/***************************************************************************** Copyright (c) 1994, 2013, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2012, Facebook Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /********************************************************************//** @file page/page0cur.cc The page cursor Created 10/4/1994 Heikki Tuuri *************************************************************************/ #include "page0cur.h" #ifdef UNIV_NONINL #include "page0cur.ic" #endif #include "page0zip.h" #include "btr0btr.h" #include "mtr0log.h" #include "log0recv.h" #include "ut0ut.h" #ifndef UNIV_HOTBACKUP #include "rem0cmp.h" #ifdef PAGE_CUR_ADAPT # ifdef UNIV_SEARCH_PERF_STAT static ulint page_cur_short_succ = 0; # endif /* UNIV_SEARCH_PERF_STAT */ /*******************************************************************//** This is a linear congruential generator PRNG. Returns a pseudo random number between 0 and 2^64-1 inclusive. The formula and the constants being used are: X[n+1] = (a * X[n] + c) mod m where: X[0] = ut_time_us(NULL) a = 1103515245 (3^5 * 5 * 7 * 129749) c = 12345 (3 * 5 * 823) m = 18446744073709551616 (2^64) @return number between 0 and 2^64-1 */ static ib_uint64_t page_cur_lcg_prng(void) /*===================*/ { #define LCG_a 1103515245 #define LCG_c 12345 static ib_uint64_t lcg_current = 0; static ibool initialized = FALSE; if (!initialized) { lcg_current = (ib_uint64_t) ut_time_us(NULL); initialized = TRUE; } /* no need to "% 2^64" explicitly because lcg_current is 64 bit and this will be done anyway */ lcg_current = LCG_a * lcg_current + LCG_c; return(lcg_current); } /****************************************************************//** Tries a search shortcut based on the last insert. @return TRUE on success */ UNIV_INLINE ibool page_cur_try_search_shortcut( /*=========================*/ const buf_block_t* block, /*!< in: index page */ const dict_index_t* index, /*!< in: record descriptor */ const dtuple_t* tuple, /*!< in: data tuple */ ulint* iup_matched_fields, /*!< in/out: already matched fields in upper limit record */ ulint* iup_matched_bytes, /*!< in/out: already matched bytes in a field not yet completely matched */ ulint* ilow_matched_fields, /*!< in/out: already matched fields in lower limit record */ ulint* ilow_matched_bytes, /*!< in/out: already matched bytes in a field not yet completely matched */ page_cur_t* cursor) /*!< out: page cursor */ { const rec_t* rec; const rec_t* next_rec; ulint low_match; ulint low_bytes; ulint up_match; ulint up_bytes; #ifdef UNIV_SEARCH_DEBUG page_cur_t cursor2; #endif ibool success = FALSE; const page_t* page = buf_block_get_frame(block); mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); ut_ad(dtuple_check_typed(tuple)); rec = page_header_get_ptr(page, PAGE_LAST_INSERT); offsets = rec_get_offsets(rec, index, offsets, dtuple_get_n_fields(tuple), &heap); ut_ad(rec); ut_ad(page_rec_is_user_rec(rec)); ut_pair_min(&low_match, &low_bytes, *ilow_matched_fields, *ilow_matched_bytes, *iup_matched_fields, *iup_matched_bytes); up_match = low_match; up_bytes = low_bytes; if (page_cmp_dtuple_rec_with_match(tuple, rec, offsets, &low_match, &low_bytes) < 0) { goto exit_func; } next_rec = page_rec_get_next_const(rec); offsets = rec_get_offsets(next_rec, index, offsets, dtuple_get_n_fields(tuple), &heap); if (page_cmp_dtuple_rec_with_match(tuple, next_rec, offsets, &up_match, &up_bytes) >= 0) { goto exit_func; } page_cur_position(rec, block, cursor); #ifdef UNIV_SEARCH_DEBUG page_cur_search_with_match(block, index, tuple, PAGE_CUR_DBG, iup_matched_fields, iup_matched_bytes, ilow_matched_fields, ilow_matched_bytes, &cursor2); ut_a(cursor2.rec == cursor->rec); if (!page_rec_is_supremum(next_rec)) { ut_a(*iup_matched_fields == up_match); ut_a(*iup_matched_bytes == up_bytes); } ut_a(*ilow_matched_fields == low_match); ut_a(*ilow_matched_bytes == low_bytes); #endif if (!page_rec_is_supremum(next_rec)) { *iup_matched_fields = up_match; *iup_matched_bytes = up_bytes; } *ilow_matched_fields = low_match; *ilow_matched_bytes = low_bytes; #ifdef UNIV_SEARCH_PERF_STAT page_cur_short_succ++; #endif success = TRUE; exit_func: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(success); } #endif #ifdef PAGE_CUR_LE_OR_EXTENDS /****************************************************************//** Checks if the nth field in a record is a character type field which extends the nth field in tuple, i.e., the field is longer or equal in length and has common first characters. @return TRUE if rec field extends tuple field */ static ibool page_cur_rec_field_extends( /*=======================*/ const dtuple_t* tuple, /*!< in: data tuple */ const rec_t* rec, /*!< in: record */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ ulint n) /*!< in: compare nth field */ { const dtype_t* type; const dfield_t* dfield; const byte* rec_f; ulint rec_f_len; ut_ad(rec_offs_validate(rec, NULL, offsets)); dfield = dtuple_get_nth_field(tuple, n); type = dfield_get_type(dfield); rec_f = rec_get_nth_field(rec, offsets, n, &rec_f_len); if (type->mtype == DATA_VARCHAR || type->mtype == DATA_CHAR || type->mtype == DATA_FIXBINARY || type->mtype == DATA_BINARY || type->mtype == DATA_BLOB || type->mtype == DATA_VARMYSQL || type->mtype == DATA_MYSQL) { if (dfield_get_len(dfield) != UNIV_SQL_NULL && rec_f_len != UNIV_SQL_NULL && rec_f_len >= dfield_get_len(dfield) && !cmp_data_data_slow(type->mtype, type->prtype, dfield_get_data(dfield), dfield_get_len(dfield), rec_f, dfield_get_len(dfield))) { return(TRUE); } } return(FALSE); } #endif /* PAGE_CUR_LE_OR_EXTENDS */ /****************************************************************//** Searches the right position for a page cursor. */ UNIV_INTERN void page_cur_search_with_match( /*=======================*/ const buf_block_t* block, /*!< in: buffer block */ const dict_index_t* index, /*!< in: record descriptor */ const dtuple_t* tuple, /*!< in: data tuple */ ulint mode, /*!< in: PAGE_CUR_L, PAGE_CUR_LE, PAGE_CUR_G, or PAGE_CUR_GE */ ulint* iup_matched_fields, /*!< in/out: already matched fields in upper limit record */ ulint* iup_matched_bytes, /*!< in/out: already matched bytes in a field not yet completely matched */ ulint* ilow_matched_fields, /*!< in/out: already matched fields in lower limit record */ ulint* ilow_matched_bytes, /*!< in/out: already matched bytes in a field not yet completely matched */ page_cur_t* cursor) /*!< out: page cursor */ { ulint up; ulint low; ulint mid; const page_t* page; const page_dir_slot_t* slot; const rec_t* up_rec; const rec_t* low_rec; const rec_t* mid_rec; ulint up_matched_fields; ulint up_matched_bytes; ulint low_matched_fields; ulint low_matched_bytes; ulint cur_matched_fields; ulint cur_matched_bytes; int cmp; #ifdef UNIV_SEARCH_DEBUG int dbg_cmp; ulint dbg_matched_fields; ulint dbg_matched_bytes; #endif #ifdef UNIV_ZIP_DEBUG const page_zip_des_t* page_zip = buf_block_get_page_zip(block); #endif /* UNIV_ZIP_DEBUG */ mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); ut_ad(block && tuple && iup_matched_fields && iup_matched_bytes && ilow_matched_fields && ilow_matched_bytes && cursor); ut_ad(dtuple_validate(tuple)); #ifdef UNIV_DEBUG # ifdef PAGE_CUR_DBG if (mode != PAGE_CUR_DBG) # endif /* PAGE_CUR_DBG */ # ifdef PAGE_CUR_LE_OR_EXTENDS if (mode != PAGE_CUR_LE_OR_EXTENDS) # endif /* PAGE_CUR_LE_OR_EXTENDS */ ut_ad(mode == PAGE_CUR_L || mode == PAGE_CUR_LE || mode == PAGE_CUR_G || mode == PAGE_CUR_GE); #endif /* UNIV_DEBUG */ page = buf_block_get_frame(block); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ page_check_dir(page); #ifdef PAGE_CUR_ADAPT if (page_is_leaf(page) && (mode == PAGE_CUR_LE) && (page_header_get_field(page, PAGE_N_DIRECTION) > 3) && (page_header_get_ptr(page, PAGE_LAST_INSERT)) && (page_header_get_field(page, PAGE_DIRECTION) == PAGE_RIGHT)) { if (page_cur_try_search_shortcut( block, index, tuple, iup_matched_fields, iup_matched_bytes, ilow_matched_fields, ilow_matched_bytes, cursor)) { return; } } # ifdef PAGE_CUR_DBG if (mode == PAGE_CUR_DBG) { mode = PAGE_CUR_LE; } # endif #endif /* The following flag does not work for non-latin1 char sets because cmp_full_field does not tell how many bytes matched */ #ifdef PAGE_CUR_LE_OR_EXTENDS ut_a(mode != PAGE_CUR_LE_OR_EXTENDS); #endif /* PAGE_CUR_LE_OR_EXTENDS */ /* If mode PAGE_CUR_G is specified, we are trying to position the cursor to answer a query of the form "tuple < X", where tuple is the input parameter, and X denotes an arbitrary physical record on the page. We want to position the cursor on the first X which satisfies the condition. */ up_matched_fields = *iup_matched_fields; up_matched_bytes = *iup_matched_bytes; low_matched_fields = *ilow_matched_fields; low_matched_bytes = *ilow_matched_bytes; /* Perform binary search. First the search is done through the page directory, after that as a linear search in the list of records owned by the upper limit directory slot. */ low = 0; up = page_dir_get_n_slots(page) - 1; /* Perform binary search until the lower and upper limit directory slots come to the distance 1 of each other */ while (up - low > 1) { mid = (low + up) / 2; slot = page_dir_get_nth_slot(page, mid); mid_rec = page_dir_slot_get_rec(slot); ut_pair_min(&cur_matched_fields, &cur_matched_bytes, low_matched_fields, low_matched_bytes, up_matched_fields, up_matched_bytes); offsets = rec_get_offsets(mid_rec, index, offsets, dtuple_get_n_fields_cmp(tuple), &heap); cmp = cmp_dtuple_rec_with_match(tuple, mid_rec, offsets, &cur_matched_fields, &cur_matched_bytes); if (UNIV_LIKELY(cmp > 0)) { low_slot_match: low = mid; low_matched_fields = cur_matched_fields; low_matched_bytes = cur_matched_bytes; } else if (UNIV_EXPECT(cmp, -1)) { #ifdef PAGE_CUR_LE_OR_EXTENDS if (mode == PAGE_CUR_LE_OR_EXTENDS && page_cur_rec_field_extends( tuple, mid_rec, offsets, cur_matched_fields)) { goto low_slot_match; } #endif /* PAGE_CUR_LE_OR_EXTENDS */ up_slot_match: up = mid; up_matched_fields = cur_matched_fields; up_matched_bytes = cur_matched_bytes; } else if (mode == PAGE_CUR_G || mode == PAGE_CUR_LE #ifdef PAGE_CUR_LE_OR_EXTENDS || mode == PAGE_CUR_LE_OR_EXTENDS #endif /* PAGE_CUR_LE_OR_EXTENDS */ ) { goto low_slot_match; } else { goto up_slot_match; } } slot = page_dir_get_nth_slot(page, low); low_rec = page_dir_slot_get_rec(slot); slot = page_dir_get_nth_slot(page, up); up_rec = page_dir_slot_get_rec(slot); /* Perform linear search until the upper and lower records come to distance 1 of each other. */ while (page_rec_get_next_const(low_rec) != up_rec) { mid_rec = page_rec_get_next_const(low_rec); ut_pair_min(&cur_matched_fields, &cur_matched_bytes, low_matched_fields, low_matched_bytes, up_matched_fields, up_matched_bytes); offsets = rec_get_offsets(mid_rec, index, offsets, dtuple_get_n_fields_cmp(tuple), &heap); cmp = cmp_dtuple_rec_with_match(tuple, mid_rec, offsets, &cur_matched_fields, &cur_matched_bytes); if (UNIV_LIKELY(cmp > 0)) { low_rec_match: low_rec = mid_rec; low_matched_fields = cur_matched_fields; low_matched_bytes = cur_matched_bytes; } else if (UNIV_EXPECT(cmp, -1)) { #ifdef PAGE_CUR_LE_OR_EXTENDS if (mode == PAGE_CUR_LE_OR_EXTENDS && page_cur_rec_field_extends( tuple, mid_rec, offsets, cur_matched_fields)) { goto low_rec_match; } #endif /* PAGE_CUR_LE_OR_EXTENDS */ up_rec_match: up_rec = mid_rec; up_matched_fields = cur_matched_fields; up_matched_bytes = cur_matched_bytes; } else if (mode == PAGE_CUR_G || mode == PAGE_CUR_LE #ifdef PAGE_CUR_LE_OR_EXTENDS || mode == PAGE_CUR_LE_OR_EXTENDS #endif /* PAGE_CUR_LE_OR_EXTENDS */ ) { goto low_rec_match; } else { goto up_rec_match; } } #ifdef UNIV_SEARCH_DEBUG /* Check that the lower and upper limit records have the right alphabetical order compared to tuple. */ dbg_matched_fields = 0; dbg_matched_bytes = 0; offsets = rec_get_offsets(low_rec, index, offsets, ULINT_UNDEFINED, &heap); dbg_cmp = page_cmp_dtuple_rec_with_match(tuple, low_rec, offsets, &dbg_matched_fields, &dbg_matched_bytes); if (mode == PAGE_CUR_G) { ut_a(dbg_cmp >= 0); } else if (mode == PAGE_CUR_GE) { ut_a(dbg_cmp == 1); } else if (mode == PAGE_CUR_L) { ut_a(dbg_cmp == 1); } else if (mode == PAGE_CUR_LE) { ut_a(dbg_cmp >= 0); } if (!page_rec_is_infimum(low_rec)) { ut_a(low_matched_fields == dbg_matched_fields); ut_a(low_matched_bytes == dbg_matched_bytes); } dbg_matched_fields = 0; dbg_matched_bytes = 0; offsets = rec_get_offsets(up_rec, index, offsets, ULINT_UNDEFINED, &heap); dbg_cmp = page_cmp_dtuple_rec_with_match(tuple, up_rec, offsets, &dbg_matched_fields, &dbg_matched_bytes); if (mode == PAGE_CUR_G) { ut_a(dbg_cmp == -1); } else if (mode == PAGE_CUR_GE) { ut_a(dbg_cmp <= 0); } else if (mode == PAGE_CUR_L) { ut_a(dbg_cmp <= 0); } else if (mode == PAGE_CUR_LE) { ut_a(dbg_cmp == -1); } if (!page_rec_is_supremum(up_rec)) { ut_a(up_matched_fields == dbg_matched_fields); ut_a(up_matched_bytes == dbg_matched_bytes); } #endif if (mode <= PAGE_CUR_GE) { page_cur_position(up_rec, block, cursor); } else { page_cur_position(low_rec, block, cursor); } *iup_matched_fields = up_matched_fields; *iup_matched_bytes = up_matched_bytes; *ilow_matched_fields = low_matched_fields; *ilow_matched_bytes = low_matched_bytes; if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /***********************************************************//** Positions a page cursor on a randomly chosen user record on a page. If there are no user records, sets the cursor on the infimum record. */ UNIV_INTERN void page_cur_open_on_rnd_user_rec( /*==========================*/ buf_block_t* block, /*!< in: page */ page_cur_t* cursor) /*!< out: page cursor */ { ulint rnd; ulint n_recs = page_get_n_recs(buf_block_get_frame(block)); page_cur_set_before_first(block, cursor); if (UNIV_UNLIKELY(n_recs == 0)) { return; } rnd = (ulint) (page_cur_lcg_prng() % n_recs); do { page_cur_move_to_next(cursor); } while (rnd--); } /***********************************************************//** Writes the log record of a record insert on a page. */ static void page_cur_insert_rec_write_log( /*==========================*/ rec_t* insert_rec, /*!< in: inserted physical record */ ulint rec_size, /*!< in: insert_rec size */ rec_t* cursor_rec, /*!< in: record the cursor is pointing to */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mini-transaction handle */ { ulint cur_rec_size; ulint extra_size; ulint cur_extra_size; const byte* ins_ptr; byte* log_ptr; const byte* log_end; ulint i; ut_a(rec_size < UNIV_PAGE_SIZE); ut_ad(page_align(insert_rec) == page_align(cursor_rec)); ut_ad(!page_rec_is_comp(insert_rec) == !dict_table_is_comp(index->table)); { mem_heap_t* heap = NULL; ulint cur_offs_[REC_OFFS_NORMAL_SIZE]; ulint ins_offs_[REC_OFFS_NORMAL_SIZE]; ulint* cur_offs; ulint* ins_offs; rec_offs_init(cur_offs_); rec_offs_init(ins_offs_); cur_offs = rec_get_offsets(cursor_rec, index, cur_offs_, ULINT_UNDEFINED, &heap); ins_offs = rec_get_offsets(insert_rec, index, ins_offs_, ULINT_UNDEFINED, &heap); extra_size = rec_offs_extra_size(ins_offs); cur_extra_size = rec_offs_extra_size(cur_offs); ut_ad(rec_size == rec_offs_size(ins_offs)); cur_rec_size = rec_offs_size(cur_offs); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } ins_ptr = insert_rec - extra_size; i = 0; if (cur_extra_size == extra_size) { ulint min_rec_size = ut_min(cur_rec_size, rec_size); const byte* cur_ptr = cursor_rec - cur_extra_size; /* Find out the first byte in insert_rec which differs from cursor_rec; skip the bytes in the record info */ do { if (*ins_ptr == *cur_ptr) { i++; ins_ptr++; cur_ptr++; } else if ((i < extra_size) && (i >= extra_size - page_rec_get_base_extra_size (insert_rec))) { i = extra_size; ins_ptr = insert_rec; cur_ptr = cursor_rec; } else { break; } } while (i < min_rec_size); } if (mtr_get_log_mode(mtr) != MTR_LOG_SHORT_INSERTS) { if (page_rec_is_comp(insert_rec)) { log_ptr = mlog_open_and_write_index( mtr, insert_rec, index, MLOG_COMP_REC_INSERT, 2 + 5 + 1 + 5 + 5 + MLOG_BUF_MARGIN); if (UNIV_UNLIKELY(!log_ptr)) { /* Logging in mtr is switched off during crash recovery: in that case mlog_open returns NULL */ return; } } else { log_ptr = mlog_open(mtr, 11 + 2 + 5 + 1 + 5 + 5 + MLOG_BUF_MARGIN); if (UNIV_UNLIKELY(!log_ptr)) { /* Logging in mtr is switched off during crash recovery: in that case mlog_open returns NULL */ return; } log_ptr = mlog_write_initial_log_record_fast( insert_rec, MLOG_REC_INSERT, log_ptr, mtr); } log_end = &log_ptr[2 + 5 + 1 + 5 + 5 + MLOG_BUF_MARGIN]; /* Write the cursor rec offset as a 2-byte ulint */ mach_write_to_2(log_ptr, page_offset(cursor_rec)); log_ptr += 2; } else { log_ptr = mlog_open(mtr, 5 + 1 + 5 + 5 + MLOG_BUF_MARGIN); if (!log_ptr) { /* Logging in mtr is switched off during crash recovery: in that case mlog_open returns NULL */ return; } log_end = &log_ptr[5 + 1 + 5 + 5 + MLOG_BUF_MARGIN]; } if (page_rec_is_comp(insert_rec)) { if (UNIV_UNLIKELY (rec_get_info_and_status_bits(insert_rec, TRUE) != rec_get_info_and_status_bits(cursor_rec, TRUE))) { goto need_extra_info; } } else { if (UNIV_UNLIKELY (rec_get_info_and_status_bits(insert_rec, FALSE) != rec_get_info_and_status_bits(cursor_rec, FALSE))) { goto need_extra_info; } } if (extra_size != cur_extra_size || rec_size != cur_rec_size) { need_extra_info: /* Write the record end segment length and the extra info storage flag */ log_ptr += mach_write_compressed(log_ptr, 2 * (rec_size - i) + 1); /* Write the info bits */ mach_write_to_1(log_ptr, rec_get_info_and_status_bits( insert_rec, page_rec_is_comp(insert_rec))); log_ptr++; /* Write the record origin offset */ log_ptr += mach_write_compressed(log_ptr, extra_size); /* Write the mismatch index */ log_ptr += mach_write_compressed(log_ptr, i); ut_a(i < UNIV_PAGE_SIZE); ut_a(extra_size < UNIV_PAGE_SIZE); } else { /* Write the record end segment length and the extra info storage flag */ log_ptr += mach_write_compressed(log_ptr, 2 * (rec_size - i)); } /* Write to the log the inserted index record end segment which differs from the cursor record */ rec_size -= i; if (log_ptr + rec_size <= log_end) { memcpy(log_ptr, ins_ptr, rec_size); mlog_close(mtr, log_ptr + rec_size); } else { mlog_close(mtr, log_ptr); ut_a(rec_size < UNIV_PAGE_SIZE); mlog_catenate_string(mtr, ins_ptr, rec_size); } } #else /* !UNIV_HOTBACKUP */ # define page_cur_insert_rec_write_log(ins_rec,size,cur,index,mtr) ((void) 0) #endif /* !UNIV_HOTBACKUP */ /***********************************************************//** Parses a log record of a record insert on a page. @return end of log record or NULL */ UNIV_INTERN byte* page_cur_parse_insert_rec( /*======================*/ ibool is_short,/*!< in: TRUE if short inserts */ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ buf_block_t* block, /*!< in: page or NULL */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr or NULL */ { ulint origin_offset; ulint end_seg_len; ulint mismatch_index; page_t* page; rec_t* cursor_rec; byte buf1[1024]; byte* buf; byte* ptr2 = ptr; ulint info_and_status_bits = 0; /* remove warning */ page_cur_t cursor; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); page = block ? buf_block_get_frame(block) : NULL; if (is_short) { cursor_rec = page_rec_get_prev(page_get_supremum_rec(page)); } else { ulint offset; /* Read the cursor rec offset as a 2-byte ulint */ if (UNIV_UNLIKELY(end_ptr < ptr + 2)) { return(NULL); } offset = mach_read_from_2(ptr); ptr += 2; cursor_rec = page + offset; if (UNIV_UNLIKELY(offset >= UNIV_PAGE_SIZE)) { recv_sys->found_corrupt_log = TRUE; return(NULL); } } ptr = mach_parse_compressed(ptr, end_ptr, &end_seg_len); if (ptr == NULL) { return(NULL); } if (UNIV_UNLIKELY(end_seg_len >= UNIV_PAGE_SIZE << 1)) { recv_sys->found_corrupt_log = TRUE; return(NULL); } if (end_seg_len & 0x1UL) { /* Read the info bits */ if (end_ptr < ptr + 1) { return(NULL); } info_and_status_bits = mach_read_from_1(ptr); ptr++; ptr = mach_parse_compressed(ptr, end_ptr, &origin_offset); if (ptr == NULL) { return(NULL); } ut_a(origin_offset < UNIV_PAGE_SIZE); ptr = mach_parse_compressed(ptr, end_ptr, &mismatch_index); if (ptr == NULL) { return(NULL); } ut_a(mismatch_index < UNIV_PAGE_SIZE); } if (UNIV_UNLIKELY(end_ptr < ptr + (end_seg_len >> 1))) { return(NULL); } if (!block) { return(ptr + (end_seg_len >> 1)); } ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table)); ut_ad(!buf_block_get_page_zip(block) || page_is_comp(page)); /* Read from the log the inserted index record end segment which differs from the cursor record */ offsets = rec_get_offsets(cursor_rec, index, offsets, ULINT_UNDEFINED, &heap); if (!(end_seg_len & 0x1UL)) { info_and_status_bits = rec_get_info_and_status_bits( cursor_rec, page_is_comp(page)); origin_offset = rec_offs_extra_size(offsets); mismatch_index = rec_offs_size(offsets) - (end_seg_len >> 1); } end_seg_len >>= 1; if (mismatch_index + end_seg_len < sizeof buf1) { buf = buf1; } else { buf = static_cast( mem_alloc(mismatch_index + end_seg_len)); } /* Build the inserted record to buf */ if (UNIV_UNLIKELY(mismatch_index >= UNIV_PAGE_SIZE)) { fprintf(stderr, "Is short %lu, info_and_status_bits %lu, offset %lu, " "o_offset %lu\n" "mismatch index %lu, end_seg_len %lu\n" "parsed len %lu\n", (ulong) is_short, (ulong) info_and_status_bits, (ulong) page_offset(cursor_rec), (ulong) origin_offset, (ulong) mismatch_index, (ulong) end_seg_len, (ulong) (ptr - ptr2)); fputs("Dump of 300 bytes of log:\n", stderr); ut_print_buf(stderr, ptr2, 300); putc('\n', stderr); buf_page_print(page, 0, 0); ut_error; } ut_memcpy(buf, rec_get_start(cursor_rec, offsets), mismatch_index); ut_memcpy(buf + mismatch_index, ptr, end_seg_len); if (page_is_comp(page)) { rec_set_info_and_status_bits(buf + origin_offset, info_and_status_bits); } else { rec_set_info_bits_old(buf + origin_offset, info_and_status_bits); } page_cur_position(cursor_rec, block, &cursor); offsets = rec_get_offsets(buf + origin_offset, index, offsets, ULINT_UNDEFINED, &heap); if (UNIV_UNLIKELY(!page_cur_rec_insert(&cursor, buf + origin_offset, index, offsets, mtr))) { /* The redo log record should only have been written after the write was successful. */ ut_error; } if (buf != buf1) { mem_free(buf); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(ptr + end_seg_len); } /***********************************************************//** Inserts a record next to page cursor on an uncompressed page. Returns pointer to inserted record if succeed, i.e., enough space available, NULL otherwise. The cursor stays at the same position. @return pointer to record if succeed, NULL otherwise */ UNIV_INTERN rec_t* page_cur_insert_rec_low( /*====================*/ rec_t* current_rec,/*!< in: pointer to current record after which the new record is inserted */ dict_index_t* index, /*!< in: record descriptor */ const rec_t* rec, /*!< in: pointer to a physical record */ ulint* offsets,/*!< in/out: rec_get_offsets(rec, index) */ mtr_t* mtr) /*!< in: mini-transaction handle, or NULL */ { byte* insert_buf; ulint rec_size; page_t* page; /*!< the relevant page */ rec_t* last_insert; /*!< cursor position at previous insert */ rec_t* free_rec; /*!< a free record that was reused, or NULL */ rec_t* insert_rec; /*!< inserted record */ ulint heap_no; /*!< heap number of the inserted record */ ut_ad(rec_offs_validate(rec, index, offsets)); page = page_align(current_rec); ut_ad(dict_table_is_comp(index->table) == (ibool) !!page_is_comp(page)); ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX); ut_ad(mach_read_from_8(page + PAGE_HEADER + PAGE_INDEX_ID) == index->id || recv_recovery_is_on() || (mtr ? mtr->inside_ibuf : dict_index_is_ibuf(index))); ut_ad(!page_rec_is_supremum(current_rec)); /* 1. Get the size of the physical record in the page */ rec_size = rec_offs_size(offsets); #ifdef UNIV_DEBUG_VALGRIND { const void* rec_start = rec - rec_offs_extra_size(offsets); ulint extra_size = rec_offs_extra_size(offsets) - (rec_offs_comp(offsets) ? REC_N_NEW_EXTRA_BYTES : REC_N_OLD_EXTRA_BYTES); /* All data bytes of the record must be valid. */ UNIV_MEM_ASSERT_RW(rec, rec_offs_data_size(offsets)); /* The variable-length header must be valid. */ UNIV_MEM_ASSERT_RW(rec_start, extra_size); } #endif /* UNIV_DEBUG_VALGRIND */ /* 2. Try to find suitable space from page memory management */ free_rec = page_header_get_ptr(page, PAGE_FREE); if (UNIV_LIKELY_NULL(free_rec)) { /* Try to allocate from the head of the free list. */ ulint foffsets_[REC_OFFS_NORMAL_SIZE]; ulint* foffsets = foffsets_; mem_heap_t* heap = NULL; rec_offs_init(foffsets_); foffsets = rec_get_offsets( free_rec, index, foffsets, ULINT_UNDEFINED, &heap); if (rec_offs_size(foffsets) < rec_size) { if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } goto use_heap; } insert_buf = free_rec - rec_offs_extra_size(foffsets); if (page_is_comp(page)) { heap_no = rec_get_heap_no_new(free_rec); page_mem_alloc_free(page, NULL, rec_get_next_ptr(free_rec, TRUE), rec_size); } else { heap_no = rec_get_heap_no_old(free_rec); page_mem_alloc_free(page, NULL, rec_get_next_ptr(free_rec, FALSE), rec_size); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } else { use_heap: free_rec = NULL; insert_buf = page_mem_alloc_heap(page, NULL, rec_size, &heap_no); if (UNIV_UNLIKELY(insert_buf == NULL)) { return(NULL); } } /* 3. Create the record */ insert_rec = rec_copy(insert_buf, rec, offsets); rec_offs_make_valid(insert_rec, index, offsets); /* 4. Insert the record in the linked list of records */ ut_ad(current_rec != insert_rec); { /* next record after current before the insertion */ rec_t* next_rec = page_rec_get_next(current_rec); #ifdef UNIV_DEBUG if (page_is_comp(page)) { ut_ad(rec_get_status(current_rec) <= REC_STATUS_INFIMUM); ut_ad(rec_get_status(insert_rec) < REC_STATUS_INFIMUM); ut_ad(rec_get_status(next_rec) != REC_STATUS_INFIMUM); } #endif page_rec_set_next(insert_rec, next_rec); page_rec_set_next(current_rec, insert_rec); } page_header_set_field(page, NULL, PAGE_N_RECS, 1 + page_get_n_recs(page)); /* 5. Set the n_owned field in the inserted record to zero, and set the heap_no field */ if (page_is_comp(page)) { rec_set_n_owned_new(insert_rec, NULL, 0); rec_set_heap_no_new(insert_rec, heap_no); } else { rec_set_n_owned_old(insert_rec, 0); rec_set_heap_no_old(insert_rec, heap_no); } UNIV_MEM_ASSERT_RW(rec_get_start(insert_rec, offsets), rec_offs_size(offsets)); /* 6. Update the last insertion info in page header */ last_insert = page_header_get_ptr(page, PAGE_LAST_INSERT); ut_ad(!last_insert || !page_is_comp(page) || rec_get_node_ptr_flag(last_insert) == rec_get_node_ptr_flag(insert_rec)); if (UNIV_UNLIKELY(last_insert == NULL)) { page_header_set_field(page, NULL, PAGE_DIRECTION, PAGE_NO_DIRECTION); page_header_set_field(page, NULL, PAGE_N_DIRECTION, 0); } else if ((last_insert == current_rec) && (page_header_get_field(page, PAGE_DIRECTION) != PAGE_LEFT)) { page_header_set_field(page, NULL, PAGE_DIRECTION, PAGE_RIGHT); page_header_set_field(page, NULL, PAGE_N_DIRECTION, page_header_get_field( page, PAGE_N_DIRECTION) + 1); } else if ((page_rec_get_next(insert_rec) == last_insert) && (page_header_get_field(page, PAGE_DIRECTION) != PAGE_RIGHT)) { page_header_set_field(page, NULL, PAGE_DIRECTION, PAGE_LEFT); page_header_set_field(page, NULL, PAGE_N_DIRECTION, page_header_get_field( page, PAGE_N_DIRECTION) + 1); } else { page_header_set_field(page, NULL, PAGE_DIRECTION, PAGE_NO_DIRECTION); page_header_set_field(page, NULL, PAGE_N_DIRECTION, 0); } page_header_set_ptr(page, NULL, PAGE_LAST_INSERT, insert_rec); /* 7. It remains to update the owner record. */ { rec_t* owner_rec = page_rec_find_owner_rec(insert_rec); ulint n_owned; if (page_is_comp(page)) { n_owned = rec_get_n_owned_new(owner_rec); rec_set_n_owned_new(owner_rec, NULL, n_owned + 1); } else { n_owned = rec_get_n_owned_old(owner_rec); rec_set_n_owned_old(owner_rec, n_owned + 1); } /* 8. Now we have incremented the n_owned field of the owner record. If the number exceeds PAGE_DIR_SLOT_MAX_N_OWNED, we have to split the corresponding directory slot in two. */ if (UNIV_UNLIKELY(n_owned == PAGE_DIR_SLOT_MAX_N_OWNED)) { page_dir_split_slot( page, NULL, page_dir_find_owner_slot(owner_rec)); } } /* 9. Write log record of the insert */ if (UNIV_LIKELY(mtr != NULL)) { page_cur_insert_rec_write_log(insert_rec, rec_size, current_rec, index, mtr); } btr_blob_dbg_add_rec(insert_rec, index, offsets, "insert"); return(insert_rec); } /***********************************************************//** Inserts a record next to page cursor on a compressed and uncompressed page. Returns pointer to inserted record if succeed, i.e., enough space available, NULL otherwise. The cursor stays at the same position. IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if this is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). @return pointer to record if succeed, NULL otherwise */ UNIV_INTERN rec_t* page_cur_insert_rec_zip( /*====================*/ page_cur_t* cursor, /*!< in/out: page cursor */ dict_index_t* index, /*!< in: record descriptor */ const rec_t* rec, /*!< in: pointer to a physical record */ ulint* offsets,/*!< in/out: rec_get_offsets(rec, index) */ mtr_t* mtr) /*!< in: mini-transaction handle, or NULL */ { byte* insert_buf; ulint rec_size; page_t* page; /*!< the relevant page */ rec_t* last_insert; /*!< cursor position at previous insert */ rec_t* free_rec; /*!< a free record that was reused, or NULL */ rec_t* insert_rec; /*!< inserted record */ ulint heap_no; /*!< heap number of the inserted record */ page_zip_des_t* page_zip; page_zip = page_cur_get_page_zip(cursor); ut_ad(page_zip); ut_ad(rec_offs_validate(rec, index, offsets)); page = page_cur_get_page(cursor); ut_ad(dict_table_is_comp(index->table)); ut_ad(page_is_comp(page)); ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX); ut_ad(mach_read_from_8(page + PAGE_HEADER + PAGE_INDEX_ID) == index->id || recv_recovery_is_on() || (mtr ? mtr->inside_ibuf : dict_index_is_ibuf(index))); ut_ad(!page_cur_is_after_last(cursor)); #ifdef UNIV_ZIP_DEBUG ut_a(page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ /* 1. Get the size of the physical record in the page */ rec_size = rec_offs_size(offsets); #ifdef UNIV_DEBUG_VALGRIND { const void* rec_start = rec - rec_offs_extra_size(offsets); ulint extra_size = rec_offs_extra_size(offsets) - (rec_offs_comp(offsets) ? REC_N_NEW_EXTRA_BYTES : REC_N_OLD_EXTRA_BYTES); /* All data bytes of the record must be valid. */ UNIV_MEM_ASSERT_RW(rec, rec_offs_data_size(offsets)); /* The variable-length header must be valid. */ UNIV_MEM_ASSERT_RW(rec_start, extra_size); } #endif /* UNIV_DEBUG_VALGRIND */ const bool reorg_before_insert = page_has_garbage(page) && rec_size > page_get_max_insert_size(page, 1) && rec_size <= page_get_max_insert_size_after_reorganize( page, 1); /* 2. Try to find suitable space from page memory management */ if (!page_zip_available(page_zip, dict_index_is_clust(index), rec_size, 1) || reorg_before_insert) { /* The values can change dynamically. */ bool log_compressed = page_zip_log_pages; ulint level = page_zip_level; #ifdef UNIV_DEBUG rec_t* cursor_rec = page_cur_get_rec(cursor); #endif /* UNIV_DEBUG */ /* If we are not writing compressed page images, we must reorganize the page before attempting the insert. */ if (recv_recovery_is_on()) { /* Insert into the uncompressed page only. The page reorganization or creation that we would attempt outside crash recovery would have been covered by a previous redo log record. */ } else if (page_is_empty(page)) { ut_ad(page_cur_is_before_first(cursor)); /* This is an empty page. Recreate it to get rid of the modification log. */ page_create_zip(page_cur_get_block(cursor), index, page_header_get_field(page, PAGE_LEVEL), 0, mtr); ut_ad(!page_header_get_ptr(page, PAGE_FREE)); if (page_zip_available( page_zip, dict_index_is_clust(index), rec_size, 1)) { goto use_heap; } /* The cursor should remain on the page infimum. */ return(NULL); } else if (!page_zip->m_nonempty && !page_has_garbage(page)) { /* The page has been freshly compressed, so reorganizing it will not help. */ } else if (log_compressed && !reorg_before_insert) { /* Insert into uncompressed page only, and try page_zip_reorganize() afterwards. */ } else if (btr_page_reorganize_low( recv_recovery_is_on(), level, cursor, index, mtr)) { ut_ad(!page_header_get_ptr(page, PAGE_FREE)); if (page_zip_available( page_zip, dict_index_is_clust(index), rec_size, 1)) { /* After reorganizing, there is space available. */ goto use_heap; } } else { ut_ad(cursor->rec == cursor_rec); return(NULL); } /* Try compressing the whole page afterwards. */ insert_rec = page_cur_insert_rec_low( cursor->rec, index, rec, offsets, NULL); /* If recovery is on, this implies that the compression of the page was successful during runtime. Had that not been the case or had the redo logging of compressed pages been enabled during runtime then we'd have seen a MLOG_ZIP_PAGE_COMPRESS redo record. Therefore, we know that we don't need to reorganize the page. We, however, do need to recompress the page. That will happen when the next redo record is read which must be of type MLOG_ZIP_PAGE_COMPRESS_NO_DATA and it must contain a valid compression level value. This implies that during recovery from this point till the next redo is applied the uncompressed and compressed versions are not identical and page_zip_validate will fail but that is OK because we call page_zip_validate only after processing all changes to a page under a single mtr during recovery. */ if (insert_rec == NULL) { /* Out of space. This should never occur during crash recovery, because the MLOG_COMP_REC_INSERT should only be logged after a successful operation. */ ut_ad(!recv_recovery_is_on()); } else if (recv_recovery_is_on()) { /* This should be followed by MLOG_ZIP_PAGE_COMPRESS_NO_DATA, which should succeed. */ rec_offs_make_valid(insert_rec, index, offsets); } else { ulint pos = page_rec_get_n_recs_before(insert_rec); ut_ad(pos > 0); if (!log_compressed) { if (page_zip_compress( page_zip, page, index, level, NULL)) { page_cur_insert_rec_write_log( insert_rec, rec_size, cursor->rec, index, mtr); page_zip_compress_write_log_no_data( level, page, index, mtr); rec_offs_make_valid( insert_rec, index, offsets); return(insert_rec); } ut_ad(cursor->rec == (pos > 1 ? page_rec_get_nth( page, pos - 1) : page + PAGE_NEW_INFIMUM)); } else { /* We are writing entire page images to the log. Reduce the redo log volume by reorganizing the page at the same time. */ if (page_zip_reorganize( cursor->block, index, mtr)) { /* The page was reorganized: Seek to pos. */ if (pos > 1) { cursor->rec = page_rec_get_nth( page, pos - 1); } else { cursor->rec = page + PAGE_NEW_INFIMUM; } insert_rec = page + rec_get_next_offs( cursor->rec, TRUE); rec_offs_make_valid( insert_rec, index, offsets); return(insert_rec); } /* Theoretically, we could try one last resort of btr_page_reorganize_low() followed by page_zip_available(), but that would be very unlikely to succeed. (If the full reorganized page failed to compress, why would it succeed to compress the page, plus log the insert of this record? */ } /* Out of space: restore the page */ btr_blob_dbg_remove(page, index, "insert_zip_fail"); if (!page_zip_decompress(page_zip, page, FALSE)) { ut_error; /* Memory corrupted? */ } ut_ad(page_validate(page, index)); btr_blob_dbg_add(page, index, "insert_zip_fail"); insert_rec = NULL; } return(insert_rec); } free_rec = page_header_get_ptr(page, PAGE_FREE); if (UNIV_LIKELY_NULL(free_rec)) { /* Try to allocate from the head of the free list. */ lint extra_size_diff; ulint foffsets_[REC_OFFS_NORMAL_SIZE]; ulint* foffsets = foffsets_; mem_heap_t* heap = NULL; rec_offs_init(foffsets_); foffsets = rec_get_offsets(free_rec, index, foffsets, ULINT_UNDEFINED, &heap); if (rec_offs_size(foffsets) < rec_size) { too_small: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } goto use_heap; } insert_buf = free_rec - rec_offs_extra_size(foffsets); /* On compressed pages, do not relocate records from the free list. If extra_size would grow, use the heap. */ extra_size_diff = rec_offs_extra_size(offsets) - rec_offs_extra_size(foffsets); if (UNIV_UNLIKELY(extra_size_diff < 0)) { /* Add an offset to the extra_size. */ if (rec_offs_size(foffsets) < rec_size - extra_size_diff) { goto too_small; } insert_buf -= extra_size_diff; } else if (UNIV_UNLIKELY(extra_size_diff)) { /* Do not allow extra_size to grow */ goto too_small; } heap_no = rec_get_heap_no_new(free_rec); page_mem_alloc_free(page, page_zip, rec_get_next_ptr(free_rec, TRUE), rec_size); if (!page_is_leaf(page)) { /* Zero out the node pointer of free_rec, in case it will not be overwritten by insert_rec. */ ut_ad(rec_size > REC_NODE_PTR_SIZE); if (rec_offs_extra_size(foffsets) + rec_offs_data_size(foffsets) > rec_size) { memset(rec_get_end(free_rec, foffsets) - REC_NODE_PTR_SIZE, 0, REC_NODE_PTR_SIZE); } } else if (dict_index_is_clust(index)) { /* Zero out the DB_TRX_ID and DB_ROLL_PTR columns of free_rec, in case it will not be overwritten by insert_rec. */ ulint trx_id_col; ulint trx_id_offs; ulint len; trx_id_col = dict_index_get_sys_col_pos(index, DATA_TRX_ID); ut_ad(trx_id_col > 0); ut_ad(trx_id_col != ULINT_UNDEFINED); trx_id_offs = rec_get_nth_field_offs(foffsets, trx_id_col, &len); ut_ad(len == DATA_TRX_ID_LEN); if (DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN + trx_id_offs + rec_offs_extra_size(foffsets) > rec_size) { /* We will have to zero out the DB_TRX_ID and DB_ROLL_PTR, because they will not be fully overwritten by insert_rec. */ memset(free_rec + trx_id_offs, 0, DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN); } ut_ad(free_rec + trx_id_offs + DATA_TRX_ID_LEN == rec_get_nth_field(free_rec, foffsets, trx_id_col + 1, &len)); ut_ad(len == DATA_ROLL_PTR_LEN); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } else { use_heap: free_rec = NULL; insert_buf = page_mem_alloc_heap(page, page_zip, rec_size, &heap_no); if (UNIV_UNLIKELY(insert_buf == NULL)) { return(NULL); } page_zip_dir_add_slot(page_zip, dict_index_is_clust(index)); } /* 3. Create the record */ insert_rec = rec_copy(insert_buf, rec, offsets); rec_offs_make_valid(insert_rec, index, offsets); /* 4. Insert the record in the linked list of records */ ut_ad(cursor->rec != insert_rec); { /* next record after current before the insertion */ const rec_t* next_rec = page_rec_get_next_low( cursor->rec, TRUE); ut_ad(rec_get_status(cursor->rec) <= REC_STATUS_INFIMUM); ut_ad(rec_get_status(insert_rec) < REC_STATUS_INFIMUM); ut_ad(rec_get_status(next_rec) != REC_STATUS_INFIMUM); page_rec_set_next(insert_rec, next_rec); page_rec_set_next(cursor->rec, insert_rec); } page_header_set_field(page, page_zip, PAGE_N_RECS, 1 + page_get_n_recs(page)); /* 5. Set the n_owned field in the inserted record to zero, and set the heap_no field */ rec_set_n_owned_new(insert_rec, NULL, 0); rec_set_heap_no_new(insert_rec, heap_no); UNIV_MEM_ASSERT_RW(rec_get_start(insert_rec, offsets), rec_offs_size(offsets)); page_zip_dir_insert(page_zip, cursor->rec, free_rec, insert_rec); /* 6. Update the last insertion info in page header */ last_insert = page_header_get_ptr(page, PAGE_LAST_INSERT); ut_ad(!last_insert || rec_get_node_ptr_flag(last_insert) == rec_get_node_ptr_flag(insert_rec)); if (UNIV_UNLIKELY(last_insert == NULL)) { page_header_set_field(page, page_zip, PAGE_DIRECTION, PAGE_NO_DIRECTION); page_header_set_field(page, page_zip, PAGE_N_DIRECTION, 0); } else if ((last_insert == cursor->rec) && (page_header_get_field(page, PAGE_DIRECTION) != PAGE_LEFT)) { page_header_set_field(page, page_zip, PAGE_DIRECTION, PAGE_RIGHT); page_header_set_field(page, page_zip, PAGE_N_DIRECTION, page_header_get_field( page, PAGE_N_DIRECTION) + 1); } else if ((page_rec_get_next(insert_rec) == last_insert) && (page_header_get_field(page, PAGE_DIRECTION) != PAGE_RIGHT)) { page_header_set_field(page, page_zip, PAGE_DIRECTION, PAGE_LEFT); page_header_set_field(page, page_zip, PAGE_N_DIRECTION, page_header_get_field( page, PAGE_N_DIRECTION) + 1); } else { page_header_set_field(page, page_zip, PAGE_DIRECTION, PAGE_NO_DIRECTION); page_header_set_field(page, page_zip, PAGE_N_DIRECTION, 0); } page_header_set_ptr(page, page_zip, PAGE_LAST_INSERT, insert_rec); /* 7. It remains to update the owner record. */ { rec_t* owner_rec = page_rec_find_owner_rec(insert_rec); ulint n_owned; n_owned = rec_get_n_owned_new(owner_rec); rec_set_n_owned_new(owner_rec, page_zip, n_owned + 1); /* 8. Now we have incremented the n_owned field of the owner record. If the number exceeds PAGE_DIR_SLOT_MAX_N_OWNED, we have to split the corresponding directory slot in two. */ if (UNIV_UNLIKELY(n_owned == PAGE_DIR_SLOT_MAX_N_OWNED)) { page_dir_split_slot( page, page_zip, page_dir_find_owner_slot(owner_rec)); } } page_zip_write_rec(page_zip, insert_rec, index, offsets, 1); btr_blob_dbg_add_rec(insert_rec, index, offsets, "insert_zip_ok"); /* 9. Write log record of the insert */ if (UNIV_LIKELY(mtr != NULL)) { page_cur_insert_rec_write_log(insert_rec, rec_size, cursor->rec, index, mtr); } return(insert_rec); } #ifndef UNIV_HOTBACKUP /**********************************************************//** Writes a log record of copying a record list end to a new created page. @return 4-byte field where to write the log data length, or NULL if logging is disabled */ UNIV_INLINE byte* page_copy_rec_list_to_created_page_write_log( /*=========================================*/ page_t* page, /*!< in: index page */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr */ { byte* log_ptr; ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table)); log_ptr = mlog_open_and_write_index(mtr, page, index, page_is_comp(page) ? MLOG_COMP_LIST_END_COPY_CREATED : MLOG_LIST_END_COPY_CREATED, 4); if (UNIV_LIKELY(log_ptr != NULL)) { mlog_close(mtr, log_ptr + 4); } return(log_ptr); } #endif /* !UNIV_HOTBACKUP */ /**********************************************************//** Parses a log record of copying a record list end to a new created page. @return end of log record or NULL */ UNIV_INTERN byte* page_parse_copy_rec_list_to_created_page( /*=====================================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ buf_block_t* block, /*!< in: page or NULL */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr or NULL */ { byte* rec_end; ulint log_data_len; page_t* page; page_zip_des_t* page_zip; if (ptr + 4 > end_ptr) { return(NULL); } log_data_len = mach_read_from_4(ptr); ptr += 4; rec_end = ptr + log_data_len; if (rec_end > end_ptr) { return(NULL); } if (!block) { return(rec_end); } while (ptr < rec_end) { ptr = page_cur_parse_insert_rec(TRUE, ptr, end_ptr, block, index, mtr); } ut_a(ptr == rec_end); page = buf_block_get_frame(block); page_zip = buf_block_get_page_zip(block); page_header_set_ptr(page, page_zip, PAGE_LAST_INSERT, NULL); page_header_set_field(page, page_zip, PAGE_DIRECTION, PAGE_NO_DIRECTION); page_header_set_field(page, page_zip, PAGE_N_DIRECTION, 0); return(rec_end); } #ifndef UNIV_HOTBACKUP /*************************************************************//** Copies records from page to a newly created page, from a given record onward, including that record. Infimum and supremum records are not copied. IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if this is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). */ UNIV_INTERN void page_copy_rec_list_end_to_created_page( /*===================================*/ page_t* new_page, /*!< in/out: index page to copy to */ rec_t* rec, /*!< in: first record to copy */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr */ { page_dir_slot_t* slot = 0; /* remove warning */ byte* heap_top; rec_t* insert_rec = 0; /* remove warning */ rec_t* prev_rec; ulint count; ulint n_recs; ulint slot_index; ulint rec_size; ulint log_mode; byte* log_ptr; ulint log_data_len; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); ut_ad(page_dir_get_n_heap(new_page) == PAGE_HEAP_NO_USER_LOW); ut_ad(page_align(rec) != new_page); ut_ad(page_rec_is_comp(rec) == page_is_comp(new_page)); if (page_rec_is_infimum(rec)) { rec = page_rec_get_next(rec); } if (page_rec_is_supremum(rec)) { return; } #ifdef UNIV_DEBUG /* To pass the debug tests we have to set these dummy values in the debug version */ page_dir_set_n_slots(new_page, NULL, UNIV_PAGE_SIZE / 2); page_header_set_ptr(new_page, NULL, PAGE_HEAP_TOP, new_page + UNIV_PAGE_SIZE - 1); #endif log_ptr = page_copy_rec_list_to_created_page_write_log(new_page, index, mtr); log_data_len = dyn_array_get_data_size(&(mtr->log)); /* Individual inserts are logged in a shorter form */ log_mode = mtr_set_log_mode(mtr, MTR_LOG_SHORT_INSERTS); prev_rec = page_get_infimum_rec(new_page); if (page_is_comp(new_page)) { heap_top = new_page + PAGE_NEW_SUPREMUM_END; } else { heap_top = new_page + PAGE_OLD_SUPREMUM_END; } count = 0; slot_index = 0; n_recs = 0; do { offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); insert_rec = rec_copy(heap_top, rec, offsets); if (page_is_comp(new_page)) { rec_set_next_offs_new(prev_rec, page_offset(insert_rec)); rec_set_n_owned_new(insert_rec, NULL, 0); rec_set_heap_no_new(insert_rec, PAGE_HEAP_NO_USER_LOW + n_recs); } else { rec_set_next_offs_old(prev_rec, page_offset(insert_rec)); rec_set_n_owned_old(insert_rec, 0); rec_set_heap_no_old(insert_rec, PAGE_HEAP_NO_USER_LOW + n_recs); } count++; n_recs++; if (UNIV_UNLIKELY (count == (PAGE_DIR_SLOT_MAX_N_OWNED + 1) / 2)) { slot_index++; slot = page_dir_get_nth_slot(new_page, slot_index); page_dir_slot_set_rec(slot, insert_rec); page_dir_slot_set_n_owned(slot, NULL, count); count = 0; } rec_size = rec_offs_size(offsets); ut_ad(heap_top < new_page + UNIV_PAGE_SIZE); heap_top += rec_size; rec_offs_make_valid(insert_rec, index, offsets); btr_blob_dbg_add_rec(insert_rec, index, offsets, "copy_end"); page_cur_insert_rec_write_log(insert_rec, rec_size, prev_rec, index, mtr); prev_rec = insert_rec; rec = page_rec_get_next(rec); } while (!page_rec_is_supremum(rec)); if ((slot_index > 0) && (count + 1 + (PAGE_DIR_SLOT_MAX_N_OWNED + 1) / 2 <= PAGE_DIR_SLOT_MAX_N_OWNED)) { /* We can merge the two last dir slots. This operation is here to make this function imitate exactly the equivalent task made using page_cur_insert_rec, which we use in database recovery to reproduce the task performed by this function. To be able to check the correctness of recovery, it is good that it imitates exactly. */ count += (PAGE_DIR_SLOT_MAX_N_OWNED + 1) / 2; page_dir_slot_set_n_owned(slot, NULL, 0); slot_index--; } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } log_data_len = dyn_array_get_data_size(&(mtr->log)) - log_data_len; ut_a(log_data_len < 100 * UNIV_PAGE_SIZE); if (UNIV_LIKELY(log_ptr != NULL)) { mach_write_to_4(log_ptr, log_data_len); } if (page_is_comp(new_page)) { rec_set_next_offs_new(insert_rec, PAGE_NEW_SUPREMUM); } else { rec_set_next_offs_old(insert_rec, PAGE_OLD_SUPREMUM); } slot = page_dir_get_nth_slot(new_page, 1 + slot_index); page_dir_slot_set_rec(slot, page_get_supremum_rec(new_page)); page_dir_slot_set_n_owned(slot, NULL, count + 1); page_dir_set_n_slots(new_page, NULL, 2 + slot_index); page_header_set_ptr(new_page, NULL, PAGE_HEAP_TOP, heap_top); page_dir_set_n_heap(new_page, NULL, PAGE_HEAP_NO_USER_LOW + n_recs); page_header_set_field(new_page, NULL, PAGE_N_RECS, n_recs); page_header_set_ptr(new_page, NULL, PAGE_LAST_INSERT, NULL); page_header_set_field(new_page, NULL, PAGE_DIRECTION, PAGE_NO_DIRECTION); page_header_set_field(new_page, NULL, PAGE_N_DIRECTION, 0); /* Restore the log mode */ mtr_set_log_mode(mtr, log_mode); } /***********************************************************//** Writes log record of a record delete on a page. */ UNIV_INLINE void page_cur_delete_rec_write_log( /*==========================*/ rec_t* rec, /*!< in: record to be deleted */ const dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mini-transaction handle */ { byte* log_ptr; ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); log_ptr = mlog_open_and_write_index(mtr, rec, index, page_rec_is_comp(rec) ? MLOG_COMP_REC_DELETE : MLOG_REC_DELETE, 2); if (!log_ptr) { /* Logging in mtr is switched off during crash recovery: in that case mlog_open returns NULL */ return; } /* Write the cursor rec offset as a 2-byte ulint */ mach_write_to_2(log_ptr, page_offset(rec)); mlog_close(mtr, log_ptr + 2); } #else /* !UNIV_HOTBACKUP */ # define page_cur_delete_rec_write_log(rec,index,mtr) ((void) 0) #endif /* !UNIV_HOTBACKUP */ /***********************************************************//** Parses log record of a record delete on a page. @return pointer to record end or NULL */ UNIV_INTERN byte* page_cur_parse_delete_rec( /*======================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ buf_block_t* block, /*!< in: page or NULL */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr or NULL */ { ulint offset; page_cur_t cursor; if (end_ptr < ptr + 2) { return(NULL); } /* Read the cursor rec offset as a 2-byte ulint */ offset = mach_read_from_2(ptr); ptr += 2; ut_a(offset <= UNIV_PAGE_SIZE); if (block) { page_t* page = buf_block_get_frame(block); mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; rec_t* rec = page + offset; rec_offs_init(offsets_); page_cur_position(rec, block, &cursor); ut_ad(!buf_block_get_page_zip(block) || page_is_comp(page)); page_cur_delete_rec(&cursor, index, rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap), mtr); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } return(ptr); } /***********************************************************//** Deletes a record at the page cursor. The cursor is moved to the next record after the deleted one. */ UNIV_INTERN void page_cur_delete_rec( /*================*/ page_cur_t* cursor, /*!< in/out: a page cursor */ const dict_index_t* index, /*!< in: record descriptor */ const ulint* offsets,/*!< in: rec_get_offsets( cursor->rec, index) */ mtr_t* mtr) /*!< in: mini-transaction handle or NULL */ { page_dir_slot_t* cur_dir_slot; page_dir_slot_t* prev_slot; page_t* page; page_zip_des_t* page_zip; rec_t* current_rec; rec_t* prev_rec = NULL; rec_t* next_rec; ulint cur_slot_no; ulint cur_n_owned; rec_t* rec; page = page_cur_get_page(cursor); page_zip = page_cur_get_page_zip(cursor); /* page_zip_validate() will fail here when btr_cur_pessimistic_delete() invokes btr_set_min_rec_mark(). Then, both "page_zip" and "page" would have the min-rec-mark set on the smallest user record, but "page" would additionally have it set on the smallest-but-one record. Because sloppy page_zip_validate_low() only ignores min-rec-flag differences in the smallest user record, it cannot be used here either. */ current_rec = cursor->rec; ut_ad(rec_offs_validate(current_rec, index, offsets)); ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table)); ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX); ut_ad(mach_read_from_8(page + PAGE_HEADER + PAGE_INDEX_ID) == index->id || recv_recovery_is_on() || (mtr ? mtr->inside_ibuf : dict_index_is_ibuf(index))); /* The record must not be the supremum or infimum record. */ ut_ad(page_rec_is_user_rec(current_rec)); if (page_get_n_recs(page) == 1 && !recv_recovery_is_on()) { /* Empty the page, unless we are applying the redo log during crash recovery. During normal operation, the page_create_empty() gets logged as one of MLOG_PAGE_CREATE, MLOG_COMP_PAGE_CREATE, MLOG_ZIP_PAGE_COMPRESS. */ ut_ad(page_is_leaf(page)); /* Usually, this should be the root page, and the whole index tree should become empty. However, this could also be a call in btr_cur_pessimistic_update() to delete the only record in the page and to insert another one. */ page_cur_move_to_next(cursor); ut_ad(page_cur_is_after_last(cursor)); page_create_empty(page_cur_get_block(cursor), const_cast(index), mtr); return; } /* Save to local variables some data associated with current_rec */ cur_slot_no = page_dir_find_owner_slot(current_rec); ut_ad(cur_slot_no > 0); cur_dir_slot = page_dir_get_nth_slot(page, cur_slot_no); cur_n_owned = page_dir_slot_get_n_owned(cur_dir_slot); /* 0. Write the log record */ if (mtr != 0) { page_cur_delete_rec_write_log(current_rec, index, mtr); } /* 1. Reset the last insert info in the page header and increment the modify clock for the frame */ page_header_set_ptr(page, page_zip, PAGE_LAST_INSERT, NULL); /* The page gets invalid for optimistic searches: increment the frame modify clock only if there is an mini-transaction covering the change. During IMPORT we allocate local blocks that are not part of the buffer pool. */ if (mtr != 0) { buf_block_modify_clock_inc(page_cur_get_block(cursor)); } /* 2. Find the next and the previous record. Note that the cursor is left at the next record. */ ut_ad(cur_slot_no > 0); prev_slot = page_dir_get_nth_slot(page, cur_slot_no - 1); rec = (rec_t*) page_dir_slot_get_rec(prev_slot); /* rec now points to the record of the previous directory slot. Look for the immediate predecessor of current_rec in a loop. */ while(current_rec != rec) { prev_rec = rec; rec = page_rec_get_next(rec); } page_cur_move_to_next(cursor); next_rec = cursor->rec; /* 3. Remove the record from the linked list of records */ page_rec_set_next(prev_rec, next_rec); /* 4. If the deleted record is pointed to by a dir slot, update the record pointer in slot. In the following if-clause we assume that prev_rec is owned by the same slot, i.e., PAGE_DIR_SLOT_MIN_N_OWNED >= 2. */ #if PAGE_DIR_SLOT_MIN_N_OWNED < 2 # error "PAGE_DIR_SLOT_MIN_N_OWNED < 2" #endif ut_ad(cur_n_owned > 1); if (current_rec == page_dir_slot_get_rec(cur_dir_slot)) { page_dir_slot_set_rec(cur_dir_slot, prev_rec); } /* 5. Update the number of owned records of the slot */ page_dir_slot_set_n_owned(cur_dir_slot, page_zip, cur_n_owned - 1); /* 6. Free the memory occupied by the record */ btr_blob_dbg_remove_rec(current_rec, const_cast(index), offsets, "delete"); page_mem_free(page, page_zip, current_rec, index, offsets); /* 7. Now we have decremented the number of owned records of the slot. If the number drops below PAGE_DIR_SLOT_MIN_N_OWNED, we balance the slots. */ if (cur_n_owned <= PAGE_DIR_SLOT_MIN_N_OWNED) { page_dir_balance_slot(page, page_zip, cur_slot_no); } #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ } #ifdef UNIV_COMPILE_TEST_FUNCS /*******************************************************************//** Print the first n numbers, generated by page_cur_lcg_prng() to make sure (visually) that it works properly. */ void test_page_cur_lcg_prng( /*===================*/ int n) /*!< in: print first n numbers */ { int i; unsigned long long rnd; for (i = 0; i < n; i++) { rnd = page_cur_lcg_prng(); printf("%llu\t%%2=%llu %%3=%llu %%5=%llu %%7=%llu %%11=%llu\n", rnd, rnd % 2, rnd % 3, rnd % 5, rnd % 7, rnd % 11); } } #endif /* UNIV_COMPILE_TEST_FUNCS */