/* Copyright (C) 2000 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* ======================================================================= NOTE: this library implements SQL standard "exact numeric" type and is not at all generic, but rather intentinally crippled to follow the standard :) ======================================================================= Quoting the standard (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003) 4.4.2 Characteristics of numbers, page 27: An exact numeric type has a precision P and a scale S. P is a positive integer that determines the number of significant digits in a particular radix R, where R is either 2 or 10. S is a non-negative integer. Every value of an exact numeric type of scale S is of the form n*10^{-S}, where n is an integer such that ­-R^P <= n <= R^P. [...] If an assignment of some number would result in a loss of its most significant digit, an exception condition is raised. If least significant digits are lost, implementation-defined rounding or truncating occurs, with no exception condition being raised. [...] Whenever an exact or approximate numeric value is assigned to an exact numeric value site, an approximation of its value that preserves leading significant digits after rounding or truncating is represented in the declared type of the target. The value is converted to have the precision and scale of the target. The choice of whether to truncate or round is implementation-defined. [...] All numeric values between the smallest and the largest value, inclusive, in a given exact numeric type have an approximation obtained by rounding or truncation for that type; it is implementation-defined which other numeric values have such approximations. 5.3 , page 143 ::= [ [ ] ] | 6.1 , page 165: 19) The of an shall not be greater than the of the . 20) For the s DECIMAL and NUMERIC: a) The maximum value of is implementation-defined. shall not be greater than this value. b) The maximum value of is implementation-defined. shall not be greater than this maximum value. 21) NUMERIC specifies the data type exact numeric, with the decimal precision and scale specified by the and . 22) DECIMAL specifies the data type exact numeric, with the decimal scale specified by the and the implementation-defined decimal precision equal to or greater than the value of the specified . 6.26 , page 241: 1) If the declared type of both operands of a dyadic arithmetic operator is exact numeric, then the declared type of the result is an implementation-defined exact numeric type, with precision and scale determined as follows: a) Let S1 and S2 be the scale of the first and second operands respectively. b) The precision of the result of addition and subtraction is implementation-defined, and the scale is the maximum of S1 and S2. c) The precision of the result of multiplication is implementation-defined, and the scale is S1 + S2. d) The precision and scale of the result of division are implementation-defined. */ #include #include #include #include /* for my_alloca */ typedef decimal_digit dec1; typedef longlong dec2; #define DIG_PER_DEC1 9 #define DIG_MASK 100000000 #define DIG_BASE 1000000000 #define DIG_BASE2 LL(1000000000000000000) #define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1) static const dec1 powers10[DIG_PER_DEC1+1]={ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 3, 4, 4}; #define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \ (d)->buf[(d)->len-1] | 1)) #define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \ do \ { \ if (unlikely(intg1+frac1 > (len))) \ { \ if (unlikely(intg1 > (len))) \ { \ intg1=(len); \ frac1=0; \ error=E_DEC_OVERFLOW; \ } \ else \ { \ frac1=(len)-intg1; \ error=E_DEC_TRUNCATED; \ } \ } \ else \ error=E_DEC_OK; \ } while(0) #define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \ do \ { \ dec1 a=(from1)+(from2)+(carry); \ if (((carry)= a >= DIG_BASE)) /* no division here! */ \ a-=DIG_BASE; \ (to)=a; \ } while(0) #define ADD2(to, from1, from2, carry) \ do \ { \ dec1 a=(from1)+(from2)+(carry); \ if (((carry)= a >= DIG_BASE)) \ a-=DIG_BASE; \ if (unlikely(a >= DIG_BASE)) \ { \ a-=DIG_BASE; \ carry++; \ } \ (to)=a; \ } while(0) #define SUB(to, from1, from2, carry) /* to=from1-from2 */ \ do \ { \ dec1 a=(from1)-(from2)-(carry); \ if (((carry)= a < 0)) \ a+=DIG_BASE; \ (to)=a; \ } while(0) #define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \ do \ { \ dec1 a=(from1)-(from2)-(carry); \ if (((carry)= a < 0)) \ a+=DIG_BASE; \ if (unlikely(a < 0)) \ { \ a+=DIG_BASE; \ carry++; \ } \ (to)=a; \ } while(0) /* Convert decimal to its printable string representation SYNOPSIS decimal2string() from - value to convert to - points to buffer where string representation should be stored *to_len - in: size of to buffer out: length of the actually written string RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ int decimal2string(decimal *from, char *to, int *to_len) { int len, intg=from->intg, frac=from->frac, i; int error=E_DEC_OK; char *s=to; dec1 *buf, *buf0=from->buf, tmp; DBUG_ASSERT(*to_len > 2+from->sign); /* removing leading zeroes */ i=((intg-1) % DIG_PER_DEC1)+1; while (intg > 0 && *buf0 == 0) { intg-=i; i=DIG_PER_DEC1; buf0++; } if (intg > 0) { for (i=(intg-1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ; DBUG_ASSERT(intg > 0); } else intg=0; if (unlikely(intg+frac==0)) { intg=1; tmp=0; buf0=&tmp; } len= from->sign + intg + test(frac) + frac; if (unlikely(len > --*to_len)) /* reserve one byte for \0 */ { int i=len-*to_len; error= (frac && i <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW; if (frac && i >= frac + 1) i--; if (i > frac) { intg-= i-frac; frac= 0; } else frac-=i; len= from->sign + intg + test(frac) + frac; } *to_len=len; s[len]=0; if (from->sign) *s++='-'; if (frac) { char *s1=s+intg; buf=buf0+ROUND_UP(intg); *s1++='.'; for (; frac>0; frac-=DIG_PER_DEC1) { dec1 x=*buf++; for (i=min(frac, DIG_PER_DEC1); i; i--) { dec1 y=x/DIG_MASK; *s1++='0'+(uchar)y; x-=y*DIG_MASK; x*=10; } } } s+=intg; for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1) { dec1 x=*--buf; for (i=min(intg, DIG_PER_DEC1); i; i--) { dec1 y=x/10; *--s='0'+(uchar)(x-y*10); x=y; } } return error; } /* Convert string to decimal SYNOPSIS str2decl() from - value to convert to - decimal where where the result will be stored to->buf and to->len must be set. end - if not NULL, *end will be set to the char where conversion ended fixed - use to->intg, to->frac as limits for input number NOTE to->intg and to->frac can be modified even when fixed=1 (but only decreased, in this case) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM */ static int str2dec(char *from, decimal *to, char **end, my_bool fixed) { char *s=from, *s1; int i, intg, frac, error, intg1, frac1; dec1 x,*buf; sanity(to); while (my_isspace(&my_charset_latin1, *s)) s++; if ((to->sign= (*s == '-'))) s++; else if (*s == '+') s++; s1=s; while (my_isdigit(&my_charset_latin1, *s)) s++; intg=s-s1; if (*s=='.') { char *s2=s+1; while (my_isdigit(&my_charset_latin1, *s2)) s2++; frac=s2-s-1; } else frac=0; if (end) *end=s1+intg+frac+test(frac); if (frac+intg == 0) return E_DEC_BAD_NUM; if (fixed) { if (frac > to->frac) { error=E_DEC_TRUNCATED; frac=to->frac; } if (intg > to->intg) { error=E_DEC_OVERFLOW; intg=to->intg; } intg1=ROUND_UP(intg); frac1=ROUND_UP(frac); if (intg1+frac1 > to->len) return E_DEC_OOM; } else { intg1=ROUND_UP(intg); frac1=ROUND_UP(frac); FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); if (unlikely(error)) { frac=frac1*DIG_PER_DEC1; if (error == E_DEC_OVERFLOW) intg=intg1*DIG_PER_DEC1; } } to->intg=intg; to->frac=frac; buf=to->buf+intg1; s1=s; for (x=0, i=0; intg; intg--) { x+= (*--s - '0')*powers10[i]; if (unlikely(++i == DIG_PER_DEC1)) { *--buf=x; x=0; i=0; } } if (i) *--buf=x; buf=to->buf+intg1; for (x=0, i=0; frac; frac--) { x= (*++s1 - '0') + x*10; if (unlikely(++i == DIG_PER_DEC1)) { *buf++=x; x=0; i=0; } } if (i) *buf=x*powers10[DIG_PER_DEC1-i]; return error; } int string2decimal(char *from, decimal *to, char **end) { return str2dec(from, to, end, 0); } int string2decimal_fixed(char *from, decimal *to, char **end) { return str2dec(from, to, end, 1); } /* Convert decimal to double SYNOPSIS decimal2double() from - value to convert to - result will be stored there RETURN VALUE E_DEC_OK */ int decimal2double(decimal *from, double *to) { double x=0, t=DIG_BASE; int intg, frac; dec1 *buf=from->buf; for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) x=x*DIG_BASE + *buf++; for (frac=from->frac; frac > 0; frac-=DIG_PER_DEC1, t*=DIG_BASE) x+=*buf++/t; *to=from->sign ? -x : x; return E_DEC_OK; } /* Convert double to decimal SYNOPSIS double2decimal() from - value to convert to - result will be stored there RETURN VALUE E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED */ int double2decimal(double from, decimal *to) { /* TODO: fix it, when we'll have dtoa */ char s[400]; sprintf(s, "%f", from); return string2decimal(s, to, 0); } static int ull2dec(ulonglong from, decimal *to) { int intg1, error=E_DEC_OK; ulonglong x=from; dec1 *buf; sanity(to); for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE); if (unlikely(intg1 > to->len)) { intg1=to->len; error=E_DEC_OVERFLOW; } to->frac=0; to->intg=intg1*DIG_PER_DEC1; for (buf=to->buf+intg1; intg1; intg1--) { ulonglong y=x/DIG_BASE; *--buf=(dec1)(x-y*DIG_BASE); x=y; } return error; } int ulonglong2decimal(ulonglong from, decimal *to) { to->sign=0; return ull2dec(from, to); } int longlong2decimal(longlong from, decimal *to) { if ((to->sign= from < 0)) return ull2dec(-from, to); return ull2dec(from, to); } int decimal2ulonglong(decimal *from, ulonglong *to) { dec1 *buf=from->buf; ulonglong x=0; int intg; if (from->sign) { *to=ULL(0); return E_DEC_OVERFLOW; } for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) { ulonglong y=x; x=x*DIG_BASE + *buf++; if (unlikely(x < y)) { *to=y; return E_DEC_OVERFLOW; } } *to=x; return from->frac ? E_DEC_TRUNCATED : E_DEC_OK; } int decimal2longlong(decimal *from, longlong *to) { dec1 *buf=from->buf; longlong x=0; int intg; for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) { longlong y=x; /* Attention: trick! we're calculating -|from| instead of |from| here because |MIN_LONGLONG| > MAX_LONGLONG so we can convert -9223372036854775808 correctly */ x=x*DIG_BASE - *buf++; if (unlikely(x > y)) { *to= from->sign ? y : -y; return E_DEC_OVERFLOW; } } /* boundary case: 9223372036854775808 */ if (unlikely(from->sign==0 && x < 0 && -x < 0)) { *to= -1-x; return E_DEC_OVERFLOW; } *to=from->sign ? x : -x; return from->frac ? E_DEC_TRUNCATED : E_DEC_OK; } /* Convert decimal to its binary fixed-length representation two representations of the same length can be compared with memcmp with the correct -1/0/+1 result SYNOPSIS decimal2bin() from - value to convert to - points to buffer where string representation should be stored precision/scale - see decimal_bin_size() below NOTE the buffer is assumed to be of the size decimal_bin_size(precision, scale) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ int decimal2bin(decimal *from, char *to, int precision, int frac) { dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1; int error=E_DEC_OK, intg=precision-frac, intg0=intg/DIG_PER_DEC1, frac0=frac/DIG_PER_DEC1, intg0x=intg-intg0*DIG_PER_DEC1, frac0x=frac-frac0*DIG_PER_DEC1, intg1=from->intg/DIG_PER_DEC1, frac1=from->frac/DIG_PER_DEC1, intg1x=from->intg-intg1*DIG_PER_DEC1, frac1x=from->frac-frac1*DIG_PER_DEC1, isize0=intg0*sizeof(dec1)+dig2bytes[intg0x], fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x], isize1=intg1*sizeof(dec1)+dig2bytes[intg1x], fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x]; if (isize0 < isize1) { buf1+=intg1-intg0+(intg1x>0)-(intg0x>0); intg1=intg0; intg1x=intg0x; error=E_DEC_OVERFLOW; } else if (isize0 > isize1) { while (isize0-- > isize1) *to++= (char)mask; } if (fsize0 < fsize1) { frac1=frac0; frac1x=frac0x; error=E_DEC_TRUNCATED; } else if (fsize0 > fsize1 && frac1x) { if (frac0 == frac1) frac1x=frac0x; else { frac1++; frac1x=0; } } /* intg1x part */ if (intg1x) { int i=dig2bytes[intg1x]; dec1 x=(*buf1++ % powers10[intg1x]) ^ mask; switch (i) { case 1: mi_int1store(to, x); break; case 2: mi_int2store(to, x); break; case 3: mi_int3store(to, x); break; case 4: mi_int4store(to, x); break; default: DBUG_ASSERT(0); } to+=i; } /* intg1+frac1 part */ for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1)) { dec1 x=*buf1++ ^ mask; DBUG_ASSERT(sizeof(dec1) == 4); mi_int4store(to, x); } /* frac1x part */ if (frac1x) { int i=dig2bytes[frac1x]; dec1 x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask; switch (i) { case 1: mi_int1store(to, x); break; case 2: mi_int2store(to, x); break; case 3: mi_int3store(to, x); break; case 4: mi_int4store(to, x); break; default: DBUG_ASSERT(0); } to+=i; } if (fsize0 > fsize1) { while (fsize0-- > fsize1) *to++=(uchar)mask; } return error; } /* Restores decimal from its binary fixed-length representation SYNOPSIS bin2decimal() from - value to convert to - result precision/scale - see decimal_bin_size() below NOTE see decimal2bin() the buffer is assumed to be of the size decimal_bin_size(precision, scale) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ int bin2decimal(char *from, decimal *to, int precision, int scale) { int error=E_DEC_OK, intg=precision-scale, intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1, intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0); dec1 *buf=to->buf, mask=(*from <0) ? -1 : 0; char *stop; sanity(to); FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); if (unlikely(error)) { if (intg1 < intg0+(intg0x>0)) { from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1); frac0=frac0x=intg0x=0; intg0=intg1; } else { frac0x=0; frac0=frac1; } } to->sign=(mask != 0); to->intg=intg0*DIG_PER_DEC1+intg0x; to->frac=frac0*DIG_PER_DEC1+frac0x; if (intg0x) { int i=dig2bytes[intg0x]; dec1 x; switch (i) { case 1: x=mi_sint1korr(from); break; case 2: x=mi_sint2korr(from); break; case 3: x=mi_sint3korr(from); break; case 4: x=mi_sint4korr(from); break; default: DBUG_ASSERT(0); } from+=i; *buf=x ^ mask; if (buf > to->buf || *buf != 0) buf++; else to->intg-=intg0x; } for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1)) { DBUG_ASSERT(sizeof(dec1) == 4); *buf=mi_sint4korr(from) ^ mask; if (buf > to->buf || *buf != 0) buf++; else to->intg-=DIG_PER_DEC1; } DBUG_ASSERT(to->intg >=0); for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1)) { DBUG_ASSERT(sizeof(dec1) == 4); *buf=mi_sint4korr(from) ^ mask; buf++; } if (frac0x) { int i=dig2bytes[frac0x]; dec1 x; switch (i) { case 1: x=mi_sint1korr(from); break; case 2: x=mi_sint2korr(from); break; case 3: x=mi_sint3korr(from); break; case 4: x=mi_sint4korr(from); break; default: DBUG_ASSERT(0); } *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x]; buf++; } return error; } /* Returns the size of array to hold a decimal with given precision and scale RETURN VALUE size in dec1 (multiply by sizeof(dec1) to get the size if bytes) */ int decimal_size(int precision, int scale) { DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); return ROUND_UP(precision-scale)+ROUND_UP(scale); } /* Returns the size of array to hold a binary representation of a decimal RETURN VALUE size in bytes */ int decimal_bin_size(int precision, int scale) { int intg=precision-scale, intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1; DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); return intg0*sizeof(dec1)+dig2bytes[intg0x]+ frac0*sizeof(dec1)+dig2bytes[frac0x]; } /* Rounds the decimal to "scale" digits SYNOPSIS decimal_round() from - decimal to round, to - result buffer. from==to is allowed scale - to what position to round. can be negative! mode - round to nearest even or truncate NOTES scale can be negative ! one TRUNCATED error (line XXX below) isn't treated very logical :( RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED */ int decimal_round(decimal *from, decimal *to, int scale, decimal_round_mode mode) { int frac0=ROUND_UP(scale), frac1=ROUND_UP(from->frac), intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len; dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0; sanity(to); if (unlikely(frac0+intg0 > len)) { frac0=len-intg0; scale=frac0*DIG_PER_DEC1; error=E_DEC_TRUNCATED; } if (scale+from->intg <=0) { decimal_make_zero(to); return E_DEC_OK; } if (to != from) { dec1 *end=buf0+intg0+min(frac1, frac0); while (buf0 < end) *buf1++ = *buf0++; buf0=from->buf; buf1=to->buf; to->sign=from->sign; to->intg=min(from->intg, len*DIG_PER_DEC1); } if (frac0 > frac1) { buf1+=intg0+frac1; while (frac0-- > frac1) *buf1++=0; goto done; } if (scale >= from->frac) goto done; /* nothing to do */ DBUG_ASSERT(frac0+intg0 > 0); buf0+=intg0+frac0-1; buf1+=intg0+frac0-1; if (scale == frac0*DIG_PER_DEC1) { if (mode != TRUNCATE) { x=buf0[1]/DIG_MASK; if (x > 5 || (x == 5 && (mode == HALF_UP || *buf0 & 1))) (*buf1)++; } } else { int pos=frac0*DIG_PER_DEC1-scale-1; if (mode != TRUNCATE) { x=*buf1 / powers10[pos]; y=x % 10; if (y > 5 || (y == 5 && (mode == HALF_UP || (x/10) & 1))) x+=10; *buf1=powers10[pos]*(x-y); } else *buf1=(*buf1/powers10[pos+1])*powers10[pos+1]; } if (*buf1 >= DIG_BASE) { carry=1; *buf1-=DIG_BASE; while (carry && --buf1 >= to->buf) ADD(*buf1, *buf1, 0, carry); if (unlikely(carry)) { /* shifting the number to create space for new digit */ if (frac0+intg0 >= len) { frac0--; scale=frac0*DIG_PER_DEC1; error=E_DEC_TRUNCATED; /* XXX */ } for (buf1=to->buf+frac0+intg0; buf1 > to->buf; buf1--) { buf1[0]=buf1[-1]; } *buf1=1; } } if (scale<0) scale=0; done: to->frac=scale; return error; } /* Returns the size of the result of the operation SYNOPSIS decimal_result_size() from1 - operand of the unary operation or first operand of the binary operation from2 - second operand of the binary operation op - operation. one char '+', '-', '*', '/' are allowed others may be added later param - extra param to the operation. unused for '+', '-', '*' scale increment for '/' NOTE returned valued may be larger than the actual buffer requred in the operation, as decimal_result_size, by design, operates on precision/scale values only and not on the actual decimal number RETURN VALUE size of to->buf array in dec1 elements. to get size in bytes multiply by sizeof(dec1) */ int decimal_result_size(decimal *from1, decimal *from2, char op, int param) { switch (op) { case '-': return ROUND_UP(max(from1->intg, from2->intg)) + ROUND_UP(max(from1->frac, from2->frac)); case '+': return ROUND_UP(max(from1->intg, from2->intg)+1) + ROUND_UP(max(from1->frac, from2->frac)); case '*': return ROUND_UP(from1->intg+from2->intg)+ ROUND_UP(from1->frac)+ROUND_UP(from2->frac); case '/': return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param); default: DBUG_ASSERT(0); } return -1; /* shut up the warning */ } static int do_add(decimal *from1, decimal *from2, decimal *to) { int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), frac0=max(frac1, frac2), intg0=max(intg1, intg2), error; dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry; sanity(to); /* is there a need for extra word because of carry ? */ x=intg1 > intg2 ? from1->buf[0] : intg2 > intg1 ? from2->buf[0] : from1->buf[0] + from2->buf[0] ; if (unlikely(x > DIG_MASK*9)) /* yes, there is */ { intg0++; to->buf[0]=0; /* safety */ } FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); buf0=to->buf+intg0+frac0; to->sign=from1->sign; to->frac=max(from1->frac, from2->frac); to->intg=intg0*DIG_PER_DEC1; if (unlikely(error)) { set_if_smaller(to->frac, frac0*DIG_PER_DEC1); set_if_smaller(frac1, frac0); set_if_smaller(frac2, frac0); set_if_smaller(intg1, intg0); set_if_smaller(intg2, intg0); } /* part 1 - max(frac) ... min (frac) */ if (frac1 > frac2) { buf1=from1->buf+intg1+frac1; stop=from1->buf+intg1+frac2; buf2=from2->buf+intg2+frac2; stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0); } else { buf1=from2->buf+intg2+frac2; stop=from2->buf+intg2+frac1; buf2=from1->buf+intg1+frac1; stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0); } while (buf1 > stop) *--buf0=*--buf1; /* part 2 - min(frac) ... min(intg) */ carry=0; while (buf1 > stop2) { ADD(*--buf0, *--buf1, *--buf2, carry); } /* part 3 - min(intg) ... max(intg) */ buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) : ((stop=from2->buf)+intg2-intg1) ; while (buf1 > stop) { ADD(*--buf0, *--buf1, 0, carry); } if (unlikely(carry)) *--buf0=1; DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1); return error; } /* to=from1-from2. if to==0, return -1/0/+1 - the result of the comparison */ static int do_sub(decimal *from1, decimal *from2, decimal *to) { int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac); int frac0=max(frac1, frac2), error; dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0; /* let carry:=1 if from2 > from1 */ start1=buf1=from1->buf; stop1=buf1+intg1; start2=buf2=from2->buf; stop2=buf2+intg2; if (unlikely(*buf1 == 0)) { while (buf1 < stop1 && *buf1 == 0) buf1++; start1=buf1; intg1=stop1-buf1; } if (unlikely(*buf2 == 0)) { while (buf2 < stop2 && *buf2 == 0) buf2++; start2=buf2; intg2=stop2-buf2; } if (intg2 > intg1) carry=1; else if (intg2 == intg1) { while (unlikely(stop1[frac1-1] == 0)) frac1--; while (unlikely(stop2[frac2-1] == 0)) frac2--; while (buf1 < stop1+frac1 && buf2 < stop2+frac2 && *buf1 == *buf2) buf1++, buf2++; if (buf1 < stop1+frac1) if (buf2 < stop2+frac2) carry= *buf2 > *buf1; else carry= 0; else if (buf2 < stop2+frac2) carry=1; else /* short-circuit everything: from1 == from2 */ { if (to == 0) /* decimal_cmp() */ return 0; decimal_make_zero(to); return E_DEC_OK; } } if (to == 0) /* decimal_cmp() */ return carry == from1->sign ? 1 : -1; sanity(to); to->sign=from1->sign; /* ensure that always from1 > from2 (and intg1 >= intg2) */ if (carry) { swap_variables(decimal *,from1,from1); swap_variables(dec1 *,start1, start2); swap_variables(int,intg1,intg2); swap_variables(int,frac1,frac2); to->sign= 1 - to->sign; } FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error); buf0=to->buf+intg1+frac0; to->frac=max(from1->frac, from2->frac); to->intg=intg1*DIG_PER_DEC1; if (unlikely(error)) { set_if_smaller(to->frac, frac0*DIG_PER_DEC1); set_if_smaller(frac1, frac0); set_if_smaller(frac2, frac0); set_if_smaller(intg2, intg1); } carry=0; /* part 1 - max(frac) ... min (frac) */ if (frac1 > frac2) { buf1=start1+intg1+frac1; stop1=start1+intg1+frac2; buf2=start2+intg2+frac2; while (buf1 > stop1) *--buf0=*--buf1; } else { buf1=start1+intg1+frac1; buf2=start2+intg2+frac2; stop2=start2+intg2+frac1; while (buf2 > stop2) { SUB(*--buf0, 0, *--buf2, carry); } } /* part 2 - min(frac) ... intg2 */ while (buf2 > start2) { SUB(*--buf0, *--buf1, *--buf2, carry); } /* part 3 - intg2 ... intg1 */ while (carry && buf1 > start1) { SUB(*--buf0, *--buf1, 0, carry); } while (buf1 > start1) *--buf0=*--buf1; while (buf0 > to->buf) *--buf0=0; return error; } int decimal_add(decimal *from1, decimal *from2, decimal *to) { if (likely(from1->sign == from2->sign)) return do_add(from1, from2, to); return do_sub(from1, from2, to); } int decimal_sub(decimal *from1, decimal *from2, decimal *to) { if (likely(from1->sign == from2->sign)) return do_sub(from1, from2, to); return do_add(from1, from2, to); } int decimal_cmp(decimal *from1, decimal *from2) { if (likely(from1->sign == from2->sign)) return do_sub(from1, from2, 0); return from1->sign > from2->sign ? -1 : 1; } /* multiply two decimals SYNOPSIS decimal_mul() from1, from2 - factors to - product RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW; NOTES in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9, and 63-digit number will take only 7 dec1 words (basically a 7-digit "base 999999999" number). Thus there's no need in fast multiplication algorithms, 7-digit numbers can be multiplied with a naive O(n*n) method. XXX if this library is to be used with huge numbers of thousands of digits, fast multiplication must be implemented. */ int decimal_mul(decimal *from1, decimal *from2, decimal *to) { int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), intg0=ROUND_UP(from1->intg+from2->intg), frac0=frac1+frac2, error, i, j; dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0, *start2, *stop2, *stop1, *start0, carry; sanity(to); i=intg0; j=frac0; FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); to->sign=from1->sign != from2->sign; to->frac=from1->frac+from2->frac; to->intg=intg0*DIG_PER_DEC1; if (unlikely(error)) { set_if_smaller(to->frac, frac0*DIG_PER_DEC1); set_if_smaller(to->intg, intg0*DIG_PER_DEC1); if (unlikely(i > intg0)) { i-=intg0; j=i >> 1; intg1-= j; intg2-=i-j; frac1=frac2=0; /* frac0 is already 0 here */ } else { j-=frac0; i=j >> 1; frac1-= i; frac2-=j-i; } } start0=to->buf+intg0+frac0-1; start2=buf2+frac2-1; stop1=buf1-intg1; stop2=buf2-intg2; bzero(to->buf, (intg0+frac0)*sizeof(dec1)); for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--) { carry=0; for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--) { dec1 hi, lo; dec2 p= ((dec2)*buf1) * ((dec2)*buf2); hi=(dec1)(p/DIG_BASE); lo=(dec1)(p-((dec2)hi)*DIG_BASE); ADD2(*buf0, *buf0, lo, carry); carry+=hi; } for (; carry; buf0--) ADD(*buf0, *buf0, 0, carry); } return error; } /* naive division algorithm (Knuth's Algorithm D in 4.3.1) - it's ok for short numbers also we're using alloca() to allocate a temporary buffer XXX if this library is to be used with huge numbers of thousands of digits, fast division must be implemented and alloca should be changed to malloc (or at least fallback to malloc if alloca() fails) but then, decimal_mod() should be rewritten too :( */ static int do_div_mod(decimal *from1, decimal *from2, decimal *to, decimal *mod, int scale_incr) { int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1, frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2, error, i, intg0, frac0, len1, len2, dlen1, dintg; dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1, *start2, *stop2, *stop1, *stop0, norm2, carry, *start1; dec2 norm_factor, x, guess, y; if (mod) to=mod; sanity(to); /* removing all the leading zeroes */ i=((prec1-1) % DIG_PER_DEC1)+1; while (prec1 > 0 && *buf1 == 0) { prec1-=i; i=DIG_PER_DEC1; buf1++; } if (prec1 <= 0) { /* short-circuit everything: from1 == 0 */ decimal_make_zero(to); return E_DEC_OK; } for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ; DBUG_ASSERT(prec1 > 0); i=((prec2-1) % DIG_PER_DEC1)+1; while (prec2 > 0 && *buf2 == 0) { prec2-=i; i=DIG_PER_DEC1; buf2++; } if (prec2 <= 0) /* short-circuit everything: from2 == 0 */ return E_DEC_DIV_ZERO; for (i=(prec2-1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ; DBUG_ASSERT(prec2 > 0); /* let's fix scale_incr, taking into account frac1,frac2 increase */ if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0) scale_incr=0; dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2); if (dintg < 0) { dintg/=DIG_PER_DEC1; intg0=0; } else intg0=ROUND_UP(dintg); if (mod) { /* we're calculating N1 % N2. The result will have frac=max(frac1, frac2), as for subtraction intg=intg2 */ to->sign=from1->sign; to->frac=max(from1->frac, from2->frac); frac0=0; } else { /* we're calculating N1/N2. N1 is in the buf1, has prec1 digits N2 is in the buf2, has prec2 digits. Scales are frac1 and frac2 accordingly. Thus, the result will have frac = ROUND_UP(frac1+frac2+scale_incr) and intg = (prec1-frac1) - (prec2-frac2) + 1 prec = intg+frac */ frac0=ROUND_UP(frac1+frac2+scale_incr); FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); to->sign=from1->sign != from2->sign; to->intg=intg0*DIG_PER_DEC1; to->frac=frac0*DIG_PER_DEC1; } buf0=to->buf; stop0=buf0+intg0+frac0; while (dintg++ < 0) *buf0++=0; len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1); if (!(tmp1=my_alloca(len1*sizeof(dec1)))) return E_DEC_OOM; memcpy(tmp1, buf1, i*sizeof(dec1)); bzero(tmp1+i, (len1-i)*sizeof(dec1)); start1=tmp1; stop1=start1+len1; start2=buf2; stop2=buf2+ROUND_UP(prec2)-1; /* removing end zeroes */ while (*stop2 == 0 && stop2 >= start2) stop2--; len2= ++stop2 - start2; /* calculating norm2 (normalized *start2) - we need *start2 to be large (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to normalize input numbers (as we don't make a copy of the divisor). Thus we normalize first dec1 of buf2 only, and we'll normalize *start1 on the fly for the purpose of guesstimation only. It's also faster, as we're saving on normalization of buf2 */ norm_factor=DIG_BASE/(*start2+1); norm2=(dec1)(norm_factor*start2[0]); if (likely(len2>1)) norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE); /* main loop */ for ( ; buf0 < stop0; buf0++) { /* short-circuit, if possible */ if (unlikely(*start1 == 0)) { start1++; *buf0=0; continue; } /* D3: make a guess */ if (*start1 >= *start2) { x=start1[0]; y=start1[1]; dlen1=len2-1; } else { x=((dec2)start1[0])*DIG_BASE+start1[1]; y=start1[2]; dlen1=len2; } guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2; if (unlikely(guess >= DIG_BASE)) guess=DIG_BASE-1; if (likely(len2>1)) { /* hmm, this is a suspicious trick - I removed normalization here */ if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y) guess--; if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)) guess--; DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y); } /* D4: multiply and subtract */ buf2=stop2; buf1=start1+dlen1; DBUG_ASSERT(buf1 < stop1); for (carry=0; buf2 > start2; buf1--) { dec1 hi, lo; x=guess * (*--buf2); hi=(dec1)(x/DIG_BASE); lo=(dec1)(x-((dec2)hi)*DIG_BASE); SUB2(*buf1, *buf1, lo, carry); carry+=hi; } for (; buf1 >= start1; buf1--) { SUB2(*buf1, *buf1, 0, carry); } /* D5: check the remainder */ if (unlikely(carry)) { DBUG_ASSERT(carry==1); /* D6: correct the guess */ guess--; buf2=stop2; buf1=start1+dlen1; for (carry=0; buf2 > start2; buf1--) { ADD(*buf1, *buf1, *--buf2, carry); } for (; buf1 >= start1; buf1--) { SUB2(*buf1, *buf1, 0, carry); } DBUG_ASSERT(carry==1); } *buf0=(dec1)guess; if (*start1 == 0) start1++; } if (mod) { /* now the result is in tmp1, it has intg=prec1-frac1 frac=max(frac1, frac2)=to->frac */ buf0=to->buf; intg0=ROUND_UP(prec1-frac1)-(start1-tmp1); frac0=ROUND_UP(to->frac); error=E_DEC_OK; if (intg0<=0) { if (unlikely(-intg0 >= to->len)) { decimal_make_zero(to); error=E_DEC_TRUNCATED; goto done; } stop1=start1+frac0; frac0+=intg0; to->intg=0; while (intg0++ < 0) *buf0++=0; } else { if (unlikely(intg0 > to->len)) { frac0=0; intg0=to->len; error=E_DEC_OVERFLOW; goto done; } DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg)); stop1=start1+frac0+intg0; to->intg=min(intg0*DIG_PER_DEC1, from2->intg); } if (unlikely(intg0+frac0 > to->len)) { stop1-=to->len-frac0-intg0; frac0=to->len-intg0; to->frac=frac0*DIG_PER_DEC1; error=E_DEC_TRUNCATED; } while (start1 < stop1) *buf0++=*start1++; } done: my_afree(tmp1); return error; } /* division of two decimals SYNOPSIS decimal_div() from1 - dividend from2 - divisor to - quotient RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; NOTES see do_div_mod() */ int decimal_div(decimal *from1, decimal *from2, decimal *to, int scale_incr) { return do_div_mod(from1, from2, to, 0, scale_incr); } /* modulus SYNOPSIS decimal_mod() from1 - dividend from2 - divisor to - modulus RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; NOTES see do_div_mod() DESCRIPTION the modulus R in R = M mod N is defined as 0 <= |R| < |M| sign R == sign M R = M - k*N, where k is integer thus, there's no requirement for M or N to be integers */ int decimal_mod(decimal *from1, decimal *from2, decimal *to) { return do_div_mod(from1, from2, 0, to, 0); } #ifdef MAIN int full=0; decimal a, b, c; char buf1[100], buf2[100], buf3[100]; void dump_decimal(decimal *d) { int i; printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign); for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++) printf("%09d, ", d->buf[i]); printf("%09d} */ ", d->buf[i]); } void print_decimal(decimal *d) { char s[100]; int slen=sizeof(s); if (full) dump_decimal(d); decimal2string(d, s, &slen); printf("'%s'", s); } void test_d2s() { char s[100]; int slen, res; /***********************************/ printf("==== decimal2string ====\n"); a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0; slen=sizeof(s); res=decimal2string(&a, s, &slen); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); a.buf[1]=987000000; a.frac=3; slen=sizeof(s); res=decimal2string(&a, s, &slen); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); a.sign=1; slen=sizeof(s); res=decimal2string(&a, s, &slen); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); slen=8; res=decimal2string(&a, s, &slen); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); slen=5; res=decimal2string(&a, s, &slen); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); a.buf[0]=987000000; a.frac=3; a.intg=0; slen=sizeof(s); res=decimal2string(&a, s, &slen); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); } void test_s2d(char *s) { char s1[100]; sprintf(s1, "'%s'", s); printf("len=%2d %-30s => res=%d ", a.len, s1, string2decimal(s, &a, 0)); print_decimal(&a); printf("\n"); } void test_d2f(char *s) { char s1[100]; double x; int res; sprintf(s1, "'%s'", s); string2decimal(s, &a, 0); res=decimal2double(&a, &x); if (full) dump_decimal(&a); printf("%-40s => res=%d %.*g\n", s1, res, a.intg+a.frac, x); } void test_d2b2d(char *str, int p, int s) { char s1[100], buf[100]; double x; int res, i, size=decimal_bin_size(p, s); sprintf(s1, "'%s'", str); string2decimal(str, &a, 0); res=decimal2bin(&a, buf, p, s); printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size); if (full) { printf("0x"); for (i=0; i < size; i++) printf("%02x", ((uchar *)buf)[i]); } res=bin2decimal(buf, &a, p, s); printf(" => res=%d ", res); print_decimal(&a); printf("\n"); } void test_f2d(double from) { int res; res=double2decimal(from, &a); printf("%-40.*f => res=%d ", DBL_DIG-2, from, res); print_decimal(&a); printf("\n"); } void test_ull2d(ulonglong from) { char s[100]; int res; res=ulonglong2decimal(from, &a); longlong10_to_str(from,s,10); printf("%-40s => res=%d ", s, res); print_decimal(&a); printf("\n"); } void test_ll2d(longlong from) { char s[100]; int res; res=longlong2decimal(from, &a); longlong10_to_str(from,s,-10); printf("%-40s => res=%d ", s, res); print_decimal(&a); printf("\n"); } void test_d2ull(char *s) { char s1[100]; ulonglong x; int res; string2decimal(s, &a, 0); res=decimal2ulonglong(&a, &x); if (full) dump_decimal(&a); longlong10_to_str(x,s1,10); printf("%-40s => res=%d %s\n", s, res, s1); } void test_d2ll(char *s) { char s1[100]; longlong x; int res; string2decimal(s, &a, 0); res=decimal2longlong(&a, &x); if (full) dump_decimal(&a); longlong10_to_str(x,s1,-10); printf("%-40s => res=%d %s\n", s, res, s1); } void test_da(char *s1, char *s2) { char s[100]; int res; sprintf(s, "'%s' + '%s'", s1, s2); string2decimal(s1, &a, 0); string2decimal(s2, &b, 0); res=decimal_add(&a, &b, &c); printf("%-40s => res=%d ", s, res); print_decimal(&c); printf("\n"); } void test_ds(char *s1, char *s2) { char s[100]; int res; sprintf(s, "'%s' - '%s'", s1, s2); string2decimal(s1, &a, 0); string2decimal(s2, &b, 0); res=decimal_sub(&a, &b, &c); printf("%-40s => res=%d ", s, res); print_decimal(&c); printf("\n"); } void test_dc(char *s1, char *s2) { char s[100]; int res; sprintf(s, "'%s' <=> '%s'", s1, s2); string2decimal(s1, &a, 0); string2decimal(s2, &b, 0); res=decimal_cmp(&a, &b); printf("%-40s => res=%d\n", s, res); } void test_dm(char *s1, char *s2) { char s[100]; int res; sprintf(s, "'%s' * '%s'", s1, s2); string2decimal(s1, &a, 0); string2decimal(s2, &b, 0); res=decimal_mul(&a, &b, &c); printf("%-40s => res=%d ", s, res); print_decimal(&c); printf("\n"); } void test_dv(char *s1, char *s2) { char s[100]; int res; sprintf(s, "'%s' / '%s'", s1, s2); string2decimal(s1, &a, 0); string2decimal(s2, &b, 0); res=decimal_div(&a, &b, &c, 5); printf("%-40s => res=%d ", s, res); if (res == E_DEC_DIV_ZERO) printf("E_DEC_DIV_ZERO"); else print_decimal(&c); printf("\n"); } void test_md(char *s1, char *s2) { char s[100]; int res; sprintf(s, "'%s' %% '%s'", s1, s2); string2decimal(s1, &a, 0); string2decimal(s2, &b, 0); res=decimal_mod(&a, &b, &c); printf("%-40s => res=%d ", s, res); if (res == E_DEC_DIV_ZERO) printf("E_DEC_DIV_ZERO"); else print_decimal(&c); printf("\n"); } void test_ro(char *s1, int n, decimal_round_mode mode) { char s[100]; int res; sprintf(s, "%s('%s', %d)", (mode == TRUNCATE ? "truncate" : "round"), s1, n); string2decimal(s1, &a, 0); res=decimal_round(&a, &b, n, mode); printf("%-40s => res=%d ", s, res); print_decimal(&b); printf("\n"); } main() { a.buf=(void*)buf1; a.len=sizeof(buf1)/sizeof(dec1); b.buf=(void*)buf2; b.len=sizeof(buf2)/sizeof(dec1); c.buf=(void*)buf3; c.len=sizeof(buf3)/sizeof(dec1); if (full) test_d2s(); printf("==== string2decimal ====\n"); test_s2d("12345"); test_s2d("12345."); test_s2d("123.45"); test_s2d("-123.45"); test_s2d(".00012345000098765"); test_s2d(".12345000098765"); test_s2d("-.000000012345000098765"); test_s2d("1234500009876.5"); a.len=1; test_s2d("123450000098765"); test_s2d("123450.000098765"); a.len=sizeof(buf1)/sizeof(dec1); printf("==== decimal2double ====\n"); test_d2f("12345"); test_d2f("123.45"); test_d2f("-123.45"); test_d2f(".00012345000098765"); test_d2f("1234500009876.5"); printf("==== double2decimal ====\n"); test_f2d(12345); test_f2d(1.0/3); test_f2d(-123.45); test_f2d(0.00012345000098765); test_f2d(1234500009876.5); printf("==== ulonglong2decimal ====\n"); test_ull2d(ULL(12345)); test_ull2d(ULL(0)); test_ull2d(ULL(18446744073709551615)); printf("==== decimal2ulonglong ====\n"); test_d2ull("12345"); test_d2ull("0"); test_d2ull("18446744073709551615"); test_d2ull("18446744073709551616"); test_d2ull("-1"); test_d2ull("1.23"); printf("==== longlong2decimal ====\n"); test_ll2d(LL(-12345)); test_ll2d(LL(-1)); test_ll2d(LL(-9223372036854775807)); test_ll2d(ULL(9223372036854775808)); printf("==== decimal2longlong ====\n"); test_d2ll("18446744073709551615"); test_d2ll("-1"); test_d2ll("-1.23"); test_d2ll("-9223372036854775807"); test_d2ll("-9223372036854775808"); test_d2ll("9223372036854775808"); printf("==== do_add ====\n"); test_da(".00012345000098765" ,"123.45"); test_da(".1" ,".45"); test_da("1234500009876.5" ,".00012345000098765"); test_da("9999909999999.5" ,".555"); test_da("99999999" ,"1"); test_da("989999999" ,"1"); test_da("999999999" ,"1"); test_da("12345" ,"123.45"); test_da("-12345" ,"-123.45"); test_ds("-12345" ,"123.45"); test_ds("12345" ,"-123.45"); printf("==== do_sub ====\n"); test_ds(".00012345000098765", "123.45"); test_ds("1234500009876.5", ".00012345000098765"); test_ds("9999900000000.5", ".555"); test_ds("1111.5551", "1111.555"); test_ds(".555", ".555"); test_ds("10000000", "1"); test_ds("1000001000", ".1"); test_ds("1000000000", ".1"); test_ds("12345", "123.45"); test_ds("-12345", "-123.45"); test_da("-12345", "123.45"); test_da("12345", "-123.45"); test_ds("123.45", "12345"); test_ds("-123.45", "-12345"); test_da("123.45", "-12345"); test_da("-123.45", "12345"); printf("==== decimal_mul ====\n"); test_dm("12", "10"); test_dm("-123.456", "98765.4321"); test_dm("-123456000000", "98765432100000"); test_dm("123456", "987654321"); test_dm("123456", "9876543210"); test_dm("123", "0.01"); test_dm("123", "0"); printf("==== decimal_div ====\n"); test_dv("120", "10"); test_dv("123", "0.01"); test_dv("120", "100000000000.00000"); test_dv("123", "0"); test_dv("-12193185.1853376", "98765.4321"); test_dv("121931851853376", "987654321"); test_dv("0", "987"); test_dv("1", "3"); test_dv("1.000000000000", "3"); test_dv("1", "1"); test_dv("0.0123456789012345678912345", "9999999999"); printf("==== decimal_round ====\n"); test_ro("15.1",0,HALF_UP); test_ro("15.5",0,HALF_UP); test_ro("15.5",0,HALF_UP); test_ro("15.9",0,HALF_UP); test_ro("-15.1",0,HALF_UP); test_ro("-15.5",0,HALF_UP); test_ro("-15.9",0,HALF_UP); test_ro("15.1",1,HALF_UP); test_ro("-15.1",1,HALF_UP); test_ro("15.17",1,HALF_UP); test_ro("15.4",-1,HALF_UP); test_ro("-15.4",-1,HALF_UP); test_ro("5678.123451",-4,TRUNCATE); test_ro("5678.123451",-3,TRUNCATE); test_ro("5678.123451",-2,TRUNCATE); test_ro("5678.123451",-1,TRUNCATE); test_ro("5678.123451",0,TRUNCATE); test_ro("5678.123451",1,TRUNCATE); test_ro("5678.123451",2,TRUNCATE); test_ro("5678.123451",3,TRUNCATE); test_ro("5678.123451",4,TRUNCATE); test_ro("5678.123451",5,TRUNCATE); test_ro("5678.123451",6,TRUNCATE); test_ro("-5678.123451",-4,TRUNCATE); printf("==== decimal_mod ====\n"); test_md("234","10"); test_md("234.567","10.555"); test_md("-234.567","10.555"); test_md("234.567","-10.555"); printf("==== decimal2bin/bin2decimal ====\n"); test_d2b2d("12345", 5, 0); test_d2b2d("12345", 10, 3); test_d2b2d("123.45", 10, 3); test_d2b2d("-123.45", 20, 10); test_d2b2d(".00012345000098765", 15, 14); test_d2b2d(".00012345000098765", 22, 20); test_d2b2d(".12345000098765", 30, 20); test_d2b2d("-.000000012345000098765", 30, 20); test_d2b2d("1234500009876.5", 30, 5); printf("==== decimal_cmp ====\n"); test_dc("12","13"); test_dc("13","12"); test_dc("-10","10"); test_dc("10","-10"); test_dc("-12","-13"); test_dc("0","12"); test_dc("-10","0"); test_dc("4","4"); return 0; } #endif