for which partition fields are set-up */ static void clear_field_flag(TABLE *table) { Field **ptr; DBUG_ENTER("clear_field_flag"); for (ptr= table->field; *ptr; ptr++) (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG); DBUG_VOID_RETURN; } /* This routine sets-up the partition field array for KEY partitioning, it also verifies that all fields in the list of fields is actually a part of the table. SYNOPSIS handle_list_of_fields() it A list of field names for the partition function table TABLE object for which partition fields are set-up part_info Reference to partitioning data structure sub_part Is the table subpartitioned as well RETURN VALUE TRUE Fields in list of fields not part of table FALSE All fields ok and array created DESCRIPTION find_field_in_table_sef finds the field given its name. All fields get GET_FIXED_FIELDS_FLAG set. */ static bool handle_list_of_fields(List_iterator it, TABLE *table, partition_info *part_info, bool sub_part) { Field *field; bool result; char *field_name; DBUG_ENTER("handle_list_of_fields"); while ((field_name= it++)) { field= find_field_in_table_sef(table, field_name); if (likely(field != 0)) field->flags|= GET_FIXED_FIELDS_FLAG; else { my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); clear_field_flag(table); result= TRUE; goto end; } } result= set_up_field_array(table, sub_part); end: DBUG_RETURN(result); } /* This function is used to build an array of partition fields for the partitioning function and subpartitioning function. The partitioning function is an item tree that must reference at least one field in the table. This is checked first in the parser that the function doesn't contain non-cacheable parts (like a random function) and by checking here that the function isn't a constant function. SYNOPSIS fix_fields_part_func() thd The thread object tables A list of one table, the partitioned table func_expr The item tree reference of the partition function part_info Reference to partitioning data structure sub_part Is the table subpartitioned as well RETURN VALUE TRUE An error occurred, something was wrong with the partition function. FALSE Ok, a partition field array was created DESCRIPTION The function uses a new feature in fix_fields where the flag GET_FIXED_FIELDS_FLAG is set for all fields in the item tree. This field must always be reset before returning from the function since it is used for other purposes as well. */ static bool fix_fields_part_func(THD *thd, TABLE_LIST *tables, Item* func_expr, partition_info *part_info, bool sub_part) { /* Calculate the number of fields in the partition function. Use it allocate memory for array of Field pointers. Initialise array of field pointers. Use information set when calling fix_fields and reset it immediately after. The get_fields_in_item_tree activates setting of bit in flags on the field object. */ bool result= TRUE; TABLE *table= tables->table; TABLE_LIST *save_table_list, *save_first_table, *save_last_table; int error; Name_resolution_context *context; DBUG_ENTER("fix_fields_part_func"); context= thd->lex->current_context(); table->map= 1; //To ensure correct calculation of const item table->get_fields_in_item_tree= TRUE; save_table_list= context->table_list; save_first_table= context->first_name_resolution_table; save_last_table= context->last_name_resolution_table; context->table_list= tables; context->first_name_resolution_table= tables; context->last_name_resolution_table= NULL; func_expr->walk(&Item::change_context_processor, (byte*) context); thd->where= "partition function"; error= func_expr->fix_fields(thd, (Item**)0); context->table_list= save_table_list; context->first_name_resolution_table= save_first_table; context->last_name_resolution_table= save_last_table; if (unlikely(error)) { DBUG_PRINT("info", ("Field in partition function not part of table")); clear_field_flag(table); goto end; } if (unlikely(func_expr->const_item())) { my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0)); clear_field_flag(table); goto end; } result= set_up_field_array(table, sub_part); end: table->get_fields_in_item_tree= FALSE; table->map= 0; //Restore old value DBUG_RETURN(result); } /* This function verifies that if there is a primary key that it contains all the fields of the partition function. This is a temporary limitation that will hopefully be removed after a while. SYNOPSIS check_primary_key() table TABLE object for which partition fields are set-up RETURN VALUES TRUE Not all fields in partitioning function was part of primary key FALSE Ok, all fields of partitioning function were part of primary key */ static bool check_primary_key(TABLE *table) { uint primary_key= table->s->primary_key; bool all_fields, some_fields, result= FALSE; DBUG_ENTER("check_primary_key"); if (primary_key < MAX_KEY) { set_indicator_in_key_fields(table->key_info+primary_key); check_fields_in_PF(table->part_info->full_part_field_array, &all_fields, &some_fields); clear_indicator_in_key_fields(table->key_info+primary_key); if (unlikely(!all_fields)) { my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY"); result= TRUE; } } DBUG_RETURN(result); } /* This function verifies that if there is a unique index that it contains all the fields of the partition function. This is a temporary limitation that will hopefully be removed after a while. SYNOPSIS check_unique_keys() table TABLE object for which partition fields are set-up RETURN VALUES TRUE Not all fields in partitioning function was part of all unique keys FALSE Ok, all fields of partitioning function were part of unique keys */ static bool check_unique_keys(TABLE *table) { bool all_fields, some_fields, result= FALSE; uint keys= table->s->keys, i; DBUG_ENTER("check_unique_keys"); for (i= 0; i < keys; i++) { if (table->key_info[i].flags & HA_NOSAME) //Unique index { set_indicator_in_key_fields(table->key_info+i); check_fields_in_PF(table->part_info->full_part_field_array, &all_fields, &some_fields); clear_indicator_in_key_fields(table->key_info+i); if (unlikely(!all_fields)) { my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX"); result= TRUE; break; } } } DBUG_RETURN(result); } /* An important optimisation is whether a range on a field can select a subset of the partitions. A prerequisite for this to happen is that the PF is a growing function OR a shrinking function. This can never happen for a multi-dimensional PF. Thus this can only happen with PF with at most one field involved in the PF. The idea is that if the function is a growing function and you know that the field of the PF is 4 <= A <= 6 then we can convert this to a range in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the case of RANGE PARTITIONING and LIST PARTITIONING this can be used to calculate a set of partitions rather than scanning all of them. Thus the following prerequisites are there to check if sets of partitions can be found. 1) Only possible for RANGE and LIST partitioning (not for subpartitioning) 2) Only possible if PF only contains 1 field 3) Possible if PF is a growing function of the field 4) Possible if PF is a shrinking function of the field OBSERVATION: 1) IF f1(A) is a growing function AND f2(A) is a growing function THEN f1(A) + f2(A) is a growing function f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0 2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0 3) IF A is a growing function then a function f(A) that removes the least significant portion of A is a growing function E.g. DATE(datetime) is a growing function MONTH(datetime) is not a growing/shrinking function 4) IF f1(A) is a growing function and f2(A) is a growing function THEN f1(f2(A)) and f2(f1(A)) are also growing functions 5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function 6) f1(A) = A is a growing function 7) f1(A) = A*a + b (where a and b are constants) is a growing function By analysing the item tree of the PF we can use these deducements and derive whether the PF is a growing function or a shrinking function or neither of it. If the PF is range capable then a flag is set on the table object indicating this to notify that we can use also ranges on the field of the PF to deduce a set of partitions if the fields of the PF were not all fully bound. SYNOPSIS check_range_capable_PF() table TABLE object for which partition fields are set-up DESCRIPTION Support for this is not implemented yet. */ void check_range_capable_PF(TABLE *table) { DBUG_ENTER("check_range_capable_PF"); DBUG_VOID_RETURN; } /* Set up partition key maps SYNOPSIS set_up_partition_key_maps() table TABLE object for which partition fields are set-up part_info Reference to partitioning data structure RETURN VALUES None DESCRIPTION This function sets up a couple of key maps to be able to quickly check if an index ever can be used to deduce the partition fields or even a part of the fields of the partition function. We set up the following key_map's. PF = Partition Function 1) All fields of the PF is set even by equal on the first fields in the key 2) All fields of the PF is set if all fields of the key is set 3) At least one field in the PF is set if all fields is set 4) At least one field in the PF is part of the key */ static void set_up_partition_key_maps(TABLE *table, partition_info *part_info) { uint keys= table->s->keys, i; bool all_fields, some_fields; DBUG_ENTER("set_up_partition_key_maps"); part_info->all_fields_in_PF.clear_all(); part_info->all_fields_in_PPF.clear_all(); part_info->all_fields_in_SPF.clear_all(); part_info->some_fields_in_PF.clear_all(); for (i= 0; i < keys; i++) { set_indicator_in_key_fields(table->key_info+i); check_fields_in_PF(part_info->full_part_field_array, &all_fields, &some_fields); if (all_fields) part_info->all_fields_in_PF.set_bit(i); if (some_fields) part_info->some_fields_in_PF.set_bit(i); if (is_sub_partitioned(part_info)) { check_fields_in_PF(part_info->part_field_array, &all_fields, &some_fields); if (all_fields) part_info->all_fields_in_PPF.set_bit(i); check_fields_in_PF(part_info->subpart_field_array, &all_fields, &some_fields); if (all_fields) part_info->all_fields_in_SPF.set_bit(i); } clear_indicator_in_key_fields(table->key_info+i); } DBUG_VOID_RETURN; } /* Set-up all function pointers for calculation of partition id, subpartition id and the upper part in subpartitioning. This is to speed up execution of get_partition_id which is executed once every record to be written and deleted and twice for updates. SYNOPSIS set_up_partition_function_pointers() part_info Reference to partitioning data structure */ static void set_up_partition_func_pointers(partition_info *part_info) { if (is_sub_partitioned(part_info)) { if (part_info->part_type == RANGE_PARTITION) { part_info->get_part_partition_id= get_partition_id_range; if (part_info->list_of_subpart_fields) { if (part_info->linear_hash_ind) { part_info->get_partition_id= get_partition_id_range_sub_linear_key; part_info->get_subpartition_id= get_partition_id_linear_key_sub; } else { part_info->get_partition_id= get_partition_id_range_sub_key; part_info->get_subpartition_id= get_partition_id_key_sub; } } else { if (part_info->linear_hash_ind) { part_info->get_partition_id= get_partition_id_range_sub_linear_hash; part_info->get_subpartition_id= get_partition_id_linear_hash_sub; } else { part_info->get_partition_id= get_partition_id_range_sub_hash; part_info->get_subpartition_id= get_partition_id_hash_sub; } } } else //LIST Partitioning { part_info->get_part_partition_id= get_partition_id_list; if (part_info->list_of_subpart_fields) { if (part_info->linear_hash_ind) { part_info->get_partition_id= get_partition_id_list_sub_linear_key; part_info->get_subpartition_id= get_partition_id_linear_key_sub; } else { part_info->get_partition_id= get_partition_id_list_sub_key; part_info->get_subpartition_id= get_partition_id_key_sub; } } else { if (part_info->linear_hash_ind) { part_info->get_partition_id= get_partition_id_list_sub_linear_hash; part_info->get_subpartition_id= get_partition_id_linear_hash_sub; } else { part_info->get_partition_id= get_partition_id_list_sub_hash; part_info->get_subpartition_id= get_partition_id_hash_sub; } } } } else //No subpartitioning { part_info->get_part_partition_id= NULL; part_info->get_subpartition_id= NULL; if (part_info->part_type == RANGE_PARTITION) part_info->get_partition_id= get_partition_id_range; else if (part_info->part_type == LIST_PARTITION) part_info->get_partition_id= get_partition_id_list; else //HASH partitioning { if (part_info->list_of_part_fields) { if (part_info->linear_hash_ind) part_info->get_partition_id= get_partition_id_linear_key_nosub; else part_info->get_partition_id= get_partition_id_key_nosub; } else { if (part_info->linear_hash_ind) part_info->get_partition_id= get_partition_id_linear_hash_nosub; else part_info->get_partition_id= get_partition_id_hash_nosub; } } } } /* For linear hashing we need a mask which is on the form 2**n - 1 where 2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7. SYNOPSIS set_linear_hash_mask() part_info Reference to partitioning data structure no_parts Number of parts in linear hash partitioning */ static void set_linear_hash_mask(partition_info *part_info, uint no_parts) { uint mask; for (mask= 1; mask < no_parts; mask<<=1) ; part_info->linear_hash_mask= mask - 1; } /* This function calculates the partition id provided the result of the hash function using linear hashing parameters, mask and number of partitions. SYNOPSIS get_part_id_from_linear_hash() hash_value Hash value calculated by HASH function or KEY function mask Mask calculated previously by set_linear_hash_mask no_parts Number of partitions in HASH partitioned part RETURN VALUE part_id The calculated partition identity (starting at 0) DESCRIPTION The partition is calculated according to the theory of linear hashing. See e.g. Linear hashing: a new tool for file and table addressing, Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker (ed.), Morgan Kaufmann 1994. */ static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask, uint no_parts) { uint32 part_id= (uint32)(hash_value & mask); if (part_id >= no_parts) { uint new_mask= ((mask + 1) >> 1) - 1; part_id= hash_value & new_mask; } return part_id; } /* fix partition functions SYNOPSIS fix_partition_func() thd The thread object name The name of the partitioned table table TABLE object for which partition fields are set-up RETURN VALUE TRUE FALSE DESCRIPTION The name parameter contains the full table name and is used to get the database name of the table which is used to set-up a correct TABLE_LIST object for use in fix_fields. NOTES This function is called as part of opening the table by opening the .frm file. It is a part of CREATE TABLE to do this so it is quite permissible that errors due to erroneus syntax isn't found until we come here. If the user has used a non-existing field in the table is one such example of an error that is not discovered until here. */ bool fix_partition_func(THD *thd, const char *name, TABLE *table) { bool result= TRUE; uint dir_length, home_dir_length; TABLE_LIST tables; TABLE_SHARE *share= table->s; char db_name_string[FN_REFLEN]; char* db_name; partition_info *part_info= table->part_info; ulong save_set_query_id= thd->set_query_id; DBUG_ENTER("fix_partition_func"); thd->set_query_id= 0; /* Set-up the TABLE_LIST object to be a list with a single table Set the object to zero to create NULL pointers and set alias and real name to table name and get database name from file name. */ bzero((void*)&tables, sizeof(TABLE_LIST)); tables.alias= tables.table_name= (char*) share->table_name.str; tables.table= table; tables.next_local= 0; tables.next_name_resolution_table= 0; strmov(db_name_string, name); dir_length= dirname_length(db_name_string); db_name_string[dir_length - 1]= 0; home_dir_length= dirname_length(db_name_string); db_name= &db_name_string[home_dir_length]; tables.db= db_name; if (is_sub_partitioned(part_info)) { DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION); /* Subpartition is defined. We need to verify that subpartitioning function is correct. */ if (part_info->linear_hash_ind) set_linear_hash_mask(part_info, part_info->no_subparts); if (part_info->list_of_subpart_fields) { List_iterator it(part_info->subpart_field_list); if (unlikely(handle_list_of_fields(it, table, part_info, TRUE))) goto end; } else { if (unlikely(fix_fields_part_func(thd, &tables, part_info->subpart_expr, part_info, TRUE))) goto end; if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT)) { my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), "SUBPARTITION"); goto end; } } } DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION); /* Partition is defined. We need to verify that partitioning function is correct. */ if (part_info->part_type == HASH_PARTITION) { if (part_info->linear_hash_ind) set_linear_hash_mask(part_info, part_info->no_parts); if (part_info->list_of_part_fields) { List_iterator it(part_info->part_field_list); if (unlikely(handle_list_of_fields(it, table, part_info, FALSE))) goto end; } else { if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr, part_info, FALSE))) goto end; if (unlikely(part_info->part_expr->result_type() != INT_RESULT)) { my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str); goto end; } part_info->part_result_type= INT_RESULT; } } else { const char *error_str; if (part_info->part_type == RANGE_PARTITION) { error_str= range_str; if (unlikely(check_range_constants(part_info))) goto end; } else if (part_info->part_type == LIST_PARTITION) { error_str= list_str; if (unlikely(check_list_constants(part_info))) goto end; } else { DBUG_ASSERT(0); my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0)); goto end; } if (unlikely(part_info->no_parts < 1)) { my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str); goto end; } if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr, part_info, FALSE))) goto end; if (unlikely(part_info->part_expr->result_type() != INT_RESULT)) { my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str); goto end; } } if (unlikely(create_full_part_field_array(table, part_info))) goto end; if (unlikely(check_primary_key(table))) goto end; if (unlikely((!table->file->partition_flags() & HA_CAN_PARTITION_UNIQUE) && check_unique_keys(table))) goto end; check_range_capable_PF(table); set_up_partition_key_maps(table, part_info); set_up_partition_func_pointers(part_info); result= FALSE; end: thd->set_query_id= save_set_query_id; DBUG_RETURN(result); } /* The code below is support routines for the reverse parsing of the partitioning syntax. This feature is very useful to generate syntax for all default values to avoid all default checking when opening the frm file. It is also used when altering the partitioning by use of various ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES. */ static int add_write(File fptr, const char *buf, uint len) { uint len_written= my_write(fptr, (const byte*)buf, len, MYF(0)); if (likely(len == len_written)) return 0; else return 1; } static int add_string(File fptr, const char *string) { return add_write(fptr, string, strlen(string)); } static int add_string_len(File fptr, const char *string, uint len) { return add_write(fptr, string, len); } static int add_space(File fptr) { return add_string(fptr, space_str); } static int add_comma(File fptr) { return add_string(fptr, comma_str); } static int add_equal(File fptr) { return add_string(fptr, equal_str); } static int add_end_parenthesis(File fptr) { return add_string(fptr, end_paren_str); } static int add_begin_parenthesis(File fptr) { return add_string(fptr, begin_paren_str); } static int add_part_key_word(File fptr, const char *key_string) { int err= add_string(fptr, key_string); err+= add_space(fptr); return err + add_begin_parenthesis(fptr); } static int add_hash(File fptr) { return add_part_key_word(fptr, hash_str); } static int add_partition(File fptr) { strxmov(buff, part_str, space_str, NullS); return add_string(fptr, buff); } static int add_subpartition(File fptr) { int err= add_string(fptr, sub_str); return err + add_partition(fptr); } static int add_partition_by(File fptr) { strxmov(buff, part_str, space_str, by_str, space_str, NullS); return add_string(fptr, buff); } static int add_subpartition_by(File fptr) { int err= add_string(fptr, sub_str); return err + add_partition_by(fptr); } static int add_key_partition(File fptr, List field_list) { uint i, no_fields; int err; List_iterator part_it(field_list); err= add_part_key_word(fptr, key_str); no_fields= field_list.elements; i= 0; do { const char *field_str= part_it++; err+= add_string(fptr, field_str); if (i != (no_fields-1)) err+= add_comma(fptr); } while (++i < no_fields); return err; } static int add_int(File fptr, longlong number) { llstr(number, buff); return add_string(fptr, buff); } static int add_keyword_string(File fptr, const char *keyword, const char *keystr) { int err= add_string(fptr, keyword); err+= add_space(fptr); err+= add_equal(fptr); err+= add_space(fptr); err+= add_string(fptr, keystr); return err + add_space(fptr); } static int add_keyword_int(File fptr, const char *keyword, longlong num) { int err= add_string(fptr, keyword); err+= add_space(fptr); err+= add_equal(fptr); err+= add_space(fptr); err+= add_int(fptr, num); return err + add_space(fptr); } static int add_engine(File fptr, enum db_type engine_type) { const char *engine_str= ha_get_storage_engine(engine_type); int err= add_string(fptr, "ENGINE = "); return err + add_string(fptr, engine_str); return err; } static int add_partition_options(File fptr, partition_element *p_elem) { int err= 0; if (p_elem->tablespace_name) err+= add_keyword_string(fptr,"TABLESPACE",p_elem->tablespace_name); if (p_elem->nodegroup_id != UNDEF_NODEGROUP) err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id); if (p_elem->part_max_rows) err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows); if (p_elem->part_min_rows) err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows); if (p_elem->data_file_name) err+= add_keyword_string(fptr,"DATA DIRECTORY",p_elem->data_file_name); if (p_elem->index_file_name) err+= add_keyword_string(fptr,"INDEX DIRECTORY",p_elem->index_file_name); if (p_elem->part_comment) err+= add_keyword_string(fptr, "COMMENT",p_elem->part_comment); return err + add_engine(fptr,p_elem->engine_type); } static int add_partition_values(File fptr, partition_info *part_info, partition_element *p_elem) { int err= 0; if (part_info->part_type == RANGE_PARTITION) { err+= add_string(fptr, "VALUES LESS THAN "); if (p_elem->range_value != LONGLONG_MAX) { err+= add_begin_parenthesis(fptr); err+= add_int(fptr, p_elem->range_value); err+= add_end_parenthesis(fptr); } else err+= add_string(fptr, "MAXVALUE"); } else if (part_info->part_type == LIST_PARTITION) { uint i; List_iterator list_val_it(p_elem->list_val_list); err+= add_string(fptr, "VALUES IN "); uint no_items= p_elem->list_val_list.elements; err+= add_begin_parenthesis(fptr); i= 0; do { longlong *list_value= list_val_it++; err+= add_int(fptr, *list_value); if (i != (no_items-1)) err+= add_comma(fptr); } while (++i < no_items); err+= add_end_parenthesis(fptr); } return err + add_space(fptr); } /* Generate the partition syntax from the partition data structure. Useful for support of generating defaults, SHOW CREATE TABLES and easy partition management. SYNOPSIS generate_partition_syntax() part_info The partitioning data structure buf_length A pointer to the returned buffer length use_sql_alloc Allocate buffer from sql_alloc if true otherwise use my_malloc add_default_info Add info generated by default RETURN VALUES NULL error buf, buf_length Buffer and its length DESCRIPTION Here we will generate the full syntax for the given command where all defaults have been expanded. By so doing the it is also possible to make lots of checks of correctness while at it. This could will also be reused for SHOW CREATE TABLES and also for all type ALTER TABLE commands focusing on changing the PARTITION structure in any fashion. The implementation writes the syntax to a temporary file (essentially an abstraction of a dynamic array) and if all writes goes well it allocates a buffer and writes the syntax into this one and returns it. As a security precaution the file is deleted before writing into it. This means that no other processes on the machine can open and read the file while this processing is ongoing. The code is optimised for minimal code size since it is not used in any common queries. */ char *generate_partition_syntax(partition_info *part_info, uint *buf_length, bool use_sql_alloc, bool add_default_info) { uint i,j, no_parts, no_subparts; partition_element *part_elem; ulonglong buffer_length; char path[FN_REFLEN]; int err= 0; DBUG_ENTER("generate_partition_syntax"); File fptr; char *buf= NULL; //Return buffer const char *file_name; sprintf(path, "%s_%lx_%lx", "part_syntax", current_pid, current_thd->thread_id); fn_format(path,path,mysql_tmpdir,".psy", MY_REPLACE_EXT); file_name= &path[0]; DBUG_PRINT("info", ("File name = %s", file_name)); if (unlikely(((fptr= my_open(file_name,O_CREAT|O_RDWR, MYF(MY_WME))) == -1))) DBUG_RETURN(NULL); #if defined(MSDOS) || defined(__WIN__) || defined(__EMX__) || defined(OS2) #else my_delete(file_name, MYF(0)); #endif err+= add_space(fptr); err+= add_partition_by(fptr); switch (part_info->part_type) { case RANGE_PARTITION: add_default_info= TRUE; err+= add_part_key_word(fptr, range_str); break; case LIST_PARTITION: add_default_info= TRUE; err+= add_part_key_word(fptr, list_str); break; case HASH_PARTITION: if (part_info->linear_hash_ind) err+= add_string(fptr, "LINEAR "); if (part_info->list_of_part_fields) err+= add_key_partition(fptr, part_info->part_field_list); else err+= add_hash(fptr); break; default: DBUG_ASSERT(0); /* We really shouldn't get here, no use in continuing from here */ current_thd->fatal_error(); DBUG_RETURN(NULL); } if (part_info->part_expr) err+= add_string_len(fptr, part_info->part_func_string, part_info->part_func_len); err+= add_end_parenthesis(fptr); err+= add_space(fptr); if (is_sub_partitioned(part_info)) { err+= add_subpartition_by(fptr); /* Must be hash partitioning for subpartitioning */ if (part_info->list_of_subpart_fields) err+= add_key_partition(fptr, part_info->subpart_field_list); else err+= add_hash(fptr); if (part_info->subpart_expr) err+= add_string_len(fptr, part_info->subpart_func_string, part_info->subpart_func_len); err+= add_end_parenthesis(fptr); err+= add_space(fptr); } if (add_default_info) { err+= add_begin_parenthesis(fptr); List_iterator part_it(part_info->partitions); no_parts= part_info->no_parts; no_subparts= part_info->no_subparts; i= 0; do { part_elem= part_it++; err+= add_partition(fptr); err+= add_string(fptr, part_elem->partition_name); err+= add_space(fptr); err+= add_partition_values(fptr, part_info, part_elem); if (!is_sub_partitioned(part_info)) err+= add_partition_options(fptr, part_elem); if (is_sub_partitioned(part_info)) { err+= add_space(fptr); err+= add_begin_parenthesis(fptr); List_iterator sub_it(part_elem->subpartitions); j= 0; do { part_elem= sub_it++; err+= add_subpartition(fptr); err+= add_string(fptr, part_elem->partition_name); err+= add_space(fptr); err+= add_partition_options(fptr, part_elem); if (j != (no_subparts-1)) { err+= add_comma(fptr); err+= add_space(fptr); } else err+= add_end_parenthesis(fptr); } while (++j < no_subparts); } if (i != (no_parts-1)) { err+= add_comma(fptr); err+= add_space(fptr); } else err+= add_end_parenthesis(fptr); } while (++i < no_parts); } if (err) goto close_file; buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0)); if (unlikely(buffer_length == MY_FILEPOS_ERROR)) goto close_file; if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR)) goto close_file; *buf_length= (uint)buffer_length; if (use_sql_alloc) buf= sql_alloc(*buf_length+1); else buf= my_malloc(*buf_length+1, MYF(MY_WME)); if (!buf) goto close_file; if (unlikely(my_read(fptr, (byte*)buf, *buf_length, MYF(MY_FNABP)))) { if (!use_sql_alloc) my_free(buf, MYF(0)); else buf= NULL; } else buf[*buf_length]= 0; close_file: /* Delete the file before closing to ensure the file doesn't get synched to disk unnecessary. We only used the file system as a dynamic array implementation so we are not really interested in getting the file present on disk. This is not possible on Windows so here it has to be done after closing the file. Also on Unix we delete immediately after opening to ensure no other process can read the information written into the file. */ my_close(fptr, MYF(0)); #if defined(MSDOS) || defined(__WIN__) || defined(__EMX__) || defined(OS2) my_delete(file_name, MYF(0)); #endif DBUG_RETURN(buf); } /* Check if partition key fields are modified and if it can be handled by the underlying storage engine. SYNOPSIS partition_key_modified table TABLE object for which partition fields are set-up fields A list of the to be modifed RETURN VALUES TRUE Need special handling of UPDATE FALSE Normal UPDATE handling is ok */ bool partition_key_modified(TABLE *table, List &fields) { List_iterator_fast f(fields); partition_info *part_info= table->part_info; Item_field *item_field; DBUG_ENTER("partition_key_modified"); if (!part_info) DBUG_RETURN(FALSE); if (table->file->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY) DBUG_RETURN(FALSE); f.rewind(); while ((item_field=(Item_field*) f++)) if (item_field->field->flags & FIELD_IN_PART_FUNC_FLAG) DBUG_RETURN(TRUE); DBUG_RETURN(FALSE); } /* The next set of functions are used to calculate the partition identity. A handler sets up a variable that corresponds to one of these functions to be able to quickly call it whenever the partition id needs to calculated based on the record in table->record[0] (or set up to fake that). There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions. In addition there are 4 variants for RANGE subpartitioning and 4 variants for LIST subpartitioning thus in total there are 14 variants of this function. We have a set of support functions for these 14 variants. There are 4 variants of hash functions and there is a function for each. The KEY partitioning uses the function calculate_key_value to calculate the hash value based on an array of fields. The linear hash variants uses the method get_part_id_from_linear_hash to get the partition id using the hash value and some parameters calculated from the number of partitions. */ /* Calculate hash value for KEY partitioning using an array of fields. SYNOPSIS calculate_key_value() field_array An array of the fields in KEY partitioning RETURN VALUE hash_value calculated DESCRIPTION Uses the hash function on the character set of the field. Integer and floating point fields use the binary character set by default. */ static uint32 calculate_key_value(Field **field_array) { uint32 hashnr= 0; ulong nr2= 4; do { Field *field= *field_array; if (field->is_null()) { hashnr^= (hashnr << 1) | 1; } else { uint len= field->pack_length(); ulong nr1= 1; CHARSET_INFO *cs= field->charset(); cs->coll->hash_sort(cs, (uchar*)field->ptr, len, &nr1, &nr2); hashnr^= (uint32)nr1; } } while (*(++field_array)); return hashnr; } /* A simple support function to calculate part_id given local part and sub part. SYNOPSIS get_part_id_for_sub() loc_part_id Local partition id sub_part_id Subpartition id no_subparts Number of subparts */ inline static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id, uint no_subparts) { return (uint32)((loc_part_id * no_subparts) + sub_part_id); } /* Calculate part_id for (SUB)PARTITION BY HASH SYNOPSIS get_part_id_hash() no_parts Number of hash partitions part_expr Item tree of hash function RETURN VALUE Calculated partition id */ inline static uint32 get_part_id_hash(uint no_parts, Item *part_expr) { DBUG_ENTER("get_part_id_hash"); DBUG_RETURN((uint32)(part_expr->val_int() % no_parts)); } /* Calculate part_id for (SUB)PARTITION BY LINEAR HASH SYNOPSIS get_part_id_linear_hash() part_info A reference to the partition_info struct where all the desired information is given no_parts Number of hash partitions part_expr Item tree of hash function RETURN VALUE Calculated partition id */ inline static uint32 get_part_id_linear_hash(partition_info *part_info, uint no_parts, Item *part_expr) { DBUG_ENTER("get_part_id_linear_hash"); DBUG_RETURN(get_part_id_from_linear_hash(part_expr->val_int(), part_info->linear_hash_mask, no_parts)); } /* Calculate part_id for (SUB)PARTITION BY KEY SYNOPSIS get_part_id_key() field_array Array of fields for PARTTION KEY no_parts Number of KEY partitions RETURN VALUE Calculated partition id */ inline static uint32 get_part_id_key(Field **field_array, uint no_parts) { DBUG_ENTER("get_part_id_key"); DBUG_RETURN(calculate_key_value(field_array) % no_parts); } /* Calculate part_id for (SUB)PARTITION BY LINEAR KEY SYNOPSIS get_part_id_linear_key() part_info A reference to the partition_info struct where all the desired information is given field_array Array of fields for PARTTION KEY no_parts Number of KEY partitions RETURN VALUE Calculated partition id */ inline static uint32 get_part_id_linear_key(partition_info *part_info, Field **field_array, uint no_parts) { DBUG_ENTER("get_partition_id_linear_key"); DBUG_RETURN(get_part_id_from_linear_hash(calculate_key_value(field_array), part_info->linear_hash_mask, no_parts)); } /* This function is used to calculate the partition id where all partition fields have been prepared to point to a record where the partition field values are bound. SYNOPSIS get_partition_id() part_info A reference to the partition_info struct where all the desired information is given part_id The partition id is returned through this pointer RETURN VALUE part_id return TRUE means that the fields of the partition function didn't fit into any partition and thus the values of the PF-fields are not allowed. DESCRIPTION A routine used from write_row, update_row and delete_row from any handler supporting partitioning. It is also a support routine for get_partition_set used to find the set of partitions needed to scan for a certain index scan or full table scan. It is actually 14 different variants of this function which are called through a function pointer. get_partition_id_list get_partition_id_range get_partition_id_hash_nosub get_partition_id_key_nosub get_partition_id_linear_hash_nosub get_partition_id_linear_key_nosub get_partition_id_range_sub_hash get_partition_id_range_sub_key get_partition_id_range_sub_linear_hash get_partition_id_range_sub_linear_key get_partition_id_list_sub_hash get_partition_id_list_sub_key get_partition_id_list_sub_linear_hash get_partition_id_list_sub_linear_key */ /* This function is used to calculate the main partition to use in the case of subpartitioning and we don't know enough to get the partition identity in total. SYNOPSIS get_part_partition_id() part_info A reference to the partition_info struct where all the desired information is given part_id The partition id is returned through this pointer RETURN VALUE part_id return TRUE means that the fields of the partition function didn't fit into any partition and thus the values of the PF-fields are not allowed. DESCRIPTION It is actually 6 different variants of this function which are called through a function pointer. get_partition_id_list get_partition_id_range get_partition_id_hash_nosub get_partition_id_key_nosub get_partition_id_linear_hash_nosub get_partition_id_linear_key_nosub */ bool get_partition_id_list(partition_info *part_info, uint32 *part_id) { DBUG_ENTER("get_partition_id_list"); LIST_PART_ENTRY *list_array= part_info->list_array; uint list_index; longlong list_value; uint min_list_index= 0, max_list_index= part_info->no_list_values - 1; longlong part_func_value= part_info->part_expr->val_int(); while (max_list_index >= min_list_index) { list_index= (max_list_index + min_list_index) >> 1; list_value= list_array[list_index].list_value; if (list_value < part_func_value) min_list_index= list_index + 1; else if (list_value > part_func_value) max_list_index= list_index - 1; else { *part_id= (uint32)list_array[list_index].partition_id; DBUG_RETURN(FALSE); } } *part_id= 0; DBUG_RETURN(TRUE); } bool get_partition_id_range(partition_info *part_info, uint32 *part_id) { DBUG_ENTER("get_partition_id_int_range"); longlong *range_array= part_info->range_int_array; uint max_partition= part_info->no_parts - 1; uint min_part_id= 0, max_part_id= max_partition, loc_part_id; longlong part_func_value= part_info->part_expr->val_int(); while (max_part_id > min_part_id) { loc_part_id= (max_part_id + min_part_id + 1) >> 1; if (range_array[loc_part_id] < part_func_value) min_part_id= loc_part_id + 1; else max_part_id= loc_part_id - 1; } loc_part_id= max_part_id; if (part_func_value >= range_array[loc_part_id]) if (loc_part_id != max_partition) loc_part_id++; *part_id= (uint32)loc_part_id; if (loc_part_id == max_partition) if (range_array[loc_part_id] != LONGLONG_MAX) if (part_func_value >= range_array[loc_part_id]) DBUG_RETURN(TRUE); DBUG_RETURN(FALSE); } bool get_partition_id_hash_nosub(partition_info *part_info, uint32 *part_id) { *part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr); return FALSE; } bool get_partition_id_linear_hash_nosub(partition_info *part_info, uint32 *part_id) { *part_id= get_part_id_linear_hash(part_info, part_info->no_parts, part_info->part_expr); return FALSE; } bool get_partition_id_key_nosub(partition_info *part_info, uint32 *part_id) { *part_id= get_part_id_key(part_info->part_field_array, part_info->no_parts); return FALSE; } bool get_partition_id_linear_key_nosub(partition_info *part_info, uint32 *part_id) { *part_id= get_part_id_linear_key(part_info, part_info->part_field_array, part_info->no_parts); return FALSE; } bool get_partition_id_range_sub_hash(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_range_sub_hash"); if (unlikely(get_partition_id_range(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } bool get_partition_id_range_sub_linear_hash(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_range_sub_linear_hash"); if (unlikely(get_partition_id_range(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_linear_hash(part_info, no_subparts, part_info->subpart_expr); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } bool get_partition_id_range_sub_key(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_range_sub_key"); if (unlikely(get_partition_id_range(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_key(part_info->subpart_field_array, no_subparts); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } bool get_partition_id_range_sub_linear_key(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_range_sub_linear_key"); if (unlikely(get_partition_id_range(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_linear_key(part_info, part_info->subpart_field_array, no_subparts); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } bool get_partition_id_list_sub_hash(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_list_sub_hash"); if (unlikely(get_partition_id_list(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } bool get_partition_id_list_sub_linear_hash(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_list_sub_linear_hash"); if (unlikely(get_partition_id_list(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } bool get_partition_id_list_sub_key(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_range_sub_key"); if (unlikely(get_partition_id_list(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_key(part_info->subpart_field_array, no_subparts); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } bool get_partition_id_list_sub_linear_key(partition_info *part_info, uint32 *part_id) { uint32 loc_part_id, sub_part_id; uint no_subparts; DBUG_ENTER("get_partition_id_list_sub_linear_key"); if (unlikely(get_partition_id_list(part_info, &loc_part_id))) { DBUG_RETURN(TRUE); } no_subparts= part_info->no_subparts; sub_part_id= get_part_id_linear_key(part_info, part_info->subpart_field_array, no_subparts); *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts); DBUG_RETURN(FALSE); } /* This function is used to calculate the subpartition id SYNOPSIS get_subpartition_id() part_info A reference to the partition_info struct where all the desired information is given RETURN VALUE part_id The subpartition identity DESCRIPTION A routine used in some SELECT's when only partial knowledge of the partitions is known. It is actually 4 different variants of this function which are called through a function pointer. get_partition_id_hash_sub get_partition_id_key_sub get_partition_id_linear_hash_sub get_partition_id_linear_key_sub */ uint32 get_partition_id_hash_sub(partition_info *part_info) { return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr); } uint32 get_partition_id_linear_hash_sub(partition_info *part_info) { return get_part_id_linear_hash(part_info, part_info->no_subparts, part_info->subpart_expr); } uint32 get_partition_id_key_sub(partition_info *part_info) { return get_part_id_key(part_info->subpart_field_array, part_info->no_subparts); } uint32 get_partition_id_linear_key_sub(partition_info *part_info) { return get_part_id_linear_key(part_info, part_info->subpart_field_array, part_info->no_subparts); } /* Set an indicator on all partition fields that are set by the key SYNOPSIS set_PF_fields_in_key() key_info Information about the index key_length Length of key RETURN VALUE TRUE Found partition field set by key FALSE No partition field set by key */ static bool set_PF_fields_in_key(KEY *key_info, uint key_length) { KEY_PART_INFO *key_part; bool found_part_field= FALSE; DBUG_ENTER("set_PF_fields_in_key"); for (key_part= key_info->key_part; (int)key_length > 0; key_part++) { if (key_part->null_bit) key_length--; if (key_part->type == HA_KEYTYPE_BIT) { if (((Field_bit*)key_part->field)->bit_len) key_length--; } if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART)) { key_length-= HA_KEY_BLOB_LENGTH; } if (key_length < key_part->length) break; key_length-= key_part->length; if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG) { found_part_field= TRUE; key_part->field->flags|= GET_FIXED_FIELDS_FLAG; } } DBUG_RETURN(found_part_field); } /* We have found that at least one partition field was set by a key, now check if a partition function has all its fields bound or not. SYNOPSIS check_part_func_bound() ptr Array of fields NULL terminated (partition fields) RETURN VALUE TRUE All fields in partition function are set FALSE Not all fields in partition function are set */ static bool check_part_func_bound(Field **ptr) { bool result= TRUE; DBUG_ENTER("check_part_func_bound"); for (; *ptr; ptr++) { if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG)) { result= FALSE; break; } } DBUG_RETURN(result); } /* Get the id of the subpartitioning part by using the key buffer of the index scan. SYNOPSIS get_sub_part_id_from_key() table The table object buf A buffer that can be used to evaluate the partition function key_info The index object key_spec A key_range containing key and key length RETURN VALUES part_id Subpartition id to use DESCRIPTION Use key buffer to set-up record in buf, move field pointers and get the partition identity and restore field pointers afterwards. */ static uint32 get_sub_part_id_from_key(const TABLE *table,byte *buf, KEY *key_info, const key_range *key_spec) { byte *rec0= table->record[0]; partition_info *part_info= table->part_info; uint32 part_id; DBUG_ENTER("get_sub_part_id_from_key"); key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length); if (likely(rec0 == buf)) part_id= part_info->get_subpartition_id(part_info); else { Field **part_field_array= part_info->subpart_field_array; set_field_ptr(part_field_array, buf, rec0); part_id= part_info->get_subpartition_id(part_info); set_field_ptr(part_field_array, rec0, buf); } DBUG_RETURN(part_id); } /* Get the id of the partitioning part by using the key buffer of the index scan. SYNOPSIS get_part_id_from_key() table The table object buf A buffer that can be used to evaluate the partition function key_info The index object key_spec A key_range containing key and key length part_id Partition to use RETURN VALUES TRUE Partition to use not found FALSE Ok, part_id indicates partition to use DESCRIPTION Use key buffer to set-up record in buf, move field pointers and get the partition identity and restore field pointers afterwards. */ bool get_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info, const key_range *key_spec, uint32 *part_id) { bool result; byte *rec0= table->record[0]; partition_info *part_info= table->part_info; DBUG_ENTER("get_part_id_from_key"); key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length); if (likely(rec0 == buf)) result= part_info->get_part_partition_id(part_info, part_id); else { Field **part_field_array= part_info->part_field_array; set_field_ptr(part_field_array, buf, rec0); result= part_info->get_part_partition_id(part_info, part_id); set_field_ptr(part_field_array, rec0, buf); } DBUG_RETURN(result); } /* Get the partitioning id of the full PF by using the key buffer of the index scan. SYNOPSIS get_full_part_id_from_key() table The table object buf A buffer that is used to evaluate the partition function key_info The index object key_spec A key_range containing key and key length part_spec A partition id containing start part and end part RETURN VALUES part_spec No partitions to scan is indicated by end_part > start_part when returning DESCRIPTION Use key buffer to set-up record in buf, move field pointers if needed and get the partition identity and restore field pointers afterwards. */ void get_full_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info, const key_range *key_spec, part_id_range *part_spec) { bool result; partition_info *part_info= table->part_info; byte *rec0= table->record[0]; DBUG_ENTER("get_full_part_id_from_key"); key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length); if (likely(rec0 == buf)) result= part_info->get_partition_id(part_info, &part_spec->start_part); else { Field **part_field_array= part_info->full_part_field_array; set_field_ptr(part_field_array, buf, rec0); result= part_info->get_partition_id(part_info, &part_spec->start_part); set_field_ptr(part_field_array, rec0, buf); } part_spec->end_part= part_spec->start_part; if (unlikely(result)) part_spec->start_part++; DBUG_VOID_RETURN; } /* Get the set of partitions to use in query. SYNOPSIS get_partition_set() table The table object buf A buffer that can be used to evaluate the partition function index The index of the key used, if MAX_KEY no index used key_spec A key_range containing key and key length part_spec Contains start part, end part and indicator if bitmap is used for which partitions to scan DESCRIPTION This function is called to discover which partitions to use in an index scan or a full table scan. It returns a range of partitions to scan. If there are holes in this range with partitions that are not needed to scan a bit array is used to signal which partitions to use and which not to use. If start_part > end_part at return it means no partition needs to be scanned. If start_part == end_part it always means a single partition needs to be scanned. RETURN VALUE part_spec */ void get_partition_set(const TABLE *table, byte *buf, const uint index, const key_range *key_spec, part_id_range *part_spec) { partition_info *part_info= table->part_info; uint no_parts= get_tot_partitions(part_info), i, part_id; uint sub_part= no_parts; uint32 part_part= no_parts; KEY *key_info= NULL; bool found_part_field= FALSE; DBUG_ENTER("get_partition_set"); part_spec->use_bit_array= FALSE; part_spec->start_part= 0; part_spec->end_part= no_parts - 1; if ((index < MAX_KEY) && key_spec->flag == (uint)HA_READ_KEY_EXACT && part_info->some_fields_in_PF.is_set(index)) { key_info= table->key_info+index; /* The index can potentially provide at least one PF-field (field in the partition function). Thus it is interesting to continue our probe. */ if (key_spec->length == key_info->key_length) { /* The entire key is set so we can check whether we can immediately derive either the complete PF or if we can derive either the top PF or the subpartitioning PF. This can be established by checking precalculated bits on each index. */ if (part_info->all_fields_in_PF.is_set(index)) { /* We can derive the exact partition to use, no more than this one is needed. */ get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec); DBUG_VOID_RETURN; } else if (is_sub_partitioned(part_info)) { if (part_info->all_fields_in_SPF.is_set(index)) sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec); else if (part_info->all_fields_in_PPF.is_set(index)) { if (get_part_id_from_key(table,buf,key_info,key_spec,(uint32*)&part_part)) { /* The value of the RANGE or LIST partitioning was outside of allowed values. Thus it is certain that the result of this scan will be empty. */ part_spec->start_part= no_parts; DBUG_VOID_RETURN; } } } } else { /* Set an indicator on all partition fields that are bound. If at least one PF-field was bound it pays off to check whether the PF or PPF or SPF has been bound. (PF = Partition Function, SPF = Subpartition Function and PPF = Partition Function part of subpartitioning) */ if ((found_part_field= set_PF_fields_in_key(key_info, key_spec->length))) { if (check_part_func_bound(part_info->full_part_field_array)) { /* We were able to bind all fields in the partition function even by using only a part of the key. Calculate the partition to use. */ get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec); clear_indicator_in_key_fields(key_info); DBUG_VOID_RETURN; } else if (check_part_func_bound(part_info->part_field_array)) sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec); else if (check_part_func_bound(part_info->subpart_field_array)) { if (get_part_id_from_key(table,buf,key_info,key_spec,(uint32*)&part_part)) { part_spec->start_part= no_parts; clear_indicator_in_key_fields(key_info); DBUG_VOID_RETURN; } } } } } { /* The next step is to analyse the table condition to see whether any information about which partitions to scan can be derived from there. Currently not implemented. */ } /* If we come here we have found a range of sorts we have either discovered nothing or we have discovered a range of partitions with possible holes in it. We need a bitvector to further the work here. */ if (!(part_part == no_parts && sub_part == no_parts)) { /* We can only arrive here if we are using subpartitioning. */ if (part_part != no_parts) { /* We know the top partition and need to scan all underlying subpartitions. This is a range without holes. */ DBUG_ASSERT(sub_part == no_parts); part_spec->start_part= part_part * part_info->no_parts; part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1; } else { DBUG_ASSERT(sub_part != no_parts); part_spec->use_bit_array= TRUE; part_spec->start_part= sub_part; part_spec->end_part=sub_part+ (part_info->no_subparts*(part_info->no_parts-1)); for (i= 0, part_id= sub_part; i < part_info->no_parts; i++, part_id+= part_info->no_subparts) ; //Set bit part_id in bit array } } if (found_part_field) clear_indicator_in_key_fields(key_info); DBUG_VOID_RETURN; } /* If the table is partitioned we will read the partition info into the .frm file here. ------------------------------- | Fileinfo 64 bytes | ------------------------------- | Formnames 7 bytes | ------------------------------- | Not used 4021 bytes | ------------------------------- | Keyinfo + record | ------------------------------- | Padded to next multiple | | of IO_SIZE | ------------------------------- | Forminfo 288 bytes | ------------------------------- | Screen buffer, to make | | field names readable | ------------------------------- | Packed field info | | 17 + 1 + strlen(field_name) | | + 1 end of file character | ------------------------------- | Partition info | ------------------------------- We provide the length of partition length in Fileinfo[55-58]. Read the partition syntax from the frm file and parse it to get the data structures of the partitioning. SYNOPSIS mysql_unpack_partition() file File reference of frm file thd Thread object part_info_len Length of partition syntax table Table object of partitioned table RETURN VALUE TRUE Error FALSE Sucess DESCRIPTION Read the partition syntax from the current position in the frm file. Initiate a LEX object, save the list of item tree objects to free after the query is done. Set-up partition info object such that parser knows it is called from internally. Call parser to create data structures (best possible recreation of item trees and so forth since there is no serialisation of these objects other than in parseable text format). We need to save the text of the partition functions since it is not possible to retrace this given an item tree. */ bool mysql_unpack_partition(THD *thd, const uchar *part_buf, uint part_info_len, TABLE* table, enum db_type default_db_type) { Item *thd_free_list= thd->free_list; bool result= TRUE; partition_info *part_info; LEX *old_lex= thd->lex, lex; DBUG_ENTER("mysql_unpack_partition"); thd->lex= &lex; lex_start(thd, part_buf, part_info_len); /* We need to use the current SELECT_LEX since I need to keep the Name_resolution_context object which is referenced from the Item_field objects. This is not a nice solution since if the parser uses current_select for anything else it will corrupt the current LEX object. */ thd->lex->current_select= old_lex->current_select; /* All Items created is put into a free list on the THD object. This list is used to free all Item objects after completing a query. We don't want that to happen with the Item tree created as part of the partition info. This should be attached to the table object and remain so until the table object is released. Thus we move away the current list temporarily and start a new list that we then save in the partition info structure. */ thd->free_list= NULL; lex.part_info= (partition_info*)1; //Indicate yyparse from this place if (yyparse((void*)thd) || thd->is_fatal_error) { free_items(thd->free_list); goto end; } part_info= lex.part_info; table->part_info= part_info; table->file->set_part_info(part_info); if (part_info->default_engine_type == DB_TYPE_UNKNOWN) part_info->default_engine_type= default_db_type; else { DBUG_ASSERT(part_info->default_engine_type == default_db_type); } part_info->item_free_list= thd->free_list; { /* This code part allocates memory for the serialised item information for the partition functions. In most cases this is not needed but if the table is used for SHOW CREATE TABLES or ALTER TABLE that modifies partition information it is needed and the info is lost if we don't save it here so unfortunately we have to do it here even if in most cases it is not needed. This is a consequence of that item trees are not serialisable. */ uint part_func_len= part_info->part_func_len; uint subpart_func_len= part_info->subpart_func_len; char *part_func_string, *subpart_func_string= NULL; if (!((part_func_string= thd->alloc(part_func_len))) || (subpart_func_len && !((subpart_func_string= thd->alloc(subpart_func_len))))) { my_error(ER_OUTOFMEMORY, MYF(0), part_func_len); free_items(thd->free_list); part_info->item_free_list= 0; goto end; } memcpy(part_func_string, part_info->part_func_string, part_func_len); if (subpart_func_len) memcpy(subpart_func_string, part_info->subpart_func_string, subpart_func_len); part_info->part_func_string= part_func_string; part_info->subpart_func_string= subpart_func_string; } result= FALSE; end: thd->free_list= thd_free_list; thd->lex= old_lex; DBUG_RETURN(result); } #endif /* Prepare for calling val_int on partition function by setting fields to point to the record where the values of the PF-fields are stored. SYNOPSIS set_field_ptr() ptr Array of fields to change ptr new_buf New record pointer old_buf Old record pointer DESCRIPTION Set ptr in field objects of field array to refer to new_buf record instead of previously old_buf. Used before calling val_int and after it is used to restore pointers to table->record[0]. This routine is placed outside of partition code since it can be useful also for other programs. */ void set_field_ptr(Field **ptr, const byte *new_buf, const byte *old_buf) { my_ptrdiff_t diff= (new_buf - old_buf); DBUG_ENTER("set_nullable_field_ptr"); do { (*ptr)->move_field_offset(diff); } while (*(++ptr)); DBUG_VOID_RETURN; } /* Prepare for calling val_int on partition function by setting fields to point to the record where the values of the PF-fields are stored. This variant works on a key_part reference. It is not required that all fields are NOT NULL fields. SYNOPSIS set_key_field_ptr() key_part key part with a set of fields to change ptr new_buf New record pointer old_buf Old record pointer DESCRIPTION Set ptr in field objects of field array to refer to new_buf record instead of previously old_buf. Used before calling val_int and after it is used to restore pointers to table->record[0]. This routine is placed outside of partition code since it can be useful also for other programs. */ void set_key_field_ptr(KEY *key_info, const byte *new_buf, const byte *old_buf) { KEY_PART_INFO *key_part= key_info->key_part; uint key_parts= key_info->key_parts, i= 0; my_ptrdiff_t diff= (new_buf - old_buf); DBUG_ENTER("set_key_field_ptr"); do { key_part->field->move_field_offset(diff); key_part++; } while (++i < key_parts); DBUG_VOID_RETURN; }