/* Copyright (C) 2000-2003 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Sum functions (COUNT, MIN...) */ #ifdef __GNUC__ #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include "sql_select.h" Item_sum::Item_sum(List &list) :arg_count(list.elements) { if ((args=(Item**) sql_alloc(sizeof(Item*)*arg_count))) { uint i=0; List_iterator_fast li(list); Item *item; while ((item=li++)) { args[i++]= item; } } mark_as_sum_func(); list.empty(); // Fields are used } /* Constructor used in processing select with temporary tebles */ Item_sum::Item_sum(THD *thd, Item_sum *item): Item_result_field(thd, item), arg_count(item->arg_count), quick_group(item->quick_group) { if (arg_count <= 2) args=tmp_args; else if (!(args= (Item**) thd->alloc(sizeof(Item*)*arg_count))) return; memcpy(args, item->args, sizeof(Item*)*arg_count); } void Item_sum::mark_as_sum_func() { current_thd->lex->current_select->with_sum_func= 1; with_sum_func= 1; } void Item_sum::make_field(Send_field *tmp_field) { if (args[0]->type() == Item::FIELD_ITEM && keep_field_type()) { ((Item_field*) args[0])->field->make_field(tmp_field); tmp_field->db_name=(char*)""; tmp_field->org_table_name=tmp_field->table_name=(char*)""; tmp_field->org_col_name=tmp_field->col_name=name; if (maybe_null) tmp_field->flags&= ~NOT_NULL_FLAG; } else init_make_field(tmp_field, field_type()); } void Item_sum::print(String *str) { str->append(func_name()); str->append('('); for (uint i=0 ; i < arg_count ; i++) { if (i) str->append(','); args[i]->print(str); } str->append(')'); } void Item_sum::fix_num_length_and_dec() { decimals=0; for (uint i=0 ; i < arg_count ; i++) set_if_bigger(decimals,args[i]->decimals); max_length=float_length(decimals); } Item *Item_sum::get_tmp_table_item(THD *thd) { Item_sum* sum_item= (Item_sum *) copy_or_same(thd); if (sum_item && sum_item->result_field) // If not a const sum func { Field *result_field_tmp= sum_item->result_field; for (uint i=0 ; i < sum_item->arg_count ; i++) { Item *arg= sum_item->args[i]; if (!arg->const_item()) { if (arg->type() == Item::FIELD_ITEM) ((Item_field*) arg)->field= result_field_tmp++; else sum_item->args[i]= new Item_field(result_field_tmp++); } } } return sum_item; } bool Item_sum::walk (Item_processor processor, byte *argument) { if (arg_count) { Item **arg,**arg_end; for (arg= args, arg_end= args+arg_count; arg != arg_end; arg++) { if ((*arg)->walk(processor, argument)) return 1; } } return (this->*processor)(argument); } Field *Item_sum::create_tmp_field(bool group, TABLE *table, uint convert_blob_length) { switch (result_type()) { case REAL_RESULT: return new Field_double(max_length,maybe_null,name,table,decimals); case INT_RESULT: return new Field_longlong(max_length,maybe_null,name,table,unsigned_flag); case STRING_RESULT: if (max_length > 255 && convert_blob_length) return new Field_varstring(convert_blob_length, maybe_null, name, table, collation.collation); return make_string_field(table); case DECIMAL_RESULT: return new Field_new_decimal(max_length - (decimals?1:0), maybe_null, name, table, decimals); case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); return 0; } } String * Item_sum_num::val_str(String *str) { return val_string_from_real(str); } my_decimal *Item_sum_num::val_decimal(my_decimal *decimal_value) { return val_decimal_from_real(decimal_value); } String * Item_sum_int::val_str(String *str) { return val_string_from_int(str); } my_decimal *Item_sum_int::val_decimal(my_decimal *decimal_value) { return val_decimal_from_int(decimal_value); } bool Item_sum_num::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref) { DBUG_ASSERT(fixed == 0); if (!thd->allow_sum_func) { my_message(ER_INVALID_GROUP_FUNC_USE, ER(ER_INVALID_GROUP_FUNC_USE), MYF(0)); return TRUE; } thd->allow_sum_func=0; // No included group funcs decimals=0; maybe_null=0; for (uint i=0 ; i < arg_count ; i++) { if (args[i]->fix_fields(thd, tables, args + i) || args[i]->check_cols(1)) return TRUE; set_if_bigger(decimals, args[i]->decimals); maybe_null |= args[i]->maybe_null; } result_field=0; max_length=float_length(decimals); null_value=1; fix_length_and_dec(); thd->allow_sum_func=1; // Allow group functions fixed= 1; return FALSE; } Item_sum_hybrid::Item_sum_hybrid(THD *thd, Item_sum_hybrid *item) :Item_sum(thd, item), value(item->value), hybrid_type(item->hybrid_type), hybrid_field_type(item->hybrid_field_type), cmp_sign(item->cmp_sign), used_table_cache(item->used_table_cache), was_values(item->was_values) { /* copy results from old value */ switch (hybrid_type) { case INT_RESULT: sum_int= item->sum_int; break; case DECIMAL_RESULT: my_decimal2decimal(&item->sum_dec, &sum_dec); break; case REAL_RESULT: sum= item->sum; break; case ROW_RESULT: default: DBUG_ASSERT(0); } collation.set(item->collation); } bool Item_sum_hybrid::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref) { DBUG_ASSERT(fixed == 0); Item *item= args[0]; if (!thd->allow_sum_func) { my_message(ER_INVALID_GROUP_FUNC_USE, ER(ER_INVALID_GROUP_FUNC_USE), MYF(0)); return TRUE; } thd->allow_sum_func=0; // No included group funcs // 'item' can be changed during fix_fields if (!item->fixed && item->fix_fields(thd, tables, args) || (item= args[0])->check_cols(1)) return TRUE; decimals=item->decimals; switch (hybrid_type= item->result_type()) { case INT_RESULT: max_length= 20; sum_int= 0; break; case DECIMAL_RESULT: max_length= item->max_length; my_decimal_set_zero(&sum_dec); break; case REAL_RESULT: max_length= float_length(decimals); sum= 0.0; break; case STRING_RESULT: max_length= item->max_length; break; case ROW_RESULT: default: DBUG_ASSERT(0); }; /* MIN/MAX can return NULL for empty set indepedent of the used column */ maybe_null= 1; unsigned_flag=item->unsigned_flag; collation.set(item->collation); result_field=0; null_value=1; fix_length_and_dec(); thd->allow_sum_func=1; // Allow group functions if (item->type() == Item::FIELD_ITEM) hybrid_field_type= ((Item_field*) item)->field->type(); else hybrid_field_type= Item::field_type(); fixed= 1; return FALSE; } Field *Item_sum_hybrid::create_tmp_field(bool group, TABLE *table, uint convert_blob_length) { if (args[0]->type() == Item::FIELD_ITEM) { Field *field= ((Item_field*) args[0])->field; if ((field= create_tmp_field_from_field(current_thd, field, name, table, NULL, convert_blob_length))) field->flags&= ~NOT_NULL_FLAG; return field; } return Item_sum::create_tmp_field(group, table, convert_blob_length); } /*********************************************************************** ** reset and add of sum_func ***********************************************************************/ Item_sum_sum::Item_sum_sum(THD *thd, Item_sum_sum *item) :Item_sum_num(thd, item), hybrid_type(item->hybrid_type), curr_dec_buff(item->curr_dec_buff) { /* TODO: check if the following assignments are really needed */ if (hybrid_type == DECIMAL_RESULT) { my_decimal2decimal(item->dec_buffs, dec_buffs); my_decimal2decimal(item->dec_buffs + 1, dec_buffs + 1); } else sum= item->sum; } Item *Item_sum_sum::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_sum(thd, this); } void Item_sum_sum::clear() { DBUG_ENTER("Item_sum_sum::clear"); null_value=1; if (hybrid_type == DECIMAL_RESULT) { curr_dec_buff= 0; my_decimal_set_zero(dec_buffs); } else sum= 0.0; DBUG_VOID_RETURN; } void Item_sum_sum::fix_length_and_dec() { DBUG_ENTER("Item_sum_sum::fix_length_and_dec"); maybe_null=null_value=1; decimals= args[0]->decimals; switch (args[0]->result_type()) { case REAL_RESULT: case STRING_RESULT: hybrid_type= REAL_RESULT; sum= 0.0; break; case INT_RESULT: case DECIMAL_RESULT: /* SUM result can't be longer than length(arg) + length(MAX_ROWS) */ max_length= min(args[0]->max_length + DECIMAL_LONGLONG_DIGITS, DECIMAL_MAX_LENGTH); curr_dec_buff= 0; hybrid_type= DECIMAL_RESULT; my_decimal_set_zero(dec_buffs); break; case ROW_RESULT: default: DBUG_ASSERT(0); } DBUG_PRINT("info", ("Type: %s (%d, %d)", (hybrid_type == REAL_RESULT ? "REAL_RESULT" : hybrid_type == DECIMAL_RESULT ? "DECIMAL_RESULT" : hybrid_type == INT_RESULT ? "INT_RESULT" : "--ILLEGAL!!!--"), max_length, (int)decimals)); DBUG_VOID_RETURN; } bool Item_sum_sum::add() { DBUG_ENTER("Item_sum_sum::add"); if (hybrid_type == DECIMAL_RESULT) { my_decimal value, *val= args[0]->val_decimal(&value); if (!args[0]->null_value) { my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs + (curr_dec_buff^1), val, dec_buffs + curr_dec_buff); curr_dec_buff^= 1; null_value= 0; } } else { sum+= args[0]->val_real(); if (!args[0]->null_value) null_value= 0; } DBUG_RETURN(0); } longlong Item_sum_sum::val_int() { DBUG_ASSERT(fixed == 1); if (hybrid_type == DECIMAL_RESULT) { longlong result; my_decimal2int(E_DEC_FATAL_ERROR, dec_buffs + curr_dec_buff, unsigned_flag, &result); return result; } return (longlong) val_real(); } double Item_sum_sum::val_real() { DBUG_ASSERT(fixed == 1); if (hybrid_type == DECIMAL_RESULT) my_decimal2double(E_DEC_FATAL_ERROR, dec_buffs + curr_dec_buff, &sum); return sum; } String *Item_sum_sum::val_str(String *str) { if (hybrid_type == DECIMAL_RESULT) return val_string_from_decimal(str); return val_string_from_real(str); } my_decimal *Item_sum_sum::val_decimal(my_decimal *val) { if (hybrid_type == DECIMAL_RESULT) return (dec_buffs + curr_dec_buff); return val_decimal_from_real(val); } /***************************************************************************/ C_MODE_START /* Declarations for auxilary C-callbacks */ static int simple_raw_key_cmp(void* arg, const void* key1, const void* key2) { return memcmp(key1, key2, *(uint *) arg); } static int item_sum_distinct_walk(void *element, element_count num_of_dups, void *item) { return ((Item_sum_distinct*) (item))->unique_walk_function(element); } C_MODE_END /* Item_sum_distinct */ Item_sum_distinct::Item_sum_distinct(Item *item_arg) :Item_sum_num(item_arg), tree(0) { /* quick_group is an optimizer hint, which means that GROUP BY can be handled with help of index on grouped columns. By setting quick_group to zero we force creation of temporary table to perform GROUP BY. */ quick_group= 0; } Item_sum_distinct::Item_sum_distinct(THD *thd, Item_sum_distinct *original) :Item_sum_num(thd, original), val(original->val), tree(0), table_field_type(original->table_field_type) { quick_group= 0; } /* Behaves like an Integer except to fix_length_and_dec(). Additionally div() converts val with this traits to a val with true decimal traits along with conversion of integer value to decimal value. This is to speedup SUM/AVG(DISTINCT) evaluation for 8-32 bit integer values. */ struct Hybrid_type_traits_fast_decimal: public Hybrid_type_traits_integer { virtual Item_result type() const { return DECIMAL_RESULT; } virtual void fix_length_and_dec(Item *item, Item *arg) const { Hybrid_type_traits_decimal::instance()->fix_length_and_dec(item, arg); } virtual void div(Hybrid_type *val, ulonglong u) const { int2my_decimal(E_DEC_FATAL_ERROR, val->integer, 0, val->dec_buf); val->used_dec_buf_no= 0; val->traits= Hybrid_type_traits_decimal::instance(); val->traits->div(val, u); } static const Hybrid_type_traits_fast_decimal *instance(); }; static const Hybrid_type_traits_fast_decimal fast_decimal_traits_instance; const Hybrid_type_traits_fast_decimal *Hybrid_type_traits_fast_decimal::instance() { return &fast_decimal_traits_instance; } void Item_sum_distinct::fix_length_and_dec() { DBUG_ASSERT(args[0]->fixed); table_field_type= args[0]->field_type(); /* Adjust tmp table type according to the chosen aggregation type */ switch (args[0]->result_type()) { case STRING_RESULT: case REAL_RESULT: val.traits= Hybrid_type_traits::instance(); if (table_field_type != MYSQL_TYPE_FLOAT) table_field_type= MYSQL_TYPE_DOUBLE; break; case INT_RESULT: /* Preserving int8, int16, int32 field types gives ~10% performance boost as the size of result tree becomes significantly smaller. Another speed up we gain by using longlong for intermediate calculations. The range of int64 is enough to hold sum 2^32 distinct integers each <= 2^32. */ if (table_field_type == MYSQL_TYPE_INT24 || table_field_type >= MYSQL_TYPE_TINY && table_field_type <= MYSQL_TYPE_LONG) { val.traits= Hybrid_type_traits_fast_decimal::instance(); break; } table_field_type= MYSQL_TYPE_LONGLONG; /* fallthrough */ case DECIMAL_RESULT: val.traits= Hybrid_type_traits_decimal::instance(); if (table_field_type != MYSQL_TYPE_LONGLONG) table_field_type= MYSQL_TYPE_NEWDECIMAL; break; case ROW_RESULT: default: DBUG_ASSERT(0); } val.traits->fix_length_and_dec(this, args[0]); } bool Item_sum_distinct::setup(THD *thd) { List field_list; create_field field_def; /* field definition */ DBUG_ENTER("Item_sum_distinct::setup"); DBUG_ASSERT(tree == 0); /* setup can not be called twice */ /* Virtual table and the tree are created anew on each re-execution of PS/SP. Hence all further allocations are performed in the runtime mem_root. */ if (field_list.push_back(&field_def)) return TRUE; null_value= maybe_null= 1; quick_group= 0; DBUG_ASSERT(args[0]->fixed); field_def.init_for_tmp_table(table_field_type, args[0]->max_length, args[0]->decimals, args[0]->maybe_null, args[0]->unsigned_flag); if (! (table= create_virtual_tmp_table(thd, field_list))) return TRUE; /* XXX: check that the case of CHAR(0) works OK */ tree_key_length= table->s->reclength - table->s->null_bytes; /* Unique handles all unique elements in a tree until they can't fit in. Then the tree is dumped to the temporary file. We can use simple_raw_key_cmp because the table contains numbers only; decimals are converted to binary representation as well. */ tree= new Unique(simple_raw_key_cmp, &tree_key_length, tree_key_length, thd->variables.max_heap_table_size); DBUG_RETURN(tree == 0); } bool Item_sum_distinct::add() { args[0]->save_in_field(table->field[0], FALSE); if (!table->field[0]->is_null()) { DBUG_ASSERT(tree); null_value= 0; /* '0' values are also stored in the tree. This doesn't matter for SUM(DISTINCT), but is important for AVG(DISTINCT) */ return tree->unique_add(table->field[0]->ptr); } return 0; } bool Item_sum_distinct::unique_walk_function(void *element) { memcpy(table->field[0]->ptr, element, tree_key_length); ++count; val.traits->add(&val, table->field[0]); return 0; } void Item_sum_distinct::clear() { DBUG_ENTER("Item_sum_distinct::clear"); DBUG_ASSERT(tree != 0); /* we always have a tree */ null_value= 1; tree->reset(); DBUG_VOID_RETURN; } void Item_sum_distinct::cleanup() { Item_sum_num::cleanup(); delete tree; tree= 0; table= 0; } Item_sum_distinct::~Item_sum_distinct() { delete tree; /* no need to free the table */ } void Item_sum_distinct::calculate_val_and_count() { count= 0; val.traits->set_zero(&val); /* We don't have a tree only if 'setup()' hasn't been called; this is the case of sql_select.cc:return_zero_rows. */ if (tree) { table->field[0]->set_notnull(); tree->walk(item_sum_distinct_walk, (void*) this); } } double Item_sum_distinct::val_real() { calculate_val_and_count(); return val.traits->val_real(&val); } my_decimal *Item_sum_distinct::val_decimal(my_decimal *to) { calculate_val_and_count(); if (null_value) return 0; return val.traits->val_decimal(&val, to); } longlong Item_sum_distinct::val_int() { calculate_val_and_count(); return val.traits->val_int(&val, unsigned_flag); } String *Item_sum_distinct::val_str(String *str) { calculate_val_and_count(); if (null_value) return 0; return val.traits->val_str(&val, str, decimals); } /* end of Item_sum_distinct */ /* Item_sum_avg_distinct */ void Item_sum_avg_distinct::fix_length_and_dec() { Item_sum_distinct::fix_length_and_dec(); /* AVG() will divide val by count. We need to reserve digits after decimal point as the result can be fractional. */ decimals= min(decimals + 4, NOT_FIXED_DEC); } void Item_sum_avg_distinct::calculate_val_and_count() { Item_sum_distinct::calculate_val_and_count(); if (count) val.traits->div(&val, count); } Item *Item_sum_count::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_count(thd, this); } void Item_sum_count::clear() { count= 0; } bool Item_sum_count::add() { if (!args[0]->maybe_null) count++; else { (void) args[0]->val_int(); if (!args[0]->null_value) count++; } return 0; } longlong Item_sum_count::val_int() { DBUG_ASSERT(fixed == 1); return (longlong) count; } void Item_sum_count::cleanup() { DBUG_ENTER("Item_sum_count::cleanup"); Item_sum_int::cleanup(); used_table_cache= ~(table_map) 0; DBUG_VOID_RETURN; } /* Avgerage */ void Item_sum_avg::fix_length_and_dec() { Item_sum_sum::fix_length_and_dec(); maybe_null=null_value=1; decimals= min(args[0]->decimals + 4, NOT_FIXED_DEC); if (hybrid_type == DECIMAL_RESULT) { f_scale= args[0]->decimals; max_length= DECIMAL_MAX_LENGTH + (f_scale ? 1 : 0); f_precision= DECIMAL_MAX_LENGTH; dec_bin_size= my_decimal_get_binary_size(f_precision, f_scale); } } Item *Item_sum_avg::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_avg(thd, this); } Field *Item_sum_avg::create_tmp_field(bool group, TABLE *table, uint convert_blob_len) { if (group) { /* We must store both value and counter in the temporary table in one field. The easyest way is to do this is to store both value in a string and unpack on access. */ return new Field_string(((hybrid_type == DECIMAL_RESULT) ? dec_bin_size : sizeof(double)) + sizeof(longlong), 0, name, table, &my_charset_bin); } if (hybrid_type == DECIMAL_RESULT) return new Field_new_decimal(f_precision, maybe_null, name, table, f_scale); return new Field_double(max_length, maybe_null, name, table, decimals); } void Item_sum_avg::clear() { Item_sum_sum::clear(); count=0; } bool Item_sum_avg::add() { if (Item_sum_sum::add()) return TRUE; if (!args[0]->null_value) count++; return FALSE; } double Item_sum_avg::val_real() { DBUG_ASSERT(fixed == 1); if (!count) { null_value=1; return 0.0; } return Item_sum_sum::val_real() / ulonglong2double(count); } my_decimal *Item_sum_avg::val_decimal(my_decimal *val) { my_decimal sum, cnt; const my_decimal *sum_dec; DBUG_ASSERT(fixed == 1); if (!count) { null_value=1; return NULL; } sum_dec= Item_sum_sum::val_decimal(&sum); int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &cnt); my_decimal_div(E_DEC_FATAL_ERROR, val, sum_dec, &cnt, 4); return val; } String *Item_sum_avg::val_str(String *str) { if (hybrid_type == DECIMAL_RESULT) return val_string_from_decimal(str); return val_string_from_real(str); } /* Standard deviation */ double Item_sum_std::val_real() { DBUG_ASSERT(fixed == 1); double tmp= Item_sum_variance::val_real(); return tmp <= 0.0 ? 0.0 : sqrt(tmp); } Item *Item_sum_std::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_std(thd, this); } /* Variance */ Item_sum_variance::Item_sum_variance(THD *thd, Item_sum_variance *item): Item_sum_num(thd, item), hybrid_type(item->hybrid_type), cur_dec(item->cur_dec), count(item->count), sample(item->sample) { if (hybrid_type == DECIMAL_RESULT) { memcpy(dec_sum, item->dec_sum, sizeof(item->dec_sum)); memcpy(dec_sqr, item->dec_sqr, sizeof(item->dec_sqr)); for (int i=0; i<2; i++) { dec_sum[i].fix_buffer_pointer(); dec_sqr[i].fix_buffer_pointer(); } } else { sum= item->sum; sum_sqr= item->sum_sqr; } } void Item_sum_variance::fix_length_and_dec() { DBUG_ENTER("Item_sum_variance::fix_length_and_dec"); maybe_null= null_value= 1; decimals= min(args[0]->decimals + 4, NOT_FIXED_DEC); switch (args[0]->result_type()) { case REAL_RESULT: case STRING_RESULT: hybrid_type= REAL_RESULT; sum= 0.0; break; case INT_RESULT: case DECIMAL_RESULT: /* SUM result can't be longer than length(arg)*2 + digits_after_the_point_to_add */ max_length= args[0]->max_length*2 + 4; cur_dec= 0; hybrid_type= DECIMAL_RESULT; my_decimal_set_zero(dec_sum); my_decimal_set_zero(dec_sqr); /* The maxium value to usable for variance is DECIMAL_MAX_LENGTH/2 becasue we need to be able to calculate in dec_bin_size1 column_value * column_value */ f_scale0= args[0]->decimals; f_precision0= DECIMAL_MAX_LENGTH / 2; f_scale1= min(f_scale0 * 2, NOT_FIXED_DEC - 1); f_precision1= DECIMAL_MAX_LENGTH; dec_bin_size0= my_decimal_get_binary_size(f_precision0, f_scale0); dec_bin_size1= my_decimal_get_binary_size(f_precision1, f_scale1); break; case ROW_RESULT: default: DBUG_ASSERT(0); } DBUG_PRINT("info", ("Type: %s (%d, %d)", (hybrid_type == REAL_RESULT ? "REAL_RESULT" : hybrid_type == DECIMAL_RESULT ? "DECIMAL_RESULT" : hybrid_type == INT_RESULT ? "INT_RESULT" : "--ILLEGAL!!!--"), max_length, (int)decimals)); DBUG_VOID_RETURN; } Item *Item_sum_variance::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_variance(thd, this); } Field *Item_sum_variance::create_tmp_field(bool group, TABLE *table, uint convert_blob_len) { if (group) { /* We must store both value and counter in the temporary table in one field. The easyest way is to do this is to store both value in a string and unpack on access. */ return new Field_string(((hybrid_type == DECIMAL_RESULT) ? dec_bin_size0 + dec_bin_size1 : sizeof(double)*2) + sizeof(longlong), 0, name, table, &my_charset_bin); } if (hybrid_type == DECIMAL_RESULT) return new Field_new_decimal(DECIMAL_MAX_LENGTH, maybe_null, name, table, f_scale1 + 4); return new Field_double(max_length, maybe_null,name,table,decimals); } void Item_sum_variance::clear() { if (hybrid_type == DECIMAL_RESULT) { my_decimal_set_zero(dec_sum); my_decimal_set_zero(dec_sqr); cur_dec= 0; } else sum=sum_sqr=0.0; count=0; } bool Item_sum_variance::add() { if (hybrid_type == DECIMAL_RESULT) { my_decimal dec_buf, *dec= args[0]->val_decimal(&dec_buf); my_decimal sqr_buf; if (!args[0]->null_value) { count++; int next_dec= cur_dec ^ 1; my_decimal_mul(E_DEC_FATAL_ERROR, &sqr_buf, dec, dec); my_decimal_add(E_DEC_FATAL_ERROR, dec_sqr+next_dec, dec_sqr+cur_dec, &sqr_buf); my_decimal_add(E_DEC_FATAL_ERROR, dec_sum+next_dec, dec_sum+cur_dec, dec); cur_dec= next_dec; } } else { double nr= args[0]->val_real(); if (!args[0]->null_value) { sum+=nr; sum_sqr+=nr*nr; count++; } } return 0; } double Item_sum_variance::val_real() { DBUG_ASSERT(fixed == 1); if (hybrid_type == DECIMAL_RESULT) return val_real_from_decimal(); if (count <= sample) { null_value=1; return 0.0; } null_value=0; /* Avoid problems when the precision isn't good enough */ double tmp=ulonglong2double(count); double tmp2= (sum_sqr - sum*sum/tmp)/(tmp - (double)sample); return tmp2 <= 0.0 ? 0.0 : tmp2; } my_decimal *Item_sum_variance::val_decimal(my_decimal *dec_buf) { my_decimal count_buf, count1_buf, sum_sqr_buf; DBUG_ASSERT(fixed ==1 ); if (hybrid_type == REAL_RESULT) return val_decimal_from_real(dec_buf); if (count <= sample) { null_value= 1; return 0; } null_value= 0; int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &count_buf); int2my_decimal(E_DEC_FATAL_ERROR, count-sample, 0, &count1_buf); my_decimal_mul(E_DEC_FATAL_ERROR, &sum_sqr_buf, dec_sum+cur_dec, dec_sum+cur_dec); my_decimal_div(E_DEC_FATAL_ERROR, dec_buf, &sum_sqr_buf, &count_buf, 2); my_decimal_sub(E_DEC_FATAL_ERROR, &sum_sqr_buf, dec_sqr+cur_dec, dec_buf); my_decimal_div(E_DEC_FATAL_ERROR, dec_buf, &sum_sqr_buf, &count1_buf, 2); return dec_buf; } void Item_sum_variance::reset_field() { double nr; char *res= result_field->ptr; if (hybrid_type == DECIMAL_RESULT) { my_decimal value, *arg_dec, *arg2_dec; longlong tmp; arg_dec= args[0]->val_decimal(&value); if (args[0]->null_value) { arg_dec= arg2_dec= &decimal_zero; tmp= 0; } else { my_decimal_mul(E_DEC_FATAL_ERROR, dec_sum, arg_dec, arg_dec); arg2_dec= dec_sum; tmp= 1; } my_decimal2binary(E_DEC_FATAL_ERROR, arg_dec, res, f_precision0, f_scale0); my_decimal2binary(E_DEC_FATAL_ERROR, arg2_dec, res+dec_bin_size0, f_precision1, f_scale1); res+= dec_bin_size0 + dec_bin_size1; int8store(res,tmp); return; } nr= args[0]->val_real(); if (args[0]->null_value) bzero(res,sizeof(double)*2+sizeof(longlong)); else { longlong tmp; float8store(res,nr); nr*=nr; float8store(res+sizeof(double),nr); tmp= 1; int8store(res+sizeof(double)*2,tmp); } } void Item_sum_variance::update_field() { longlong field_count; char *res=result_field->ptr; if (hybrid_type == DECIMAL_RESULT) { my_decimal value, *arg_val= args[0]->val_decimal(&value); if (!args[0]->null_value) { binary2my_decimal(E_DEC_FATAL_ERROR, res, dec_sum+1, f_precision0, f_scale0); binary2my_decimal(E_DEC_FATAL_ERROR, res+dec_bin_size0, dec_sqr+1, f_precision1, f_scale1); field_count= sint8korr(res + (dec_bin_size0 + dec_bin_size1)); my_decimal_add(E_DEC_FATAL_ERROR, dec_sum, arg_val, dec_sum+1); my_decimal_mul(E_DEC_FATAL_ERROR, dec_sum+1, arg_val, arg_val); my_decimal_add(E_DEC_FATAL_ERROR, dec_sqr, dec_sqr+1, dec_sum+1); field_count++; my_decimal2binary(E_DEC_FATAL_ERROR, dec_sum, res, f_precision0, f_scale0); my_decimal2binary(E_DEC_FATAL_ERROR, dec_sqr, res+dec_bin_size0, f_precision1, f_scale1); res+= dec_bin_size0 + dec_bin_size1; int8store(res, field_count); } return; } double nr,old_nr,old_sqr; float8get(old_nr, res); float8get(old_sqr, res+sizeof(double)); field_count=sint8korr(res+sizeof(double)*2); nr= args[0]->val_real(); if (!args[0]->null_value) { old_nr+=nr; old_sqr+=nr*nr; field_count++; } float8store(res,old_nr); float8store(res+sizeof(double),old_sqr); res+= sizeof(double)*2; int8store(res,field_count); } /* min & max */ void Item_sum_hybrid::clear() { switch (hybrid_type) { case INT_RESULT: sum_int= 0; break; case DECIMAL_RESULT: my_decimal_set_zero(&sum_dec); break; case REAL_RESULT: sum= 0.0; break; default: value.length(0); } null_value= 1; } double Item_sum_hybrid::val_real() { DBUG_ASSERT(fixed == 1); if (null_value) return 0.0; switch (hybrid_type) { case STRING_RESULT: { char *end_not_used; int err_not_used; String *res; res=val_str(&str_value); return (res ? my_strntod(res->charset(), (char*) res->ptr(), res->length(), &end_not_used, &err_not_used) : 0.0); } case INT_RESULT: if (unsigned_flag) return ulonglong2double(sum_int); return (double) sum_int; case DECIMAL_RESULT: my_decimal2double(E_DEC_FATAL_ERROR, &sum_dec, &sum); return sum; case REAL_RESULT: return sum; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); return 0; } } longlong Item_sum_hybrid::val_int() { DBUG_ASSERT(fixed == 1); if (null_value) return 0; switch (hybrid_type) { case INT_RESULT: return sum_int; case DECIMAL_RESULT: { longlong result; my_decimal2int(E_DEC_FATAL_ERROR, &sum_dec, unsigned_flag, &result); return sum_int; } default: return (longlong) Item_sum_hybrid::val_real(); } } my_decimal *Item_sum_hybrid::val_decimal(my_decimal *val) { DBUG_ASSERT(fixed == 1); if (null_value) return 0; switch (hybrid_type) { case STRING_RESULT: string2my_decimal(E_DEC_FATAL_ERROR, &value, val); break; case REAL_RESULT: double2my_decimal(E_DEC_FATAL_ERROR, sum, val); break; case DECIMAL_RESULT: val= &sum_dec; break; case INT_RESULT: int2my_decimal(E_DEC_FATAL_ERROR, sum_int, unsigned_flag, val); break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } return val; // Keep compiler happy } String * Item_sum_hybrid::val_str(String *str) { DBUG_ASSERT(fixed == 1); if (null_value) return 0; switch (hybrid_type) { case STRING_RESULT: return &value; case REAL_RESULT: str->set(sum,decimals, &my_charset_bin); break; case DECIMAL_RESULT: my_decimal2string(E_DEC_FATAL_ERROR, &sum_dec, 0, 0, 0, str); return str; case INT_RESULT: if (unsigned_flag) str->set((ulonglong) sum_int, &my_charset_bin); else str->set((longlong) sum_int, &my_charset_bin); break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } return str; // Keep compiler happy } void Item_sum_hybrid::cleanup() { DBUG_ENTER("Item_sum_hybrid::cleanup"); Item_sum::cleanup(); used_table_cache= ~(table_map) 0; /* by default it is TRUE to avoid TRUE reporting by Item_func_not_all/Item_func_nop_all if this item was never called. no_rows_in_result() set it to FALSE if was not results found. If some results found it will be left unchanged. */ was_values= TRUE; DBUG_VOID_RETURN; } void Item_sum_hybrid::no_rows_in_result() { Item_sum::no_rows_in_result(); was_values= FALSE; } Item *Item_sum_min::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_min(thd, this); } bool Item_sum_min::add() { switch (hybrid_type) { case STRING_RESULT: { String *result=args[0]->val_str(&tmp_value); if (!args[0]->null_value && (null_value || sortcmp(&value,result,collation.collation) > 0)) { value.copy(*result); null_value=0; } } break; case INT_RESULT: { longlong nr=args[0]->val_int(); if (!args[0]->null_value && (null_value || (unsigned_flag && (ulonglong) nr < (ulonglong) sum_int) || (!unsigned_flag && nr < sum_int))) { sum_int=nr; null_value=0; } } break; case DECIMAL_RESULT: { my_decimal value, *val= args[0]->val_decimal(&value); if (!args[0]->null_value && (null_value || (my_decimal_cmp(&sum_dec, val) > 0))) { my_decimal2decimal(val, &sum_dec); null_value= 0; } } break; case REAL_RESULT: { double nr= args[0]->val_real(); if (!args[0]->null_value && (null_value || nr < sum)) { sum=nr; null_value=0; } } break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } return 0; } Item *Item_sum_max::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_max(thd, this); } bool Item_sum_max::add() { switch (hybrid_type) { case STRING_RESULT: { String *result=args[0]->val_str(&tmp_value); if (!args[0]->null_value && (null_value || sortcmp(&value,result,collation.collation) < 0)) { value.copy(*result); null_value=0; } } break; case INT_RESULT: { longlong nr=args[0]->val_int(); if (!args[0]->null_value && (null_value || (unsigned_flag && (ulonglong) nr > (ulonglong) sum_int) || (!unsigned_flag && nr > sum_int))) { sum_int=nr; null_value=0; } } break; case DECIMAL_RESULT: { my_decimal value, *val= args[0]->val_decimal(&value); if (!args[0]->null_value && (null_value || (my_decimal_cmp(val, &sum_dec) > 0))) { my_decimal2decimal(val, &sum_dec); null_value= 0; } } break; case REAL_RESULT: { double nr= args[0]->val_real(); if (!args[0]->null_value && (null_value || nr > sum)) { sum=nr; null_value=0; } } break; case ROW_RESULT: default: // This case should never be choosen DBUG_ASSERT(0); break; } return 0; } /* bit_or and bit_and */ longlong Item_sum_bit::val_int() { DBUG_ASSERT(fixed == 1); return (longlong) bits; } void Item_sum_bit::clear() { bits= reset_bits; } Item *Item_sum_or::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_or(thd, this); } bool Item_sum_or::add() { ulonglong value= (ulonglong) args[0]->val_int(); if (!args[0]->null_value) bits|=value; return 0; } Item *Item_sum_xor::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_xor(thd, this); } bool Item_sum_xor::add() { ulonglong value= (ulonglong) args[0]->val_int(); if (!args[0]->null_value) bits^=value; return 0; } Item *Item_sum_and::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_and(thd, this); } bool Item_sum_and::add() { ulonglong value= (ulonglong) args[0]->val_int(); if (!args[0]->null_value) bits&=value; return 0; } /************************************************************************ ** reset result of a Item_sum with is saved in a tmp_table *************************************************************************/ void Item_sum_num::reset_field() { double nr= args[0]->val_real(); char *res=result_field->ptr; if (maybe_null) { if (args[0]->null_value) { nr=0.0; result_field->set_null(); } else result_field->set_notnull(); } float8store(res,nr); } void Item_sum_hybrid::reset_field() { switch(hybrid_type) { case STRING_RESULT: { char buff[MAX_FIELD_WIDTH]; String tmp(buff,sizeof(buff),result_field->charset()),*res; res=args[0]->val_str(&tmp); if (args[0]->null_value) { result_field->set_null(); result_field->reset(); } else { result_field->set_notnull(); result_field->store(res->ptr(),res->length(),tmp.charset()); } break; } case INT_RESULT: { longlong nr=args[0]->val_int(); if (maybe_null) { if (args[0]->null_value) { nr=0; result_field->set_null(); } else result_field->set_notnull(); } result_field->store(nr); break; } case REAL_RESULT: { double nr= args[0]->val_real(); if (maybe_null) { if (args[0]->null_value) { nr=0.0; result_field->set_null(); } else result_field->set_notnull(); } result_field->store(nr); break; } case DECIMAL_RESULT: { my_decimal value, *arg_dec= args[0]->val_decimal(&value); if (maybe_null) { if (args[0]->null_value) result_field->set_null(); else result_field->set_notnull(); } /* We must store zero in the field as we will use the field value in add() */ if (!arg_dec) // Null arg_dec= &decimal_zero; result_field->store_decimal(arg_dec); break; } case ROW_RESULT: default: DBUG_ASSERT(0); } } void Item_sum_sum::reset_field() { if (hybrid_type == DECIMAL_RESULT) { my_decimal value, *arg_val= args[0]->val_decimal(&value); if (!arg_val) // Null arg_val= &decimal_zero; result_field->store_decimal(arg_val); } else { DBUG_ASSERT(hybrid_type == REAL_RESULT); double nr= args[0]->val_real(); // Nulls also return 0 float8store(result_field->ptr, nr); } if (args[0]->null_value) result_field->set_null(); else result_field->set_notnull(); } void Item_sum_count::reset_field() { char *res=result_field->ptr; longlong nr=0; if (!args[0]->maybe_null) nr=1; else { (void) args[0]->val_int(); if (!args[0]->null_value) nr=1; } int8store(res,nr); } void Item_sum_avg::reset_field() { char *res=result_field->ptr; if (hybrid_type == DECIMAL_RESULT) { longlong tmp; my_decimal value, *arg_dec= args[0]->val_decimal(&value); if (args[0]->null_value) { arg_dec= &decimal_zero; tmp= 0; } else tmp= 1; my_decimal2binary(E_DEC_FATAL_ERROR, arg_dec, res, f_precision, f_scale); res+= dec_bin_size; int8store(res, tmp); } else { double nr= args[0]->val_real(); if (args[0]->null_value) bzero(res,sizeof(double)+sizeof(longlong)); else { longlong tmp= 1; float8store(res,nr); res+=sizeof(double); int8store(res,tmp); } } } void Item_sum_bit::reset_field() { reset(); int8store(result_field->ptr, bits); } void Item_sum_bit::update_field() { char *res=result_field->ptr; bits= uint8korr(res); add(); int8store(res, bits); } /* ** calc next value and merge it with field_value */ void Item_sum_sum::update_field() { if (hybrid_type == DECIMAL_RESULT) { my_decimal value, *arg_val= args[0]->val_decimal(&value); if (!args[0]->null_value) { if (!result_field->is_null()) { my_decimal field_value, *field_val= result_field->val_decimal(&field_value); my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, arg_val, field_val); result_field->store_decimal(dec_buffs); } else { result_field->store_decimal(arg_val); result_field->set_notnull(); } } } else { double old_nr,nr; char *res=result_field->ptr; float8get(old_nr,res); nr= args[0]->val_real(); if (!args[0]->null_value) { old_nr+=nr; result_field->set_notnull(); } float8store(res,old_nr); } } void Item_sum_count::update_field() { longlong nr; char *res=result_field->ptr; nr=sint8korr(res); if (!args[0]->maybe_null) nr++; else { (void) args[0]->val_int(); if (!args[0]->null_value) nr++; } int8store(res,nr); } void Item_sum_avg::update_field() { longlong field_count; char *res=result_field->ptr; if (hybrid_type == DECIMAL_RESULT) { my_decimal value, *arg_val= args[0]->val_decimal(&value); if (!args[0]->null_value) { binary2my_decimal(E_DEC_FATAL_ERROR, res, dec_buffs + 1, f_precision, f_scale); field_count= sint8korr(res + dec_bin_size); my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, arg_val, dec_buffs + 1); my_decimal2binary(E_DEC_FATAL_ERROR, dec_buffs, res, f_precision, f_scale); res+= dec_bin_size; field_count++; int8store(res, field_count); } } else { double nr; nr= args[0]->val_real(); if (!args[0]->null_value) { double old_nr; float8get(old_nr, res); field_count= sint8korr(res + sizeof(double)); old_nr+= nr; float8store(res,old_nr); res+= sizeof(double); field_count++; int8store(res, field_count); } } } void Item_sum_hybrid::update_field() { switch (hybrid_type) { case STRING_RESULT: min_max_update_str_field(); break; case INT_RESULT: min_max_update_int_field(); break; case DECIMAL_RESULT: min_max_update_decimal_field(); break; default: min_max_update_real_field(); } } void Item_sum_hybrid::min_max_update_str_field() { String *res_str=args[0]->val_str(&value); if (!args[0]->null_value) { res_str->strip_sp(); result_field->val_str(&tmp_value); if (result_field->is_null() || (cmp_sign * sortcmp(res_str,&tmp_value,collation.collation)) < 0) result_field->store(res_str->ptr(),res_str->length(),res_str->charset()); result_field->set_notnull(); } } void Item_sum_hybrid::min_max_update_real_field() { double nr,old_nr; old_nr=result_field->val_real(); nr= args[0]->val_real(); if (!args[0]->null_value) { if (result_field->is_null(0) || (cmp_sign > 0 ? old_nr > nr : old_nr < nr)) old_nr=nr; result_field->set_notnull(); } else if (result_field->is_null(0)) result_field->set_null(); result_field->store(old_nr); } void Item_sum_hybrid::min_max_update_int_field() { longlong nr,old_nr; old_nr=result_field->val_int(); nr=args[0]->val_int(); if (!args[0]->null_value) { if (result_field->is_null(0)) old_nr=nr; else { bool res=(unsigned_flag ? (ulonglong) old_nr > (ulonglong) nr : old_nr > nr); /* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */ if ((cmp_sign > 0) ^ (!res)) old_nr=nr; } result_field->set_notnull(); } else if (result_field->is_null(0)) result_field->set_null(); result_field->store(old_nr); } void Item_sum_hybrid::min_max_update_decimal_field() { /* TODO: optimize: do not get result_field in case of args[0] is NULL */ my_decimal old_val, nr_val; const my_decimal *old_nr= result_field->val_decimal(&old_val); const my_decimal *nr= args[0]->val_decimal(&nr_val); if (!args[0]->null_value) { if (result_field->is_null(0)) old_nr=nr; else { bool res= my_decimal_cmp(old_nr, nr) > 0; /* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */ if ((cmp_sign > 0) ^ (!res)) old_nr=nr; } result_field->set_notnull(); } else if (result_field->is_null(0)) result_field->set_null(); result_field->store_decimal(old_nr); } Item_avg_field::Item_avg_field(Item_result res_type, Item_sum_avg *item) { name=item->name; decimals=item->decimals; max_length=item->max_length; field=item->result_field; maybe_null=1; hybrid_type= res_type; if (hybrid_type == DECIMAL_RESULT) { f_scale= item->f_scale; f_precision= item->f_precision; dec_bin_size= item->dec_bin_size; } } double Item_avg_field::val_real() { // fix_fields() never calls for this Item double nr; longlong count; char *res; if (hybrid_type == DECIMAL_RESULT) return val_real_from_decimal(); float8get(nr,field->ptr); res= (field->ptr+sizeof(double)); count= sint8korr(res); if ((null_value= !count)) return 0.0; return nr/(double) count; } longlong Item_avg_field::val_int() { return (longlong) val_real(); } my_decimal *Item_avg_field::val_decimal(my_decimal *dec_buf) { // fix_fields() never calls for this Item if (hybrid_type == REAL_RESULT) return val_decimal_from_real(dec_buf); longlong count= sint8korr(field->ptr + dec_bin_size); if ((null_value= !count)) return 0; my_decimal dec_count, dec_field; binary2my_decimal(E_DEC_FATAL_ERROR, field->ptr, &dec_field, f_precision, f_scale); int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &dec_count); my_decimal_div(E_DEC_FATAL_ERROR, dec_buf, &dec_field, &dec_count, 4); return dec_buf; } String *Item_avg_field::val_str(String *str) { // fix_fields() never calls for this Item if (hybrid_type == DECIMAL_RESULT) return val_string_from_decimal(str); return val_string_from_real(str); } Item_std_field::Item_std_field(Item_sum_std *item) : Item_variance_field(item) { } double Item_std_field::val_real() { double nr; // fix_fields() never calls for this Item if (hybrid_type == REAL_RESULT) { /* We can't call Item_variance_field::val_real() on a DECIMAL_RESULT as this would call Item_std_field::val_decimal() and we would calculate sqrt() twice */ nr= Item_variance_field::val_real(); } else { my_decimal dec_buf,*dec; dec= Item_variance_field::val_decimal(&dec_buf); if (!dec) nr= 0.0; // NULL; Return 0.0 else my_decimal2double(E_DEC_FATAL_ERROR, dec, &nr); } return nr <= 0.0 ? 0.0 : sqrt(nr); } my_decimal *Item_std_field::val_decimal(my_decimal *dec_buf) { /* We can't call val_decimal_from_real() for DECIMAL_RESULT as Item_variance_field::val_real() would cause an infinite loop */ my_decimal tmp_dec, *dec; double nr; if (hybrid_type == REAL_RESULT) return val_decimal_from_real(dec_buf); dec= Item_variance_field::val_decimal(dec_buf); if (!dec) return 0; my_decimal2double(E_DEC_FATAL_ERROR, dec, &nr); nr= nr <= 0.0 ? 0.0 : sqrt(nr); double2my_decimal(E_DEC_FATAL_ERROR, nr, &tmp_dec); my_decimal_round(E_DEC_FATAL_ERROR, &tmp_dec, decimals, FALSE, dec_buf); return dec_buf; } Item_variance_field::Item_variance_field(Item_sum_variance *item) { name=item->name; decimals=item->decimals; max_length=item->max_length; field=item->result_field; maybe_null=1; sample= item->sample; if ((hybrid_type= item->hybrid_type) == DECIMAL_RESULT) { f_scale0= item->f_scale0; f_precision0= item->f_precision0; dec_bin_size0= item->dec_bin_size0; f_scale1= item->f_scale1; f_precision1= item->f_precision1; dec_bin_size1= item->dec_bin_size1; } } double Item_variance_field::val_real() { // fix_fields() never calls for this Item if (hybrid_type == DECIMAL_RESULT) return val_real_from_decimal(); double sum,sum_sqr; longlong count; float8get(sum,field->ptr); float8get(sum_sqr,(field->ptr+sizeof(double))); count=sint8korr(field->ptr+sizeof(double)*2); if ((null_value= (count <= sample))) return 0.0; double tmp= (double) count; double tmp2= (sum_sqr - sum*sum/tmp)/(tmp - (double)sample); return tmp2 <= 0.0 ? 0.0 : tmp2; } String *Item_variance_field::val_str(String *str) { if (hybrid_type == DECIMAL_RESULT) return val_string_from_decimal(str); return val_string_from_real(str); } my_decimal *Item_variance_field::val_decimal(my_decimal *dec_buf) { // fix_fields() never calls for this Item if (hybrid_type == REAL_RESULT) return val_decimal_from_real(dec_buf); longlong count= sint8korr(field->ptr+dec_bin_size0+dec_bin_size1); if ((null_value= (count <= sample))) return 0; my_decimal dec_count, dec1_count, dec_sum, dec_sqr, tmp; int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &dec_count); int2my_decimal(E_DEC_FATAL_ERROR, count-sample, 0, &dec1_count); binary2my_decimal(E_DEC_FATAL_ERROR, field->ptr, &dec_sum, f_precision0, f_scale0); binary2my_decimal(E_DEC_FATAL_ERROR, field->ptr+dec_bin_size0, &dec_sqr, f_precision1, f_scale1); my_decimal_mul(E_DEC_FATAL_ERROR, &tmp, &dec_sum, &dec_sum); my_decimal_div(E_DEC_FATAL_ERROR, dec_buf, &tmp, &dec_count, 2); my_decimal_sub(E_DEC_FATAL_ERROR, &dec_sum, &dec_sqr, dec_buf); my_decimal_div(E_DEC_FATAL_ERROR, dec_buf, &dec_sum, &dec1_count, 2); return dec_buf; } /**************************************************************************** ** COUNT(DISTINCT ...) ****************************************************************************/ int simple_str_key_cmp(void* arg, byte* key1, byte* key2) { Field *f= (Field*) arg; return f->cmp((const char*)key1, (const char*)key2); } /* Did not make this one static - at least gcc gets confused when I try to declare a static function as a friend. If you can figure out the syntax to make a static function a friend, make this one static */ int composite_key_cmp(void* arg, byte* key1, byte* key2) { Item_sum_count_distinct* item = (Item_sum_count_distinct*)arg; Field **field = item->table->field; Field **field_end= field + item->table->s->fields; uint32 *lengths=item->field_lengths; for (; field < field_end; ++field) { Field* f = *field; int len = *lengths++; int res = f->cmp((char *) key1, (char *) key2); if (res) return res; key1 += len; key2 += len; } return 0; } C_MODE_START static int count_distinct_walk(void *elem, element_count count, void *arg) { (*((ulonglong*)arg))++; return 0; } C_MODE_END void Item_sum_count_distinct::cleanup() { DBUG_ENTER("Item_sum_count_distinct::cleanup"); Item_sum_int::cleanup(); /* Free objects only if we own them. */ if (!original) { /* We need to delete the table and the tree in cleanup() as they were allocated in the runtime memroot. Using the runtime memroot reduces memory footprint for PS/SP and simplifies setup(). */ delete tree; tree= 0; if (table) { free_tmp_table(table->in_use, table); table= 0; } delete tmp_table_param; tmp_table_param= 0; } always_null= FALSE; DBUG_VOID_RETURN; } /* This is used by rollup to create a separate usable copy of the function */ void Item_sum_count_distinct::make_unique() { table=0; original= 0; tree= 0; tmp_table_param= 0; always_null= FALSE; } Item_sum_count_distinct::~Item_sum_count_distinct() { cleanup(); } bool Item_sum_count_distinct::setup(THD *thd) { List list; SELECT_LEX *select_lex= thd->lex->current_select; /* Setup can be called twice for ROLLUP items. This is a bug. Please add DBUG_ASSERT(tree == 0) here when it's fixed. */ if (tree || table || tmp_table_param) return FALSE; if (!(tmp_table_param= new TMP_TABLE_PARAM)) return TRUE; /* Create a table with an unique key over all parameters */ for (uint i=0; i < arg_count ; i++) { Item *item=args[i]; if (list.push_back(item)) return TRUE; // End of memory if (item->const_item()) { (void) item->val_int(); if (item->null_value) always_null=1; } } if (always_null) return FALSE; count_field_types(tmp_table_param,list,0); DBUG_ASSERT(table == 0); if (!(table= create_tmp_table(thd, tmp_table_param, list, (ORDER*) 0, 1, 0, select_lex->options | thd->options, HA_POS_ERROR, (char*)""))) return TRUE; table->file->extra(HA_EXTRA_NO_ROWS); // Don't update rows table->no_rows=1; if (table->s->db_type == DB_TYPE_HEAP) { /* No blobs, otherwise it would have been MyISAM: set up a compare function and its arguments to use with Unique. */ qsort_cmp2 compare_key; void* cmp_arg; Field **field= table->field; Field **field_end= field + table->s->fields; bool all_binary= TRUE; for (tree_key_length= 0; field < field_end; ++field) { Field *f= *field; enum enum_field_types type= f->type(); tree_key_length+= f->pack_length(); if (!f->binary() && (type == MYSQL_TYPE_STRING || type == MYSQL_TYPE_VAR_STRING || type == MYSQL_TYPE_VARCHAR)) { all_binary= FALSE; break; } } if (all_binary) { cmp_arg= (void*) &tree_key_length; compare_key= (qsort_cmp2) simple_raw_key_cmp; } else { if (table->s->fields == 1) { /* If we have only one field, which is the most common use of count(distinct), it is much faster to use a simpler key compare method that can take advantage of not having to worry about other fields. */ compare_key= (qsort_cmp2) simple_str_key_cmp; cmp_arg= (void*) table->field[0]; /* tree_key_length has been set already */ } else { uint32 *length; compare_key= (qsort_cmp2) composite_key_cmp; cmp_arg= (void*) this; field_lengths= (uint32*) thd->alloc(table->s->fields * sizeof(uint32)); for (tree_key_length= 0, length= field_lengths, field= table->field; field < field_end; ++field, ++length) { *length= (*field)->pack_length(); tree_key_length+= *length; } } } DBUG_ASSERT(tree == 0); tree= new Unique(compare_key, cmp_arg, tree_key_length, thd->variables.max_heap_table_size); /* The only time tree_key_length could be 0 is if someone does count(distinct) on a char(0) field - stupid thing to do, but this has to be handled - otherwise someone can crash the server with a DoS attack */ if (! tree) return TRUE; } return FALSE; } Item *Item_sum_count_distinct::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_count_distinct(thd, this); } void Item_sum_count_distinct::clear() { /* tree and table can be both null only if always_null */ if (tree) tree->reset(); else if (table) { table->file->extra(HA_EXTRA_NO_CACHE); table->file->delete_all_rows(); table->file->extra(HA_EXTRA_WRITE_CACHE); } } bool Item_sum_count_distinct::add() { int error; if (always_null) return 0; copy_fields(tmp_table_param); copy_funcs(tmp_table_param->items_to_copy); for (Field **field=table->field ; *field ; field++) if ((*field)->is_real_null(0)) return 0; // Don't count NULL if (tree) { /* The first few bytes of record (at least one) are just markers for deleted and NULLs. We want to skip them since they will bloat the tree without providing any valuable info. Besides, key_length used to initialize the tree didn't include space for them. */ return tree->unique_add(table->record[0] + table->s->null_bytes); } if ((error= table->file->write_row(table->record[0])) && error != HA_ERR_FOUND_DUPP_KEY && error != HA_ERR_FOUND_DUPP_UNIQUE) return TRUE; return FALSE; } longlong Item_sum_count_distinct::val_int() { DBUG_ASSERT(fixed == 1); if (!table) // Empty query return LL(0); if (tree) { ulonglong count; if (tree->elements == 0) return (longlong) tree->elements_in_tree(); // everything fits in memory count= 0; tree->walk(count_distinct_walk, (void*) &count); return (longlong) count; } table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK); return table->file->records; } void Item_sum_count_distinct::print(String *str) { str->append("count(distinct ", 15); args[0]->print(str); str->append(')'); } /**************************************************************************** ** Functions to handle dynamic loadable aggregates ** Original source by: Alexis Mikhailov ** Adapted for UDAs by: Andreas F. Bobak . ** Rewritten by: Monty. ****************************************************************************/ #ifdef HAVE_DLOPEN void Item_udf_sum::clear() { DBUG_ENTER("Item_udf_sum::clear"); udf.clear(); DBUG_VOID_RETURN; } bool Item_udf_sum::add() { DBUG_ENTER("Item_udf_sum::add"); udf.add(&null_value); DBUG_RETURN(0); } Item *Item_sum_udf_float::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_udf_float(thd, this); } double Item_sum_udf_float::val_real() { DBUG_ASSERT(fixed == 1); DBUG_ENTER("Item_sum_udf_float::val"); DBUG_PRINT("info",("result_type: %d arg_count: %d", args[0]->result_type(), arg_count)); DBUG_RETURN(udf.val(&null_value)); } String *Item_sum_udf_float::val_str(String *str) { return val_string_from_real(str); } my_decimal *Item_sum_udf_float::val_decimal(my_decimal *dec) { return val_decimal_from_real(dec); } String *Item_sum_udf_decimal::val_str(String *str) { return val_string_from_decimal(str); } double Item_sum_udf_decimal::val_real() { return val_real_from_decimal(); } longlong Item_sum_udf_decimal::val_int() { return val_int_from_decimal(); } my_decimal *Item_sum_udf_decimal::val_decimal(my_decimal *dec_buf) { DBUG_ASSERT(fixed == 1); DBUG_ENTER("Item_func_udf_decimal::val_decimal"); DBUG_PRINT("info",("result_type: %d arg_count: %d", args[0]->result_type(), arg_count)); DBUG_RETURN(udf.val_decimal(&null_value, dec_buf)); } Item *Item_sum_udf_decimal::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_udf_decimal(thd, this); } Item *Item_sum_udf_int::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_udf_int(thd, this); } longlong Item_sum_udf_int::val_int() { DBUG_ASSERT(fixed == 1); DBUG_ENTER("Item_sum_udf_int::val_int"); DBUG_PRINT("info",("result_type: %d arg_count: %d", args[0]->result_type(), arg_count)); DBUG_RETURN(udf.val_int(&null_value)); } String *Item_sum_udf_int::val_str(String *str) { return val_string_from_int(str); } my_decimal *Item_sum_udf_int::val_decimal(my_decimal *dec) { return val_decimal_from_int(dec); } /* Default max_length is max argument length */ void Item_sum_udf_str::fix_length_and_dec() { DBUG_ENTER("Item_sum_udf_str::fix_length_and_dec"); max_length=0; for (uint i = 0; i < arg_count; i++) set_if_bigger(max_length,args[i]->max_length); DBUG_VOID_RETURN; } Item *Item_sum_udf_str::copy_or_same(THD* thd) { return new (thd->mem_root) Item_sum_udf_str(thd, this); } my_decimal *Item_sum_udf_str::val_decimal(my_decimal *dec) { return val_decimal_from_string(dec); } String *Item_sum_udf_str::val_str(String *str) { DBUG_ASSERT(fixed == 1); DBUG_ENTER("Item_sum_udf_str::str"); String *res=udf.val_str(str,&str_value); null_value = !res; DBUG_RETURN(res); } #endif /* HAVE_DLOPEN */ /***************************************************************************** GROUP_CONCAT function SQL SYNTAX: GROUP_CONCAT([DISTINCT] expr,... [ORDER BY col [ASC|DESC],...] [SEPARATOR str_const]) concat of values from "group by" operation BUGS DISTINCT and ORDER BY only works if ORDER BY uses all fields and only fields in expression list Blobs doesn't work with DISTINCT or ORDER BY *****************************************************************************/ /* function of sort for syntax: GROUP_CONCAT(DISTINCT expr,...) */ int group_concat_key_cmp_with_distinct(void* arg, byte* key1, byte* key2) { Item_func_group_concat* grp_item= (Item_func_group_concat*)arg; TABLE *table= grp_item->table; Item **field_item, **end; char *record= (char*) table->record[0] + table->s->null_bytes; for (field_item= grp_item->args, end= field_item + grp_item->arg_count_field; field_item < end; field_item++) { /* We have to use get_tmp_table_field() instead of real_item()->get_tmp_table_field() because we want the field in the temporary table, not the original field */ Field *field= (*field_item)->get_tmp_table_field(); if (field) { int res; uint offset= (uint) (field->ptr - record); if ((res= field->cmp((char *) key1 + offset, (char *) key2 + offset))) return res; } } return 0; } /* function of sort for syntax: GROUP_CONCAT(expr,... ORDER BY col,... ) */ int group_concat_key_cmp_with_order(void* arg, byte* key1, byte* key2) { Item_func_group_concat* grp_item= (Item_func_group_concat*) arg; ORDER **order_item, **end; TABLE *table= grp_item->table; char *record= (char*) table->record[0] + table->s->null_bytes; for (order_item= grp_item->order, end=order_item+ grp_item->arg_count_order; order_item < end; order_item++) { Item *item= *(*order_item)->item; /* We have to use get_tmp_table_field() instead of real_item()->get_tmp_table_field() because we want the field in the temporary table, not the original field */ Field *field= item->get_tmp_table_field(); /* If the item is a constant, there is no tmp table field */ if (field) { int res; uint offset= (uint) (field->ptr - record); if ((res= field->cmp((char *) key1 + offset, (char *) key2 + offset))) return (*order_item)->asc ? res : -res; } } /* We can't return 0 because in that case the tree class would remove this item as double value. This would cause problems for case-changes and if the returned values are not the same we do the sort on. */ return 1; } /* function of sort for syntax: GROUP_CONCAT(DISTINCT expr,... ORDER BY col,... ) BUG: This doesn't work in the case when the order by contains data that is not part of the field list because tree-insert will not notice the duplicated values when inserting things sorted by ORDER BY */ int group_concat_key_cmp_with_distinct_and_order(void* arg,byte* key1, byte* key2) { if (!group_concat_key_cmp_with_distinct(arg,key1,key2)) return 0; return(group_concat_key_cmp_with_order(arg,key1,key2)); } /* Append data from current leaf to item->result */ int dump_leaf_key(byte* key, element_count count __attribute__((unused)), Item_func_group_concat *item) { TABLE *table= item->table; char *record= (char*) table->record[0] + table->s->null_bytes; String tmp((char *)table->record[1], table->s->reclength, default_charset_info), tmp2; String *result= &item->result; Item **arg= item->args, **arg_end= item->args + item->arg_count_field; if (result->length()) result->append(*item->separator); tmp.length(0); for (; arg < arg_end; arg++) { String *res; if (! (*arg)->const_item()) { /* We have to use get_tmp_table_field() instead of real_item()->get_tmp_table_field() because we want the field in the temporary table, not the original field We also can't use table->field array to access the fields because it contains both order and arg list fields. */ Field *field= (*arg)->get_tmp_table_field(); char *save_ptr= field->ptr; uint offset= (uint) (save_ptr - record); DBUG_ASSERT(offset < table->s->reclength); field->ptr= (char *) key + offset; res= field->val_str(&tmp,&tmp2); field->ptr= save_ptr; } else res= (*arg)->val_str(&tmp); if (res) result->append(*res); } /* stop if length of result more than max_length */ if (result->length() > item->max_length) { item->count_cut_values++; result->length(item->max_length); item->warning_for_row= TRUE; return 1; } return 0; } /* Constructor of Item_func_group_concat distinct_arg - distinct select_list - list of expression for show values order_list - list of sort columns separator_arg - string value of separator */ Item_func_group_concat:: Item_func_group_concat(bool distinct_arg, List *select_list, SQL_LIST *order_list, String *separator_arg) :tmp_table_param(0), warning(0), separator(separator_arg), tree(0), table(0), order(0), tables_list(0), arg_count_order(order_list ? order_list->elements : 0), arg_count_field(select_list->elements), count_cut_values(0), distinct(distinct_arg), warning_for_row(FALSE), original(0) { Item *item_select; Item **arg_ptr; quick_group= FALSE; arg_count= arg_count_field + arg_count_order; /* We need to allocate: args - arg_count_field+arg_count_order (for possible order items in temporare tables) order - arg_count_order */ if (!(args= (Item**) sql_alloc(sizeof(Item*) * arg_count + sizeof(ORDER*)*arg_count_order))) return; order= (ORDER**)(args + arg_count); /* fill args items of show and sort */ List_iterator_fast li(*select_list); for (arg_ptr=args ; (item_select= li++) ; arg_ptr++) *arg_ptr= item_select; if (arg_count_order) { ORDER **order_ptr= order; for (ORDER *order_item= (ORDER*) order_list->first; order_item != NULL; order_item= order_item->next) { (*order_ptr++)= order_item; *arg_ptr= *order_item->item; order_item->item= arg_ptr++; } } } Item_func_group_concat::Item_func_group_concat(THD *thd, Item_func_group_concat *item) :Item_sum(thd, item), tmp_table_param(item->tmp_table_param), warning(item->warning), separator(item->separator), tree(item->tree), table(item->table), order(item->order), tables_list(item->tables_list), arg_count_order(item->arg_count_order), arg_count_field(item->arg_count_field), count_cut_values(item->count_cut_values), distinct(item->distinct), warning_for_row(item->warning_for_row), always_null(item->always_null), original(item) { quick_group= item->quick_group; } void Item_func_group_concat::cleanup() { THD *thd= current_thd; DBUG_ENTER("Item_func_group_concat::cleanup"); Item_sum::cleanup(); /* Adjust warning message to include total number of cut values */ if (warning) { char warn_buff[MYSQL_ERRMSG_SIZE]; sprintf(warn_buff, ER(ER_CUT_VALUE_GROUP_CONCAT), count_cut_values); warning->set_msg(thd, warn_buff); warning= 0; } /* Free table and tree if they belong to this item (if item have not pointer to original item from which was made copy => it own its objects ) */ if (!original) { delete tmp_table_param; tmp_table_param= 0; if (table) { THD *thd= table->in_use; free_tmp_table(thd, table); table= 0; if (tree) { delete_tree(tree); tree= 0; } if (warning) { char warn_buff[MYSQL_ERRMSG_SIZE]; sprintf(warn_buff, ER(ER_CUT_VALUE_GROUP_CONCAT), count_cut_values); warning->set_msg(thd, warn_buff); warning= 0; } } DBUG_ASSERT(tree == 0); DBUG_ASSERT(warning == 0); } DBUG_VOID_RETURN; } Item *Item_func_group_concat::copy_or_same(THD* thd) { return new (thd->mem_root) Item_func_group_concat(thd, this); } void Item_func_group_concat::clear() { result.length(0); result.copy(); null_value= TRUE; warning_for_row= FALSE; if (tree) reset_tree(tree); /* No need to reset the table as we never call write_row */ } bool Item_func_group_concat::add() { if (always_null) return 0; copy_fields(tmp_table_param); copy_funcs(tmp_table_param->items_to_copy); for (uint i= 0; i < arg_count_field; i++) { Item *show_item= args[i]; if (!show_item->const_item()) { /* Here we use real_item as we want the original field data that should be written to table->record[0] */ Field *f= show_item->real_item()->get_tmp_table_field(); if (f->is_null()) return 0; // Skip row if it contains null } } null_value= FALSE; TREE_ELEMENT *el= 0; // Only for safety if (tree) el= tree_insert(tree, table->record[0] + table->s->null_bytes, 0, tree->custom_arg); /* If the row is not a duplicate (el->count == 1) we can dump the row here in case of GROUP_CONCAT(DISTINCT...) instead of doing tree traverse later. */ if (result.length() <= max_length && !warning_for_row && (!tree || (el->count == 1 && distinct && !arg_count_order))) dump_leaf_key(table->record[0] + table->s->null_bytes, 1, this); return 0; } bool Item_func_group_concat::fix_fields(THD *thd, TABLE_LIST *tables, Item **ref) { uint i; /* for loop variable */ DBUG_ASSERT(fixed == 0); if (!thd->allow_sum_func) { my_message(ER_INVALID_GROUP_FUNC_USE, ER(ER_INVALID_GROUP_FUNC_USE), MYF(0)); return TRUE; } thd->allow_sum_func= 0; maybe_null= 0; /* Fix fields for select list and ORDER clause */ for (i=0 ; i < arg_count ; i++) { if ((!args[i]->fixed && args[i]->fix_fields(thd, tables, args + i)) || args[i]->check_cols(1)) return TRUE; if (i < arg_count_field) maybe_null|= args[i]->maybe_null; } result_field= 0; null_value= 1; thd->allow_sum_func= 1; max_length= thd->variables.group_concat_max_len; tables_list= tables; fixed= 1; return FALSE; } bool Item_func_group_concat::setup(THD *thd) { List list; SELECT_LEX *select_lex= thd->lex->current_select; qsort_cmp2 compare_key; DBUG_ENTER("Item_func_group_concat::setup"); /* Currently setup() can be called twice. Please add assertion here when this is fixed. */ if (table || tree) DBUG_RETURN(FALSE); if (!(tmp_table_param= new TMP_TABLE_PARAM)) DBUG_RETURN(TRUE); /* We'll convert all blobs to varchar fields in the temporary table */ tmp_table_param->convert_blob_length= max_length; /* Push all not constant fields to the list and create a temp table */ always_null= 0; for (uint i= 0; i < arg_count_field; i++) { Item *item= args[i]; if (list.push_back(item)) DBUG_RETURN(TRUE); if (item->const_item()) { if (item->is_null()) { always_null= 1; DBUG_RETURN(FALSE); } } } List all_fields(list); /* Try to find every ORDER expression in the list of GROUP_CONCAT arguments. If an expression is not found, prepend it to "all_fields". The resulting field list is used as input to create tmp table columns. */ if (arg_count_order && setup_order(thd, args, tables_list, list, all_fields, *order)) DBUG_RETURN(TRUE); count_field_types(tmp_table_param,all_fields,0); DBUG_ASSERT(table == 0); /* We have to create a temporary table to get descriptions of fields (types, sizes and so on). Note that in the table, we first have the ORDER BY fields, then the field list. We need to set set_sum_field in true for storing value of blob in buffer of a record instead of a pointer of one. */ if (!(table= create_tmp_table(thd, tmp_table_param, all_fields, (ORDER*) 0, 0, TRUE, select_lex->options | thd->options, HA_POS_ERROR, (char*) ""))) DBUG_RETURN(TRUE); table->file->extra(HA_EXTRA_NO_ROWS); table->no_rows= 1; if (distinct || arg_count_order) { /* Need sorting: init tree and choose a function to sort. Don't reserve space for NULLs: if any of gconcat arguments is NULL, the row is not added to the result. */ uint tree_key_length= table->s->reclength - table->s->null_bytes; tree= &tree_base; if (arg_count_order) { if (distinct) compare_key= (qsort_cmp2) group_concat_key_cmp_with_distinct_and_order; else compare_key= (qsort_cmp2) group_concat_key_cmp_with_order; } else { compare_key= (qsort_cmp2) group_concat_key_cmp_with_distinct; } /* Create a tree for sorting. The tree is used to sort and to remove duplicate values (according to the syntax of this function). If there is no DISTINCT or ORDER BY clauses, we don't create this tree. */ init_tree(tree, min(thd->variables.max_heap_table_size, thd->variables.sortbuff_size/16), 0, tree_key_length, compare_key, 0, NULL, (void*) this); } DBUG_RETURN(FALSE); } /* This is used by rollup to create a separate usable copy of the function */ void Item_func_group_concat::make_unique() { tmp_table_param= 0; table=0; original= 0; tree= 0; } String* Item_func_group_concat::val_str(String* str) { DBUG_ASSERT(fixed == 1); if (null_value) return 0; if (count_cut_values && !warning) { /* ER_CUT_VALUE_GROUP_CONCAT needs an argument, but this gets set in Item_func_group_concat::cleanup(). */ DBUG_ASSERT(table); warning= push_warning(table->in_use, MYSQL_ERROR::WARN_LEVEL_WARN, ER_CUT_VALUE_GROUP_CONCAT, ER(ER_CUT_VALUE_GROUP_CONCAT)); } if (result.length()) return &result; if (tree) tree_walk(tree, (tree_walk_action)&dump_leaf_key, (void*)this, left_root_right); return &result; } void Item_func_group_concat::print(String *str) { str->append("group_concat(", 13); if (distinct) str->append("distinct ", 9); for (uint i= 0; i < arg_count_field; i++) { if (i) str->append(','); args[i]->print(str); } if (arg_count_order) { str->append(" order by ", 10); for (uint i= 0 ; i < arg_count_order ; i++) { if (i) str->append(','); (*order[i]->item)->print(str); } } str->append(" separator \'", 12); str->append(*separator); str->append("\')", 2); }