# See the file LICENSE for redistribution information. # # Copyright (c) 1996, 1997, 1998, 1999, 2000 # Sleepycat Software. All rights reserved. # # $Id: testutils.tcl,v 11.86 2001/01/18 23:21:14 krinsky Exp $ # # Test system utilities # # Timestamp -- print time along with elapsed time since last invocation # of timestamp. proc timestamp {{opt ""}} { global __timestamp_start if {[string compare $opt "-r"] == 0} { clock seconds } elseif {[string compare $opt "-t"] == 0} { # -t gives us the current time in the format expected by # db_recover -t. return [clock format [clock seconds] -format "%y%m%d%H%M.%S"] } else { set now [clock seconds] if {[catch {set start $__timestamp_start}] != 0} { set __timestamp_start $now } set start $__timestamp_start set elapsed [expr $now - $start] set the_time [clock format $now -format ""] set __timestamp_start $now format "%02d:%02d:%02d (%02d:%02d:%02d)" \ [__fix_num [clock format $now -format "%H"]] \ [__fix_num [clock format $now -format "%M"]] \ [__fix_num [clock format $now -format "%S"]] \ [expr $elapsed / 3600] \ [expr ($elapsed % 3600) / 60] \ [expr ($elapsed % 3600) % 60] } } proc __fix_num { num } { set num [string trimleft $num "0"] if {[string length $num] == 0} { set num "0" } return $num } # Add a {key,data} pair to the specified database where # key=filename and data=file contents. proc put_file { db txn flags file } { source ./include.tcl set fid [open $file r] fconfigure $fid -translation binary set data [read $fid] close $fid set ret [eval {$db put} $txn $flags {$file $data}] error_check_good put_file $ret 0 } # Get a {key,data} pair from the specified database where # key=filename and data=file contents and then write the # data to the specified file. proc get_file { db txn flags file outfile } { source ./include.tcl set fid [open $outfile w] fconfigure $fid -translation binary if [catch {eval {$db get} $txn $flags {$file}} data] { puts -nonewline $fid $data } else { # Data looks like {{key data}} set data [lindex [lindex $data 0] 1] puts -nonewline $fid $data } close $fid } # Add a {key,data} pair to the specified database where # key=file contents and data=file name. proc put_file_as_key { db txn flags file } { source ./include.tcl set fid [open $file r] fconfigure $fid -translation binary set filecont [read $fid] close $fid # Use not the file contents, but the file name concatenated # before the file contents, as a key, to ensure uniqueness. set data $file$filecont set ret [eval {$db put} $txn $flags {$data $file}] error_check_good put_file $ret 0 } # Get a {key,data} pair from the specified database where # key=file contents and data=file name proc get_file_as_key { db txn flags file} { source ./include.tcl set fid [open $file r] fconfigure $fid -translation binary set filecont [read $fid] close $fid set data $file$filecont return [eval {$db get} $txn $flags {$data}] } # open file and call dump_file to dumpkeys to tempfile proc open_and_dump_file { dbname dbenv txn outfile checkfunc dump_func beg cont} { source ./include.tcl if { $dbenv == "NULL" } { set db [berkdb open -rdonly -unknown $dbname] error_check_good dbopen [is_valid_db $db] TRUE } else { set db [berkdb open -env $dbenv -rdonly -unknown $dbname] error_check_good dbopen [is_valid_db $db] TRUE } $dump_func $db $txn $outfile $checkfunc $beg $cont error_check_good db_close [$db close] 0 } # open file and call dump_file to dumpkeys to tempfile proc open_and_dump_subfile { dbname dbenv txn outfile checkfunc dump_func beg cont subdb} { source ./include.tcl if { $dbenv == "NULL" } { set db [berkdb open -rdonly -unknown $dbname $subdb] error_check_good dbopen [is_valid_db $db] TRUE } else { set db [berkdb open -env $dbenv -rdonly -unknown $dbname $subdb] error_check_good dbopen [is_valid_db $db] TRUE } $dump_func $db $txn $outfile $checkfunc $beg $cont error_check_good db_close [$db close] 0 } # Sequentially read a file and call checkfunc on each key/data pair. # Dump the keys out to the file specified by outfile. proc dump_file { db txn outfile checkfunc } { source ./include.tcl dump_file_direction $db $txn $outfile $checkfunc "-first" "-next" } proc dump_file_direction { db txn outfile checkfunc start continue } { source ./include.tcl set outf [open $outfile w] # Now we will get each key from the DB and dump to outfile set c [eval {$db cursor} $txn] error_check_good db_cursor [is_valid_cursor $c $db] TRUE for {set d [$c get $start] } { [llength $d] != 0 } { set d [$c get $continue] } { set kd [lindex $d 0] set k [lindex $kd 0] set d2 [lindex $kd 1] $checkfunc $k $d2 puts $outf $k # XXX: Geoff Mainland # puts $outf "$k $d2" } close $outf error_check_good curs_close [$c close] 0 } proc dump_binkey_file { db txn outfile checkfunc } { source ./include.tcl dump_binkey_file_direction $db $txn $outfile $checkfunc \ "-first" "-next" } proc dump_bin_file { db txn outfile checkfunc } { source ./include.tcl dump_bin_file_direction $db $txn $outfile $checkfunc "-first" "-next" } # Note: the following procedure assumes that the binary-file-as-keys were # inserted into the database by put_file_as_key, and consist of the file # name followed by the file contents as key, to ensure uniqueness. proc dump_binkey_file_direction { db txn outfile checkfunc begin cont } { source ./include.tcl set d1 $testdir/d1 set outf [open $outfile w] # Now we will get each key from the DB and dump to outfile set c [eval {$db cursor} $txn] error_check_good db_cursor [is_valid_cursor $c $db] TRUE set inf $d1 for {set d [$c get $begin] } { [llength $d] != 0 } \ {set d [$c get $cont] } { set kd [lindex $d 0] set keyfile [lindex $kd 0] set data [lindex $kd 1] set ofid [open $d1 w] fconfigure $ofid -translation binary # Chop off the first few bytes--that's the file name, # added for uniqueness in put_file_as_key, which we don't # want in the regenerated file. set namelen [string length $data] set keyfile [string range $keyfile $namelen end] puts -nonewline $ofid $keyfile close $ofid $checkfunc $data $d1 puts $outf $data flush $outf } close $outf error_check_good curs_close [$c close] 0 fileremove $d1 } proc dump_bin_file_direction { db txn outfile checkfunc begin cont } { source ./include.tcl set d1 $testdir/d1 set outf [open $outfile w] # Now we will get each key from the DB and dump to outfile set c [eval {$db cursor} $txn] for {set d [$c get $begin] } \ { [llength $d] != 0 } {set d [$c get $cont] } { set k [lindex [lindex $d 0] 0] set data [lindex [lindex $d 0] 1] set ofid [open $d1 w] fconfigure $ofid -translation binary puts -nonewline $ofid $data close $ofid $checkfunc $k $d1 puts $outf $k } close $outf error_check_good curs_close [$c close] 0 fileremove -f $d1 } proc make_data_str { key } { set datastr "" for {set i 0} {$i < 10} {incr i} { append datastr $key } return $datastr } proc error_check_bad { func result bad {txn 0}} { if { [binary_compare $result $bad] == 0 } { if { $txn != 0 } { $txn abort } flush stdout flush stderr error "FAIL:[timestamp] $func returned error value $bad" } } proc error_check_good { func result desired {txn 0} } { if { [binary_compare $desired $result] != 0 } { if { $txn != 0 } { $txn abort } flush stdout flush stderr error "FAIL:[timestamp]\ $func: expected $desired, got $result" } } # Locks have the prefix of their manager. proc is_substr { l mgr } { if { [string first $mgr $l] == -1 } { return 0 } else { return 1 } } proc release_list { l } { # Now release all the locks foreach el $l { set ret [$el put] error_check_good lock_put $ret 0 } } proc debug { {stop 0} } { global __debug_on global __debug_print global __debug_test set __debug_on 1 set __debug_print 1 set __debug_test $stop } # Check if each key appears exactly [llength dlist] times in the file with # the duplicate tags matching those that appear in dlist. proc dup_check { db txn tmpfile dlist {extra 0}} { source ./include.tcl set outf [open $tmpfile w] # Now we will get each key from the DB and dump to outfile set c [eval {$db cursor} $txn] set lastkey "" set done 0 while { $done != 1} { foreach did $dlist { set rec [$c get "-next"] if { [string length $rec] == 0 } { set done 1 break } set key [lindex [lindex $rec 0] 0] set fulldata [lindex [lindex $rec 0] 1] set id [id_of $fulldata] set d [data_of $fulldata] if { [string compare $key $lastkey] != 0 && \ $id != [lindex $dlist 0] } { set e [lindex $dlist 0] error "FAIL: \tKey \ $key, expected dup id $e, got $id" } error_check_good dupget.data $d $key error_check_good dupget.id $id $did set lastkey $key } # # Some tests add an extra dup (like overflow entries) # Check id if it exists. if { $extra != 0} { set okey $key set rec [$c get "-next"] if { [string length $rec] != 0 } { set key [lindex [lindex $rec 0] 0] # # If this key has no extras, go back for # next iteration. if { [string compare $key $lastkey] != 0 } { set key $okey set rec [$c get "-prev"] } else { set fulldata [lindex [lindex $rec 0] 1] set id [id_of $fulldata] set d [data_of $fulldata] error_check_bad dupget.data1 $d $key error_check_good dupget.id1 $id $extra } } } if { $done != 1 } { puts $outf $key } } close $outf error_check_good curs_close [$c close] 0 } # Parse duplicate data entries of the form N:data. Data_of returns # the data part; id_of returns the numerical part proc data_of {str} { set ndx [string first ":" $str] if { $ndx == -1 } { return "" } return [ string range $str [expr $ndx + 1] end] } proc id_of {str} { set ndx [string first ":" $str] if { $ndx == -1 } { return "" } return [ string range $str 0 [expr $ndx - 1]] } proc nop { {args} } { return } # Partial put test procedure. # Munges a data val through three different partial puts. Stores # the final munged string in the dvals array so that you can check # it later (dvals should be global). We take the characters that # are being replaced, make them capitals and then replicate them # some number of times (n_add). We do this at the beginning of the # data, at the middle and at the end. The parameters are: # db, txn, key -- as per usual. Data is the original data element # from which we are starting. n_replace is the number of characters # that we will replace. n_add is the number of times we will add # the replaced string back in. proc partial_put { method db txn gflags key data n_replace n_add } { global dvals source ./include.tcl # Here is the loop where we put and get each key/data pair # We will do the initial put and then three Partial Puts # for the beginning, middle and end of the string. eval {$db put} $txn {$key [chop_data $method $data]} # Beginning change set s [string range $data 0 [ expr $n_replace - 1 ] ] set repl [ replicate [string toupper $s] $n_add ] # This is gross, but necessary: if this is a fixed-length # method, and the chopped length of $repl is zero, # it's because the original string was zero-length and our data item # is all nulls. Set repl to something non-NULL. if { [is_fixed_length $method] && \ [string length [chop_data $method $repl]] == 0 } { set repl [replicate "." $n_add] } set newstr [chop_data $method $repl[string range $data $n_replace end]] set ret [eval {$db put} $txn {-partial [list 0 $n_replace] \ $key [chop_data $method $repl]}] error_check_good put $ret 0 set ret [eval {$db get} $gflags $txn {$key}] error_check_good get $ret [list [list $key [pad_data $method $newstr]]] # End Change set len [string length $newstr] set spl [expr $len - $n_replace] # Handle case where $n_replace > $len if { $spl < 0 } { set spl 0 } set s [string range $newstr [ expr $len - $n_replace ] end ] # Handle zero-length keys if { [string length $s] == 0 } { set s "A" } set repl [ replicate [string toupper $s] $n_add ] set newstr [chop_data $method \ [string range $newstr 0 [expr $spl - 1 ] ]$repl] set ret [eval {$db put} $txn \ {-partial [list $spl $n_replace] $key [chop_data $method $repl]}] error_check_good put $ret 0 set ret [eval {$db get} $gflags $txn {$key}] error_check_good get $ret [list [list $key [pad_data $method $newstr]]] # Middle Change set len [string length $newstr] set mid [expr $len / 2 ] set beg [expr $mid - [expr $n_replace / 2] ] set end [expr $beg + $n_replace - 1] set s [string range $newstr $beg $end] set repl [ replicate [string toupper $s] $n_add ] set newstr [chop_data $method [string range $newstr 0 \ [expr $beg - 1 ] ]$repl[string range $newstr [expr $end + 1] end]] set ret [eval {$db put} $txn {-partial [list $beg $n_replace] \ $key [chop_data $method $repl]}] error_check_good put $ret 0 set ret [eval {$db get} $gflags $txn {$key}] error_check_good get $ret [list [list $key [pad_data $method $newstr]]] set dvals($key) [pad_data $method $newstr] } proc replicate { str times } { set res $str for { set i 1 } { $i < $times } { set i [expr $i * 2] } { append res $res } return $res } proc repeat { str n } { set ret "" while { $n > 0 } { set ret $str$ret incr n -1 } return $ret } proc isqrt { l } { set s [expr sqrt($l)] set ndx [expr [string first "." $s] - 1] return [string range $s 0 $ndx] } # If we run watch_procs multiple times without an intervening # testdir cleanup, it's possible that old sentinel files will confuse # us. Make sure they're wiped out before we spawn any other processes. proc sentinel_init { } { source ./include.tcl set filelist {} set ret [catch {glob $testdir/begin.*} result] if { $ret == 0 } { set filelist $result } set ret [catch {glob $testdir/end.*} result] if { $ret == 0 } { set filelist [concat $filelist $result] } foreach f $filelist { fileremove $f } } proc watch_procs { {delay 30} {max 3600} } { source ./include.tcl set elapsed 0 while { 1 } { tclsleep $delay incr elapsed $delay # Find the list of processes withoutstanding sentinel # files (i.e. a begin.pid and no end.pid). set beginlist {} set endlist {} set ret [catch {glob $testdir/begin.*} result] if { $ret == 0 } { set beginlist $result } set ret [catch {glob $testdir/end.*} result] if { $ret == 0 } { set endlist $result } set bpids {} catch {unset epids} foreach begfile $beginlist { lappend bpids [string range $begfile \ [string length $testdir/begin.] end] } foreach endfile $endlist { set epids([string range $endfile \ [string length $testdir/end.] end]) 1 } # The set of processes that we still want to watch, $l, # is the set of pids that have begun but not ended # according to their sentinel files. set l {} foreach p $bpids { if { [info exists epids($p)] == 0 } { lappend l $p } } set rlist {} foreach i $l { set r [ catch { exec $KILL -0 $i } result ] if { $r == 0 } { lappend rlist $i } } if { [ llength $rlist] == 0 } { break } else { puts "[timestamp] processes running: $rlist" } if { $elapsed > $max } { # We have exceeded the limit; kill processes # and report an error set rlist {} foreach i $l { set r [catch { exec $KILL $i } result] if { $r == 0 } { lappend rlist $i } } error_check_good "Processes still running" \ [llength $rlist] 0 } } puts "All processes have exited." } # These routines are all used from within the dbscript.tcl tester. proc db_init { dbp do_data } { global a_keys global l_keys source ./include.tcl set txn "" set nk 0 set lastkey "" set a_keys() BLANK set l_keys "" set c [$dbp cursor] for {set d [$c get -first] } { [llength $d] != 0 } { set d [$c get -next] } { set k [lindex [lindex $d 0] 0] set d2 [lindex [lindex $d 0] 1] incr nk if { $do_data == 1 } { if { [info exists a_keys($k)] } { lappend a_keys($k) $d2] } else { set a_keys($k) $d2 } } lappend l_keys $k } error_check_good curs_close [$c close] 0 return $nk } proc pick_op { min max n } { if { $n == 0 } { return add } set x [berkdb random_int 1 12] if {$n < $min} { if { $x <= 4 } { return put } elseif { $x <= 8} { return get } else { return add } } elseif {$n > $max} { if { $x <= 4 } { return put } elseif { $x <= 8 } { return get } else { return del } } elseif { $x <= 3 } { return del } elseif { $x <= 6 } { return get } elseif { $x <= 9 } { return put } else { return add } } # random_data: Generate a string of random characters. # If recno is 0 - Use average to pick a length between 1 and 2 * avg. # If recno is non-0, generate a number between 1 and 2 ^ (avg * 2), # that will fit into a 32-bit integer. # If the unique flag is 1, then make sure that the string is unique # in the array "where". proc random_data { avg unique where {recno 0} } { upvar #0 $where arr global debug_on set min 1 set max [expr $avg+$avg-1] if { $recno } { # # Tcl seems to have problems with values > 30. # if { $max > 30 } { set max 30 } set maxnum [expr int(pow(2, $max))] } while {1} { set len [berkdb random_int $min $max] set s "" if {$recno} { set s [berkdb random_int 1 $maxnum] } else { for {set i 0} {$i < $len} {incr i} { append s [int_to_char [berkdb random_int 0 25]] } } if { $unique == 0 || [info exists arr($s)] == 0 } { break } } return $s } proc random_key { } { global l_keys global nkeys set x [berkdb random_int 0 [expr $nkeys - 1]] return [lindex $l_keys $x] } proc is_err { desired } { set x [berkdb random_int 1 100] if { $x <= $desired } { return 1 } else { return 0 } } proc pick_cursput { } { set x [berkdb random_int 1 4] switch $x { 1 { return "-keylast" } 2 { return "-keyfirst" } 3 { return "-before" } 4 { return "-after" } } } proc random_cursor { curslist } { global l_keys global nkeys set x [berkdb random_int 0 [expr [llength $curslist] - 1]] set dbc [lindex $curslist $x] # We want to randomly set the cursor. Pick a key. set k [random_key] set r [$dbc get "-set" $k] error_check_good cursor_get:$k [is_substr Error $r] 0 # Now move forward or backward some hops to randomly # position the cursor. set dist [berkdb random_int -10 10] set dir "-next" set boundary "-first" if { $dist < 0 } { set dir "-prev" set boundary "-last" set dist [expr 0 - $dist] } for { set i 0 } { $i < $dist } { incr i } { set r [ record $dbc get $dir $k ] if { [llength $d] == 0 } { set r [ record $dbc get $k $boundary ] } error_check_bad dbcget [llength $r] 0 } return { [linsert r 0 $dbc] } } proc record { args } { # Recording every operation makes tests ridiculously slow on # NT, so we are commenting this out; for debugging purposes, # it will undoubtedly be useful to uncomment this. # puts $args # flush stdout return [eval $args] } proc newpair { k data } { global l_keys global a_keys global nkeys set a_keys($k) $data lappend l_keys $k incr nkeys } proc rempair { k } { global l_keys global a_keys global nkeys unset a_keys($k) set n [lsearch $l_keys $k] error_check_bad rempair:$k $n -1 set l_keys [lreplace $l_keys $n $n] incr nkeys -1 } proc changepair { k data } { global l_keys global a_keys global nkeys set a_keys($k) $data } proc changedup { k olddata newdata } { global l_keys global a_keys global nkeys set d $a_keys($k) error_check_bad changedup:$k [llength $d] 0 set n [lsearch $d $olddata] error_check_bad changedup:$k $n -1 set a_keys($k) [lreplace $a_keys($k) $n $n $newdata] } # Insert a dup into the a_keys array with DB_KEYFIRST. proc adddup { k olddata newdata } { global l_keys global a_keys global nkeys set d $a_keys($k) if { [llength $d] == 0 } { lappend l_keys $k incr nkeys set a_keys($k) { $newdata } } set ndx 0 set d [linsert d $ndx $newdata] set a_keys($k) $d } proc remdup { k data } { global l_keys global a_keys global nkeys set d [$a_keys($k)] error_check_bad changedup:$k [llength $d] 0 set n [lsearch $d $olddata] error_check_bad changedup:$k $n -1 set a_keys($k) [lreplace $a_keys($k) $n $n] } proc dump_full_file { db txn outfile checkfunc start continue } { source ./include.tcl set outf [open $outfile w] # Now we will get each key from the DB and dump to outfile set c [eval {$db cursor} $txn] error_check_good dbcursor [is_valid_cursor $c $db] TRUE for {set d [$c get $start] } { [string length $d] != 0 } { set d [$c get $continue] } { set k [lindex [lindex $d 0] 0] set d2 [lindex [lindex $d 0] 1] $checkfunc $k $d2 puts $outf "$k\t$d2" } close $outf error_check_good curs_close [$c close] 0 } proc int_to_char { i } { global alphabet return [string index $alphabet $i] } proc dbcheck { key data } { global l_keys global a_keys global nkeys global check_array if { [lsearch $l_keys $key] == -1 } { error "FAIL: Key |$key| not in list of valid keys" } set d $a_keys($key) if { [info exists check_array($key) ] } { set check $check_array($key) } else { set check {} } if { [llength $d] > 1 } { if { [llength $check] != [llength $d] } { # Make the check array the right length for { set i [llength $check] } { $i < [llength $d] } \ {incr i} { lappend check 0 } set check_array($key) $check } # Find this data's index set ndx [lsearch $d $data] if { $ndx == -1 } { error "FAIL: \ Data |$data| not found for key $key. Found |$d|" } # Set the bit in the check array set check_array($key) [lreplace $check_array($key) $ndx $ndx 1] } elseif { [string compare $d $data] != 0 } { error "FAIL: \ Invalid data |$data| for key |$key|. Expected |$d|." } else { set check_array($key) 1 } } # Dump out the file and verify it proc filecheck { file txn } { global check_array global l_keys global nkeys global a_keys source ./include.tcl if { [info exists check_array] == 1 } { unset check_array } open_and_dump_file $file NULL $txn $file.dump dbcheck dump_full_file \ "-first" "-next" # Check that everything we checked had all its data foreach i [array names check_array] { set count 0 foreach j $check_array($i) { if { $j != 1 } { puts -nonewline "Key |$i| never found datum" puts " [lindex $a_keys($i) $count]" } incr count } } # Check that all keys appeared in the checked array set count 0 foreach k $l_keys { if { [info exists check_array($k)] == 0 } { puts "filecheck: key |$k| not found. Data: $a_keys($k)" } incr count } if { $count != $nkeys } { puts "filecheck: Got $count keys; expected $nkeys" } } proc esetup { dir } { source ./include.tcl set ret [berkdb envremove -home $dir] fileremove -f $dir/file0 $dir/file1 $dir/file2 $dir/file3 set mp [memp $dir 0644 -create -cachesize { 0 10240 }] set lp [lock_open "" -create 0644] error_check_good memp_close [$mp close] 0 error_check_good lock_close [$lp close] 0 } proc cleanup { dir env } { global gen_upgrade global upgrade_dir global upgrade_be global upgrade_method global upgrade_name source ./include.tcl if { $gen_upgrade == 1 } { set vers [berkdb version] set maj [lindex $vers 0] set min [lindex $vers 1] if { $upgrade_be == 1 } { set version_dir "$maj.${min}be" } else { set version_dir "$maj.${min}le" } set dest $upgrade_dir/$version_dir/$upgrade_method/$upgrade_name catch {exec mkdir -p $dest} catch {exec sh -c "mv $dir/*.db $dest"} catch {exec sh -c "mv $dir/__dbq.* $dest"} } # check_handles set remfiles {} set ret [catch { glob $dir/* } result] if { $ret == 0 } { foreach file $result { # # We: # - Ignore any env-related files, which are # those that have __db.* or log.* if we are # running in an env. # - Call 'dbremove' on any databases. # Remove any remaining temp files. # switch -glob -- $file { */__db.* - */log.* { if { $env != "NULL" } { continue } else { lappend remfiles $file } } *.db { set envargs "" if { $env != "NULL"} { set file [file tail $file] set envargs " -env $env " } # If a database is left in a corrupt # state, dbremove might not be able to handle # it (it does an open before the remove). # Be prepared for this, and if necessary, # just forcibly remove the file with a warning # message. set ret [catch \ {eval {berkdb dbremove} $envargs $file} res] if { $ret != 0 } { puts \ "FAIL: dbremove in cleanup failed: $res" lappend remfiles $file } } default { lappend remfiles $file } } } if {[llength $remfiles] > 0} { eval fileremove -f $remfiles } } } proc log_cleanup { dir } { source ./include.tcl set files [glob -nocomplain $dir/log.*] if { [llength $files] != 0} { foreach f $files { fileremove -f $f } } } proc env_cleanup { dir } { source ./include.tcl set stat [catch {berkdb envremove -home $dir} ret] # # If something failed and we are left with a region entry # in /dev/shmem that is zero-length, the envremove will # succeed, and the shm_unlink will succeed, but it will not # remove the zero-length entry from /dev/shmem. Remove it # using fileremove or else all other tests using an env # will immediately fail. # if { $is_qnx_test == 1 } { set region_files [glob -nocomplain /dev/shmem/$dir*] if { [llength $region_files] != 0 } { foreach f $region_files { fileremove -f $f } } } log_cleanup $dir cleanup $dir NULL } proc remote_cleanup { server dir localdir } { set home [file tail $dir] error_check_good cleanup:remove [berkdb envremove -home $home \ -server $server] 0 catch {exec rsh $server rm -f $dir/*} ret cleanup $localdir NULL } proc help { cmd } { if { [info command $cmd] == $cmd } { set is_proc [lsearch [info procs $cmd] $cmd] if { $is_proc == -1 } { # Not a procedure; must be a C command # Let's hope that it takes some parameters # and that it prints out a message puts "Usage: [eval $cmd]" } else { # It is a tcl procedure puts -nonewline "Usage: $cmd" set args [info args $cmd] foreach a $args { set is_def [info default $cmd $a val] if { $is_def != 0 } { # Default value puts -nonewline " $a=$val" } elseif {$a == "args"} { # Print out flag values puts " options" args } else { # No default value puts -nonewline " $a" } } puts "" } } else { puts "$cmd is not a command" } } # Run a recovery test for a particular operation # Notice that we catch the return from CP and do not do anything with it. # This is because Solaris CP seems to exit non-zero on occasion, but # everything else seems to run just fine. proc op_recover { encodedop dir env_cmd dbfile cmd msg } { global log_log_record_types global recd_debug global recd_id global recd_op source ./include.tcl #puts "op_recover: $encodedop $dir $env_cmd $dbfile $cmd $msg" set init_file $dir/t1 set afterop_file $dir/t2 set final_file $dir/t3 set op "" set op2 "" if { $encodedop == "prepare-abort" } { set op "prepare" set op2 "abort" } elseif { $encodedop == "prepare-commit" } { set op "prepare" set op2 "commit" } else { set op $encodedop } puts "\t$msg $encodedop" # Keep track of the log types we've seen if { $log_log_record_types == 1} { logtrack_read $dir } # Save the initial file and open the environment and the file catch { file copy -force $dir/$dbfile $dir/$dbfile.init } res copy_extent_file $dir $dbfile init set env [eval $env_cmd] set db [berkdb open -env $env $dbfile] error_check_good dbopen [is_valid_db $db] TRUE # Dump out file contents for initial case set tflags "" open_and_dump_file $dbfile $env $tflags $init_file nop \ dump_file_direction "-first" "-next" set t [$env txn] error_check_bad txn_begin $t NULL error_check_good txn_begin [is_substr $t "txn"] 1 # Now fill in the db, tmgr, and the txnid in the command set exec_cmd $cmd set i [lsearch $cmd ENV] if { $i != -1 } { set exec_cmd [lreplace $exec_cmd $i $i $env] } set i [lsearch $cmd TXNID] if { $i != -1 } { set exec_cmd [lreplace $exec_cmd $i $i $t] } set i [lsearch $exec_cmd DB] if { $i != -1 } { set exec_cmd [lreplace $exec_cmd $i $i $db] } # To test DB_CONSUME, we need to expect a record return, not "0". set i [lsearch $exec_cmd "-consume"] if { $i != -1 } { set record_exec_cmd_ret 1 } else { set record_exec_cmd_ret 0 } # For the DB_APPEND test, we need to expect a return other than # 0; set this flag to be more lenient in the error_check_good. set i [lsearch $exec_cmd "-append"] if { $i != -1 } { set lenient_exec_cmd_ret 1 } else { set lenient_exec_cmd_ret 0 } # Execute command and commit/abort it. set ret [eval $exec_cmd] if { $record_exec_cmd_ret == 1 } { error_check_good "\"$exec_cmd\"" [llength [lindex $ret 0]] 2 } elseif { $lenient_exec_cmd_ret == 1 } { error_check_good "\"$exec_cmd\"" [expr $ret > 0] 1 } else { error_check_good "\"$exec_cmd\"" $ret 0 } set record_exec_cmd_ret 0 set lenient_exec_cmd_ret 0 # Sync the file so that we can capture a snapshot to test # recovery. error_check_good sync:$db [$db sync] 0 catch { file copy -force $dir/$dbfile $dir/$dbfile.afterop } res copy_extent_file $dir $dbfile afterop #set tflags "-txn $t" open_and_dump_file $dir/$dbfile.afterop NULL $tflags \ $afterop_file nop dump_file_direction \ "-first" "-next" #puts "\t\t\tExecuting txn_$op:$t" error_check_good txn_$op:$t [$t $op] 0 if { $op2 != "" } { #puts "\t\t\tExecuting txn_$op2:$t" error_check_good txn_$op2:$t [$t $op2] 0 } switch $encodedop { "commit" { puts "\t\tCommand executed and committed." } "abort" { puts "\t\tCommand executed and aborted." } "prepare" { puts "\t\tCommand executed and prepared." } "prepare-commit" { puts "\t\tCommand executed, prepared, and committed." } "prepare-abort" { puts "\t\tCommand executed, prepared, and aborted." } } # Dump out file and save a copy. error_check_good sync:$db [$db sync] 0 open_and_dump_file $dir/$dbfile NULL $tflags $final_file nop \ dump_file_direction "-first" "-next" catch { file copy -force $dir/$dbfile $dir/$dbfile.final } res copy_extent_file $dir $dbfile final # If this is an abort or prepare-abort, it should match the # original file. # If this was a commit or prepare-commit, then this file should # match the afterop file. # If this was a prepare without an abort or commit, we still # have transactions active, and peering at the database from # another environment will show data from uncommitted transactions. # Thus we just skip this in the prepare-only case; what # we care about are the results of a prepare followed by a # recovery, which we test later. if { $op == "commit" || $op2 == "commit" } { filesort $afterop_file $afterop_file.sort filesort $final_file $final_file.sort error_check_good \ diff(post-$op,pre-commit):diff($afterop_file,$final_file) \ [filecmp $afterop_file.sort $final_file.sort] 0 } elseif { $op == "abort" || $op2 == "abort" } { filesort $init_file $init_file.sort filesort $final_file $final_file.sort error_check_good \ diff(initial,post-$op):diff($init_file,$final_file) \ [filecmp $init_file.sort $final_file.sort] 0 } else { # Make sure this really is a prepare-only error_check_good assert:prepare-only $encodedop "prepare" } # Running recovery on this database should not do anything. # Flush all data to disk, close the environment and save the # file. error_check_good close:$db [$db close] 0 # If all we've done is a prepare, then there's still a # transaction active, and an env close will return DB_RUNRECOVERY if { $encodedop == "prepare" } { catch {$env close} ret error_check_good env_close \ [is_substr $ret DB_RUNRECOVERY] 1 } else { reset_env $env } berkdb debug_check puts -nonewline "\t\tRunning recovery ... " flush stdout set stat [catch {exec $util_path/db_recover -h $dir -c} result] if { $stat == 1 } { error "FAIL: Recovery error: $result." } puts -nonewline "complete ... " error_check_good db_verify [verify_dir $testdir "\t\t" 0 1] 0 puts "verified" berkdb debug_check set env [eval $env_cmd] error_check_good dbenv [is_valid_widget $env env] TRUE open_and_dump_file $dir/$dbfile NULL $tflags $final_file nop \ dump_file_direction "-first" "-next" if { $op == "commit" || $op2 == "commit" } { filesort $afterop_file $afterop_file.sort filesort $final_file $final_file.sort error_check_good \ diff(post-$op,pre-commit):diff($afterop_file,$final_file) \ [filecmp $afterop_file.sort $final_file.sort] 0 } else { filesort $init_file $init_file.sort filesort $final_file $final_file.sort error_check_good \ diff(initial,post-$op):diff($init_file,$final_file) \ [filecmp $init_file.sort $final_file.sort] 0 } # Now close the environment, substitute a file that will need # recovery and try running recovery again. reset_env $env if { $op == "commit" || $op2 == "commit" } { catch { file copy -force $dir/$dbfile.init $dir/$dbfile } res move_file_extent $dir $dbfile init copy } else { catch { file copy -force $dir/$dbfile.afterop $dir/$dbfile } res move_file_extent $dir $dbfile afterop copy } berkdb debug_check puts -nonewline \ "\t\tRunning recovery on pre-op database ... " flush stdout set stat [catch {exec $util_path/db_recover -h $dir -c} result] if { $stat == 1 } { error "FAIL: Recovery error: $result." } puts -nonewline "complete ... " error_check_good db_verify_preop [verify_dir $testdir "\t\t" 0 1] 0 puts "verified" set env [eval $env_cmd] open_and_dump_file $dir/$dbfile NULL $tflags $final_file nop \ dump_file_direction "-first" "-next" if { $op == "commit" || $op2 == "commit" } { filesort $final_file $final_file.sort filesort $afterop_file $afterop_file.sort error_check_good \ diff(post-$op,recovered):diff($afterop_file,$final_file) \ [filecmp $afterop_file.sort $final_file.sort] 0 } else { filesort $init_file $init_file.sort filesort $final_file $final_file.sort error_check_good \ diff(initial,post-$op):diff($init_file,$final_file) \ [filecmp $init_file.sort $final_file.sort] 0 } # This should just close the environment, not blow it away. reset_env $env } proc populate { db method txn n dups bigdata } { source ./include.tcl set did [open $dict] set count 0 while { [gets $did str] != -1 && $count < $n } { if { [is_record_based $method] == 1 } { set key [expr $count + 1] } elseif { $dups == 1 } { set key duplicate_key } else { set key $str } if { $bigdata == 1 && [berkdb random_int 1 3] == 1} { set str [replicate $str 1000] } set ret [$db put -txn $txn $key $str] error_check_good db_put:$key $ret 0 incr count } close $did return 0 } proc big_populate { db txn n } { source ./include.tcl set did [open $dict] set count 0 while { [gets $did str] != -1 && $count < $n } { set key [replicate $str 50] set ret [$db put -txn $txn $key $str] error_check_good db_put:$key $ret 0 incr count } close $did return 0 } proc unpopulate { db txn num } { source ./include.tcl set c [eval {$db cursor} "-txn $txn"] error_check_bad $db:cursor $c NULL error_check_good $db:cursor [is_substr $c $db] 1 set i 0 for {set d [$c get -first] } { [llength $d] != 0 } { set d [$c get -next] } { $c del incr i if { $num != 0 && $ >= $num } { break } } error_check_good cursor_close [$c close] 0 return 0 } proc reset_env { env } { error_check_good env_close [$env close] 0 } # This routine will let us obtain a ring of deadlocks. # Each locker will get a lock on obj_id, then sleep, and # then try to lock (obj_id + 1) % num. # When the lock is finally granted, we release our locks and # return 1 if we got both locks and DEADLOCK if we deadlocked. # The results here should be that 1 locker deadlocks and the # rest all finish successfully. proc ring { myenv locker_id obj_id num } { source ./include.tcl if {[catch {$myenv lock_get write $locker_id $obj_id} lock1] != 0} { puts $errorInfo return ERROR } else { error_check_good lockget:$obj_id [is_substr $lock1 $myenv] 1 } tclsleep 30 set nextobj [expr ($obj_id + 1) % $num] set ret 1 if {[catch {$myenv lock_get write $locker_id $nextobj} lock2] != 0} { if {[string match "*DEADLOCK*" $lock2] == 1} { set ret DEADLOCK } else { set ret ERROR } } else { error_check_good lockget:$obj_id [is_substr $lock2 $myenv] 1 } # Now release the first lock error_check_good lockput:$lock1 [$lock1 put] 0 if {$ret == 1} { error_check_bad lockget:$obj_id $lock2 NULL error_check_good lockget:$obj_id [is_substr $lock2 $myenv] 1 error_check_good lockput:$lock2 [$lock2 put] 0 } return $ret } # This routine will create massive deadlocks. # Each locker will get a readlock on obj_id, then sleep, and # then try to upgrade the readlock to a write lock. # When the lock is finally granted, we release our first lock and # return 1 if we got both locks and DEADLOCK if we deadlocked. # The results here should be that 1 locker succeeds in getting all # the locks and everyone else deadlocks. proc clump { myenv locker_id obj_id num } { source ./include.tcl set obj_id 10 if {[catch {$myenv lock_get read $locker_id $obj_id} lock1] != 0} { puts $errorInfo return ERROR } else { error_check_good lockget:$obj_id \ [is_valid_lock $lock1 $myenv] TRUE } tclsleep 30 set ret 1 if {[catch {$myenv lock_get write $locker_id $obj_id} lock2] != 0} { if {[string match "*DEADLOCK*" $lock2] == 1} { set ret DEADLOCK } else { set ret ERROR } } else { error_check_good \ lockget:$obj_id [is_valid_lock $lock2 $myenv] TRUE } # Now release the first lock error_check_good lockput:$lock1 [$lock1 put] 0 if {$ret == 1} { error_check_good \ lockget:$obj_id [is_valid_lock $lock2 $myenv] TRUE error_check_good lockput:$lock2 [$lock2 put] 0 } return $ret } proc dead_check { t procs dead clean other } { error_check_good $t:$procs:other $other 0 switch $t { ring { error_check_good $t:$procs:deadlocks $dead 1 error_check_good $t:$procs:success $clean \ [expr $procs - 1] } clump { error_check_good $t:$procs:deadlocks $dead \ [expr $procs - 1] error_check_good $t:$procs:success $clean 1 } default { error "Test $t not implemented" } } } proc rdebug { id op where } { global recd_debug global recd_id global recd_op set recd_debug $where set recd_id $id set recd_op $op } proc rtag { msg id } { set tag [lindex $msg 0] set tail [expr [string length $tag] - 2] set tag [string range $tag $tail $tail] if { $id == $tag } { return 1 } else { return 0 } } proc zero_list { n } { set ret "" while { $n > 0 } { lappend ret 0 incr n -1 } return $ret } proc check_dump { k d } { puts "key: $k data: $d" } proc reverse { s } { set res "" for { set i 0 } { $i < [string length $s] } { incr i } { set res "[string index $s $i]$res" } return $res } proc is_valid_widget { w expected } { # First N characters must match "expected" set l [string length $expected] incr l -1 if { [string compare [string range $w 0 $l] $expected] != 0 } { return $w } # Remaining characters must be digits incr l 1 for { set i $l } { $i < [string length $w] } { incr i} { set c [string index $w $i] if { $c < "0" || $c > "9" } { return $w } } return TRUE } proc is_valid_db { db } { return [is_valid_widget $db db] } proc is_valid_env { env } { return [is_valid_widget $env env] } proc is_valid_cursor { dbc db } { return [is_valid_widget $dbc $db.c] } proc is_valid_lock { lock env } { return [is_valid_widget $lock $env.lock] } proc is_valid_mpool { mpool env } { return [is_valid_widget $mpool $env.mp] } proc is_valid_page { page mpool } { return [is_valid_widget $page $mpool.pg] } proc is_valid_txn { txn env } { return [is_valid_widget $txn $env.txn] } proc is_valid_mutex { m env } { return [is_valid_widget $m $env.mutex] } proc send_cmd { fd cmd {sleep 2}} { source ./include.tcl puts $fd "set v \[$cmd\]" puts $fd "puts \$v" puts $fd "flush stdout" flush $fd berkdb debug_check tclsleep $sleep set r [rcv_result $fd] return $r } proc rcv_result { fd } { set r [gets $fd result] error_check_bad remote_read $r -1 return $result } proc send_timed_cmd { fd rcv_too cmd } { set c1 "set start \[timestamp -r\]; " set c2 "puts \[expr \[timestamp -r\] - \$start\]" set full_cmd [concat $c1 $cmd ";" $c2] puts $fd $full_cmd puts $fd "flush stdout" flush $fd return 0 } # # The rationale behind why we have *two* "data padding" routines is outlined # below: # # Both pad_data and chop_data truncate data that is too long. However, # pad_data also adds the pad character to pad data out to the fixed length # record length. # # Which routine you call does not depend on the length of the data you're # using, but on whether you're doing a put or a get. When we do a put, we # have to make sure the data isn't longer than the size of a record because # otherwise we'll get an error (use chop_data). When we do a get, we want to # check that db padded everything correctly (use pad_data on the value against # which we are comparing). # # We don't want to just use the pad_data routine for both purposes, because # we want to be able to test whether or not db is padding correctly. For # example, the queue access method had a bug where when a record was # overwritten (*not* a partial put), only the first n bytes of the new entry # were written, n being the new entry's (unpadded) length. So, if we did # a put with key,value pair (1, "abcdef") and then a put (1, "z"), we'd get # back (1,"zbcdef"). If we had used pad_data instead of chop_data, we would # have gotten the "correct" result, but we wouldn't have found this bug. proc chop_data {method data} { global fixed_len if {[is_fixed_length $method] == 1 && \ [string length $data] > $fixed_len} { return [eval {binary format a$fixed_len $data}] } else { return $data } } proc pad_data {method data} { global fixed_len if {[is_fixed_length $method] == 1} { return [eval {binary format a$fixed_len $data}] } else { return $data } } proc make_fixed_length {method data {pad 0}} { global fixed_len global fixed_pad if {[is_fixed_length $method] == 1} { if {[string length $data] > $fixed_len } { error_check_bad make_fixed_len:TOO_LONG 1 1 } while { [string length $data] < $fixed_len } { set data [format $data%c $fixed_pad] } } return $data } # shift data for partial # pad with fixed pad (which is NULL) proc partial_shift { data offset direction} { global fixed_len set len [expr $fixed_len - 1] if { [string compare $direction "right"] == 0 } { for { set i 1} { $i <= $offset } {incr i} { set data [binary format x1a$len $data] } } elseif { [string compare $direction "left"] == 0 } { for { set i 1} { $i <= $offset } {incr i} { set data [string range $data 1 end] set data [binary format a$len $data] } } return $data } # string compare does not always work to compare # this data, nor does expr (==) # specialized routine for comparison # (for use in fixed len recno and q) proc binary_compare { data1 data2 } { if { [string length $data1] != [string length $data2] || \ [string compare -length \ [string length $data1] $data1 $data2] != 0 } { return 1 } else { return 0 } } proc convert_method { method } { switch -- $method { -btree - -dbtree - -ddbtree - -rbtree - BTREE - DB_BTREE - DB_RBTREE - RBTREE - bt - btree - db_btree - db_rbtree - rbt - rbtree { return "-btree" } -dhash - -hash - DB_HASH - HASH - db_hash - h - hash { return "-hash" } -queue - DB_QUEUE - QUEUE - db_queue - q - qam - queue { return "-queue" } -queueextent - QUEUEEXTENT - qe - qamext - -queueext - queueextent - queueext { return "-queue" } -frecno - -recno - -rrecno - DB_FRECNO - DB_RECNO - DB_RRECNO - FRECNO - RECNO - RRECNO - db_frecno - db_recno - db_rrecno - frec - frecno - rec - recno - rrec - rrecno { return "-recno" } default { error "FAIL:[timestamp] $method: unknown method" } } } # If recno-with-renumbering or btree-with-renumbering is specified, then # fix the arguments to specify the DB_RENUMBER/DB_RECNUM option for the # -flags argument. proc convert_args { method {largs ""} } { global fixed_len global fixed_pad global gen_upgrade global upgrade_be source ./include.tcl if { [string first - $largs] == -1 &&\ [string compare $largs ""] != 0 } { set errstring "args must contain a hyphen; does this test\ have no numeric args?" puts "FAIL:[timestamp] $errstring" return -code return } if { $gen_upgrade == 1 && $upgrade_be == 1 } { append largs " -lorder 4321 " } elseif { $gen_upgrade == 1 && $upgrade_be != 1 } { append largs " -lorder 1234 " } if { [is_rrecno $method] == 1 } { append largs " -renumber " } elseif { [is_rbtree $method] == 1 } { append largs " -recnum " } elseif { [is_dbtree $method] == 1 } { append largs " -dup " } elseif { [is_ddbtree $method] == 1 } { append largs " -dup " append largs " -dupsort " } elseif { [is_dhash $method] == 1 } { append largs " -dup " } elseif { [is_queueext $method] == 1 } { append largs " -extent 2 " } if {[is_fixed_length $method] == 1} { append largs " -len $fixed_len -pad $fixed_pad " } return $largs } proc is_btree { method } { set names { -btree BTREE DB_BTREE bt btree } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_dbtree { method } { set names { -dbtree } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_ddbtree { method } { set names { -ddbtree } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_rbtree { method } { set names { -rbtree rbtree RBTREE db_rbtree DB_RBTREE rbt } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_recno { method } { set names { -recno DB_RECNO RECNO db_recno rec recno} if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_rrecno { method } { set names { -rrecno rrecno RRECNO db_rrecno DB_RRECNO rrec } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_frecno { method } { set names { -frecno frecno frec FRECNO db_frecno DB_FRECNO} if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_hash { method } { set names { -hash DB_HASH HASH db_hash h hash } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_dhash { method } { set names { -dhash } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_queue { method } { if { [is_queueext $method] == 1 } { return 1 } set names { -queue DB_QUEUE QUEUE db_queue q queue qam } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_queueext { method } { set names { -queueextent queueextent QUEUEEXTENT qe qamext \ queueext -queueext } if { [lsearch $names $method] >= 0 } { return 1 } else { return 0 } } proc is_record_based { method } { if { [is_recno $method] || [is_frecno $method] || [is_rrecno $method] || [is_queue $method] } { return 1 } else { return 0 } } proc is_fixed_length { method } { if { [is_queue $method] || [is_frecno $method] } { return 1 } else { return 0 } } # Sort lines in file $in and write results to file $out. # This is a more portable alternative to execing the sort command, # which has assorted issues on NT [#1576]. # The addition of a "-n" argument will sort numerically. proc filesort { in out { arg "" } } { set i [open $in r] set ilines {} while { [gets $i line] >= 0 } { lappend ilines $line } if { [string compare $arg "-n"] == 0 } { set olines [lsort -integer $ilines] } else { set olines [lsort $ilines] } close $i set o [open $out w] foreach line $olines { puts $o $line } close $o } # Print lines up to the nth line of infile out to outfile, inclusive. # The optional beg argument tells us where to start. proc filehead { n infile outfile { beg 0 } } { set in [open $infile r] set out [open $outfile w] # Sed uses 1-based line numbers, and so we do too. for { set i 1 } { $i < $beg } { incr i } { if { [gets $in junk] < 0 } { break } } for { } { $i <= $n } { incr i } { if { [gets $in line] < 0 } { break } puts $out $line } close $in close $out } # Remove file (this replaces $RM). # Usage: fileremove filenames =~ rm; fileremove -f filenames =~ rm -rf. proc fileremove { args } { set forceflag "" foreach a $args { if { [string first - $a] == 0 } { # It's a flag. Better be f. if { [string first f $a] != 1 } { return -code error "bad flag to fileremove" } else { set forceflag "-force" } } else { eval {file delete $forceflag $a} } } } proc findfail { args } { foreach a $args { if { [file exists $a] == 0 } { continue } set f [open $a r] while { [gets $f line] >= 0 } { if { [string first FAIL $line] == 0 } { close $f return 1 } } close $f } return 0 } # Sleep for s seconds. proc tclsleep { s } { # On Windows, the system time-of-day clock may update as much # as 55 ms late due to interrupt timing. Don't take any # chances; sleep extra-long so that when tclsleep 1 returns, # it's guaranteed to be a new second. after [expr $s * 1000 + 56] } # Compare two files, a la diff. Returns 1 if non-identical, 0 if identical. proc filecmp { file_a file_b } { set fda [open $file_a r] set fdb [open $file_b r] set nra 0 set nrb 0 # The gets can't be in the while condition because we'll # get short-circuit evaluated. while { $nra >= 0 && $nrb >= 0 } { set nra [gets $fda aline] set nrb [gets $fdb bline] if { $nra != $nrb || [string compare $aline $bline] != 0} { close $fda close $fdb return 1 } } close $fda close $fdb return 0 } # Verify all .db files in the specified directory. proc verify_dir { \ {directory "./TESTDIR"} { pref "" } { noredo 0 } { quiet 0 } } { # If we're doing database verification between tests, we don't # want to do verification twice without an intervening cleanup--some # test was skipped. Always verify by default (noredo == 0) so # that explicit calls to verify_dir during tests don't require # cleanup commands. if { $noredo == 1 } { if { [file exists $directory/NOREVERIFY] == 1 } { if { $quiet == 0 } { puts "Skipping verification." } return } set f [open $directory/NOREVERIFY w] close $f } if { [catch {glob $directory/*.db} dbs] != 0 } { # No files matched return } if { [file exists /dev/stderr] == 1 } { set errfilearg "-errfile /dev/stderr " } else { set errfilearg "" } set errpfxarg {-errpfx "FAIL: verify" } set errarg $errfilearg$errpfxarg set ret 0 foreach db $dbs { if { [catch {eval {berkdb dbverify} $errarg $db} res] != 0 } { puts $res puts "FAIL:[timestamp] Verification of $db failed." set ret 1 } else { error_check_good verify:$db $res 0 if { $quiet == 0 } { puts "${pref}Verification of $db succeeded." } } } return $ret } # Generate randomly ordered, guaranteed-unique four-character strings that can # be used to differentiate duplicates without creating duplicate duplicates. # (test031 & test032) randstring_init is required before the first call to # randstring and initializes things for up to $i distinct strings; randstring # gets the next string. proc randstring_init { i } { global rs_int_list alphabet # Fail if we can't generate sufficient unique strings. if { $i > [expr 26 * 26 * 26 * 26] } { set errstring\ "Duplicate set too large for random string generator" puts "FAIL:[timestamp] $errstring" return -code return $errstring } set rs_int_list {} # generate alphabet array for { set j 0 } { $j < 26 } { incr j } { set a($j) [string index $alphabet $j] } # Generate a list with $i elements, { aaaa, aaab, ... aaaz, aaba ...} for { set d1 0 ; set j 0 } { $d1 < 26 && $j < $i } { incr d1 } { for { set d2 0 } { $d2 < 26 && $j < $i } { incr d2 } { for { set d3 0 } { $d3 < 26 && $j < $i } { incr d3 } { for { set d4 0 } { $d4 < 26 && $j < $i } \ { incr d4 } { lappend rs_int_list \ $a($d1)$a($d2)$a($d3)$a($d4) incr j } } } } # Randomize the list. set rs_int_list [randomize_list $rs_int_list] } # Randomize a list. Returns a randomly-reordered copy of l. proc randomize_list { l } { set i [llength $l] for { set j 0 } { $j < $i } { incr j } { # Pick a random element from $j to the end set k [berkdb random_int $j [expr $i - 1]] # Swap it with element $j set t1 [lindex $l $j] set t2 [lindex $l $k] set l [lreplace $l $j $j $t2] set l [lreplace $l $k $k $t1] } return $l } proc randstring {} { global rs_int_list if { [info exists rs_int_list] == 0 || [llength $rs_int_list] == 0 } { set errstring "randstring uninitialized or used too often" puts "FAIL:[timestamp] $errstring" return -code return $errstring } set item [lindex $rs_int_list 0] set rs_int_list [lreplace $rs_int_list 0 0] return $item } # Takes a variable-length arg list, and returns a list containing the list of # the non-hyphenated-flag arguments, followed by a list of each alphanumeric # flag it finds. proc extractflags { args } { set inflags 1 set flags {} while { $inflags == 1 } { set curarg [lindex $args 0] if { [string first "-" $curarg] == 0 } { set i 1 while {[string length [set f \ [string index $curarg $i]]] > 0 } { incr i if { [string compare $f "-"] == 0 } { set inflags 0 break } else { lappend flags $f } } set args [lrange $args 1 end] } else { set inflags 0 } } return [list $args $flags] } # Wrapper for berkdb open, used throughout the test suite so that we can # set an errfile/errpfx as appropriate. proc berkdb_open { args } { set errargs {} if { [file exists /dev/stderr] == 1 } { append errargs " -errfile /dev/stderr " append errargs " -errpfx \\F\\A\\I\\L " } eval {berkdb open} $errargs $args } # Version without errpfx/errfile, used when we're expecting a failure. proc berkdb_open_noerr { args } { eval {berkdb open} $args } proc check_handles { {outf stdout} } { global ohandles set handles [berkdb handles] if {[llength $handles] != [llength $ohandles]} { puts $outf "WARNING: Open handles during cleanup: $handles" } set ohandles $handles } proc open_handles { } { return [llength [berkdb handles]] } proc move_file_extent { dir dbfile tag op } { set files [get_extfiles $dir $dbfile $tag] foreach extfile $files { set i [string last "." $extfile] incr i set extnum [string range $extfile $i end] set dbq [make_ext_filename $dir $dbfile $extnum] # # We can either copy or rename # file $op -force $extfile $dbq } } proc copy_extent_file { dir dbfile tag { op copy } } { set files [get_extfiles $dir $dbfile ""] foreach extfile $files { set i [string last "." $extfile] incr i set extnum [string range $extfile $i end] file $op -force $extfile $dir/__dbq.$dbfile.$tag.$extnum } } proc get_extfiles { dir dbfile tag } { if { $tag == "" } { set filepat $dir/__dbq.$dbfile.\[0-9\]* } else { set filepat $dir/__dbq.$dbfile.$tag.\[0-9\]* } return [glob -nocomplain -- $filepat] } proc make_ext_filename { dir dbfile extnum } { return $dir/__dbq.$dbfile.$extnum } # All pids for Windows 9X are negative values. When we want to have # unsigned int values, unique to the process, we'll take the absolute # value of the pid. This avoids unsigned/signed mistakes, yet # guarantees uniqueness, since each system has pids that are all # either positive or negative. # proc sanitized_pid { } { set mypid [pid] if { $mypid < 0 } { set mypid [expr - $mypid] } puts "PID: [pid] $mypid\n" return $mypid } # # Extract the page size field from a stat record. Return -1 if # none is found. # proc get_pagesize { stat } { foreach field $stat { set title [lindex $field 0] if {[string compare $title "Page size"] == 0} { return [lindex $field 1] } } return -1 }