#if !defined(OMT_H) #define OMT_H #ident "Copyright (c) 2008 Tokutek Inc. All rights reserved." // Order Maintenance Tree (OMT) // // Maintains a collection of totally ordered values, where each value has an integer weight. // The OMT is a mutable datatype. // // The Abstraction: // // An OMT is a vector of values, $V$, where $|V|$ is the length of the vector. // The vector is numbered from $0$ to $|V|-1$. // Each value has a weight. The weight of the $i$th element is denoted $w(V_i)$. // // We can create a new OMT, which is the empty vector. // // We can insert a new element $x$ into slot $i$, changing $V$ into $V'$ where // $|V'|=1+|V|$ and // // V'_j = V_j if $ji$. // // We can specify $i$ using a kind of function instead of as an integer. // Let $b$ be a function mapping from values to nonzero integers, such that // the signum of $b$ is monotically increasing. // We can specify $i$ as the minimum integer such that $b(V_i)>0$. // // We look up a value using its index, or using a Heaviside function. // For lookups, we allow $b$ to be zero for some values, and again the signum of $b$ must be monotonically increasing. // When lookup up values, we can look up // $V_i$ where $i$ is the minimum integer such that $b(V_i)=0$. (With a special return code if no such value exists.) // (Rationale: Ordinarily we want $i$ to be unique. But for various reasons we want to allow multiple zeros, and we want the smallest $i$ in that case.) // $V_i$ where $i$ is the minimum integer such that $b(V_i)>0$. (Or an indication that no such value exists.) // $V_i$ where $i$ is the maximum integer such that $b(V_i)<0$. (Or an indication that no such value exists.) // // When looking up a value using a Heaviside function, we get the value and its index. // // We can also split an OMT into two OMTs, splitting the weight of the values evenly. // Find a value $j$ such that the values to the left of $j$ have about the same total weight as the values to the right of $j$. // The resulting two OMTs contain the values to the left of $j$ and the values to the right of $j$ respectively. // All of the values from the original OMT go into one of the new OMTs. // If the weights of the values don't split exactly evenly, then the implementation has the freedom to choose whether // the new left OMT or the new right OMT is larger. // // Performance: // Insertion and deletion should run with $O(\log |V|)$ time and $O(\log |V|)$ calls to the Heaviside function. // The memory required is O(|V|). // // The programming API: //typedef struct value *OMTVALUE; // A slight improvement over using void*. typedef struct omt *OMT; int toku_omt_create (OMT *omtp); // Effect: Create an empty OMT. Stores it in *omtp. // Requires: omtp != NULL // Returns: // 0 success // ENOMEM out of memory (and doesn't modify *omtp) // Performance: constant time. int toku_omt_create_from_sorted_array(OMT *omtp, OMTVALUE *values, u_int32_t numvalues); // Effect: Create a OMT containing values. The number of values is in numvalues. // Stores the new OMT in *omtp. // Requires: omtp != NULL // Requires: values != NULL // Requires: values is sorted // Returns: // 0 success // ENOMEM out of memory (and doesn't modify *omtp) // Performance: time=O(numvalues) // Rational: Normally to insert N values takes O(N lg N) amortized time. // If the N values are known in advance, are sorted, and // the structure is empty, we can batch insert them much faster. void toku_omt_destroy(OMT *omtp); // Effect: Destroy an OMT, freeing all its memory. // Does not free the OMTVALUEs stored in the OMT. // Those values may be freed before or after calling toku_omt_destroy. // Also sets *omtp=NULL. // Requires: omtp != NULL // Requires: *omtp != NULL // Rationale: The usage is to do something like // toku_omt_destroy(&s->omt); // and now s->omt will have a NULL pointer instead of a dangling freed pointer. // Rationale: Returns no values since free() cannot fail. // Rationale: Does not free the OMTVALUEs to reduce complexity. // Performance: time=O(toku_omt_size(*omtp)) u_int32_t toku_omt_size(OMT V); // Effect: return |V|. // Requires: V != NULL // Performance: time=O(1) int toku_omt_iterate_on_range(OMT omt, u_int32_t left, u_int32_t right, int (*f)(OMTVALUE, u_int32_t, void*), void*v); // Effect: Iterate over the values of the omt, from left to right, calling f on each value. // The second argument passed to f is the index of the value. // The third argument passed to f is v. // The indices run from 0 (inclusive) to toku_omt_size(omt) (exclusive). // We will iterate only over [left,right) // // Requires: omt != NULL // left <= right // Requires: f != NULL // Returns: // If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_omt_iterate. // If f always returns zero, then toku_omt_iterate returns 0. // Requires: Don't modify omt while running. (E.g., f may not insert or delete values form omt.) // Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in omt. // Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read. int toku_omt_iterate(OMT omt, int (*f)(OMTVALUE, u_int32_t, void*), void*v); // Effect: Iterate over the values of the omt, from left to right, calling f on each value. // The second argument passed to f is the index of the value. // The third argument passed to f is v. // The indices run from 0 (inclusive) to toku_omt_size(omt) (exclusive). // Requires: omt != NULL // Requires: f != NULL // Returns: // If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_omt_iterate. // If f always returns zero, then toku_omt_iterate returns 0. // Requires: Don't modify omt while running. (E.g., f may not insert or delete values form omt.) // Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in omt. // Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read. int toku_omt_insert_at(OMT omt, OMTVALUE value, u_int32_t index); // Effect: Increases indexes of all items at slot >= index by 1. // Insert value into the position at index. // // Returns: // 0 success // ERANGE if index>toku_omt_size(omt) // ENOMEM // On error, omt is unchanged. // Performance: time=O(\log N) amortized time. // Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now. int toku_omt_set_at (OMT omt, OMTVALUE value, u_int32_t index); // Effect: Replaces the item at index with value. // Returns: // 0 success // ERANGE if index>=toku_omt_size(omt) // On error, omt i sunchanged. // Performance: time=O(\log N) // Rationale: The BRT needs to be able to replace a value with another copy of the same value (allocated in a different location) int toku_omt_insert(OMT omt, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, u_int32_t *index); // Effect: Insert value into the OMT. // If there is some i such that $h(V_i, v)=0$ then returns DB_KEYEXIST. // Otherwise, let i be the minimum value such that $h(V_i, v)>0$. // If no such i exists, then let i be |V| // Then this has the same effect as // omt_insert_at(tree, value, i); // If index!=NULL then i is stored in *index // Requires: The signum of h must be monotonically increasing. // Returns: // 0 success // DB_KEYEXIST the key is present (h was equal to zero for some value) // ENOMEM // On nonzero return, omt is unchanged. // On nonzero non-DB_KEYEXIST return, *index is unchanged. // Performance: time=O(\log N) amortized. // Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now. int toku_omt_delete_at(OMT omt, u_int32_t index); // Effect: Delete the item in slot index. // Decreases indexes of all items at slot >= index by 1. // Returns // 0 success // ERANGE if index>=toku_omt_size(omt) // On error, omt is unchanged. // Rationale: To delete an item, first find its index using toku_omt_find, then delete it. // Performance: time=O(\log N) amortized. int toku_omt_fetch (OMT V, u_int32_t i, OMTVALUE *v); // Effect: Set *v=V_i // Requires: v != NULL // Returns // 0 success // ERANGE if index>=toku_omt_size(omt) // On nonzero return, *v is unchanged. // Performance: time=O(\log N) int toku_omt_find_zero(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, u_int32_t *index); // Effect: Find the smallest i such that h(V_i, extra)>=0 // If there is such an i and h(V_i,extra)==0 then set *index=i and return 0. // If there is such an i and h(V_i,extra)>0 then set *index=i and return DB_NOTFOUND. // If there is no such i then set *index=toku_omt_size(V) and return DB_NOTFOUND. // Requires: index!=NULL int toku_omt_find(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, int direction, OMTVALUE *value, u_int32_t *index); /* Effect: If direction >0 then find the smallest i such that h(V_i,extra)>0. If direction <0 then find the largest i such that h(V_i,extra)<0. (Direction may not be equal to zero.) If value!=NULL then store V_i in *value If index!=NULL then store i in *index. Requires: The signum of h is monotically increasing. Returns 0 success DB_NOTFOUND no such value is found. On nonzero return, *value and *index are unchanged. Performance: time=O(\log N) Rationale: Here's how to use the find function to find various things Cases for find: find first value: ( h(v)=+1, direction=+1 ) find last value ( h(v)=-1, direction=-1 ) find first X ( h(v)=(v< x) ? -1 : 1 direction=+1 ) find last X ( h(v)=(v<=x) ? -1 : 1 direction=-1 ) find X or successor to X ( same as find first X. ) Rationale: To help understand heaviside functions and behavor of find: There are 7 kinds of heaviside functions. The signus of the h must be monotonically increasing. Given a function of the following form, A is the element returned for direction>0, B is the element returned for direction<0, C is the element returned for direction==0 (see find_zero) (with a return of 0), and D is the element returned for direction==0 (see find_zero) with a return of DB_NOTFOUND. If any of A, B, or C are not found, then asking for the associated direction will return DB_NOTFOUND. See find_zero for more information. Let the following represent the signus of the heaviside function. -...- A D +...+ B D 0...0 C -...-0...0 AC 0...0+...+ C B -...-+...+ AB D -...-0...0+...+ AC B */ int toku_omt_split_at(OMT omt, OMT *newomt, u_int32_t index); // Effect: Create a new OMT, storing it in *newomt. // The values to the right of index (starting at index) are moved to *newomt. // Requires: omt != NULL // Requires: newomt != NULL // Returns // 0 success, // ERANGE if index > toku_omt_size(omt) // ENOMEM // On nonzero return, omt and *newomt are unmodified. // Performance: time=O(n) // Rationale: We don't need a split-evenly operation. We need to split items so that their total sizes // are even, and other similar splitting criteria. It's easy to split evenly by calling toku_omt_size(), and dividing by two. int toku_omt_merge(OMT leftomt, OMT rightomt, OMT *newomt); // Effect: Appends leftomt and rightomt to produce a new omt. // Sets *newomt to the new omt. // On success, leftomt and rightomt destroyed,. // Returns 0 on success // ENOMEM on out of memory. // On error, nothing is modified. // Performance: time=O(n) is acceptable, but one can imagine implementations that are O(\log n) worst-case. void toku_omt_clear(OMT omt); // Effect: Set the tree to be empty. // Note: Will not resize the array, since void precludes allowing a malloc. // Performance: time=O(1) #endif /* #ifndef OMT_H */