/***************************************************************************** Copyright (c) 1996, 2010, Innobase Oy. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /**************************************************//** @file pars/pars0pars.c SQL parser Created 11/19/1996 Heikki Tuuri *******************************************************/ /* Historical note: Innobase executed its first SQL string (CREATE TABLE) on 1/27/1998 */ #include "pars0pars.h" #ifdef UNIV_NONINL #include "pars0pars.ic" #endif #include "row0sel.h" #include "row0ins.h" #include "row0upd.h" #include "dict0dict.h" #include "dict0mem.h" #include "dict0crea.h" #include "que0que.h" #include "pars0grm.h" #include "pars0opt.h" #include "data0data.h" #include "data0type.h" #include "trx0trx.h" #include "trx0roll.h" #include "lock0lock.h" #include "eval0eval.h" #ifdef UNIV_SQL_DEBUG /** If the following is set TRUE, the lexer will print the SQL string as it tokenizes it */ UNIV_INTERN ibool pars_print_lexed = FALSE; #endif /* UNIV_SQL_DEBUG */ /* Global variable used while parsing a single procedure or query : the code is NOT re-entrant */ UNIV_INTERN sym_tab_t* pars_sym_tab_global; /* Global variables used to denote certain reserved words, used in constructing the parsing tree */ UNIV_INTERN pars_res_word_t pars_to_char_token = {PARS_TO_CHAR_TOKEN}; UNIV_INTERN pars_res_word_t pars_to_number_token = {PARS_TO_NUMBER_TOKEN}; UNIV_INTERN pars_res_word_t pars_to_binary_token = {PARS_TO_BINARY_TOKEN}; UNIV_INTERN pars_res_word_t pars_binary_to_number_token = {PARS_BINARY_TO_NUMBER_TOKEN}; UNIV_INTERN pars_res_word_t pars_substr_token = {PARS_SUBSTR_TOKEN}; UNIV_INTERN pars_res_word_t pars_replstr_token = {PARS_REPLSTR_TOKEN}; UNIV_INTERN pars_res_word_t pars_concat_token = {PARS_CONCAT_TOKEN}; UNIV_INTERN pars_res_word_t pars_instr_token = {PARS_INSTR_TOKEN}; UNIV_INTERN pars_res_word_t pars_length_token = {PARS_LENGTH_TOKEN}; UNIV_INTERN pars_res_word_t pars_sysdate_token = {PARS_SYSDATE_TOKEN}; UNIV_INTERN pars_res_word_t pars_printf_token = {PARS_PRINTF_TOKEN}; UNIV_INTERN pars_res_word_t pars_assert_token = {PARS_ASSERT_TOKEN}; UNIV_INTERN pars_res_word_t pars_rnd_token = {PARS_RND_TOKEN}; UNIV_INTERN pars_res_word_t pars_rnd_str_token = {PARS_RND_STR_TOKEN}; UNIV_INTERN pars_res_word_t pars_count_token = {PARS_COUNT_TOKEN}; UNIV_INTERN pars_res_word_t pars_sum_token = {PARS_SUM_TOKEN}; UNIV_INTERN pars_res_word_t pars_distinct_token = {PARS_DISTINCT_TOKEN}; UNIV_INTERN pars_res_word_t pars_binary_token = {PARS_BINARY_TOKEN}; UNIV_INTERN pars_res_word_t pars_blob_token = {PARS_BLOB_TOKEN}; UNIV_INTERN pars_res_word_t pars_int_token = {PARS_INT_TOKEN}; UNIV_INTERN pars_res_word_t pars_char_token = {PARS_CHAR_TOKEN}; UNIV_INTERN pars_res_word_t pars_float_token = {PARS_FLOAT_TOKEN}; UNIV_INTERN pars_res_word_t pars_update_token = {PARS_UPDATE_TOKEN}; UNIV_INTERN pars_res_word_t pars_asc_token = {PARS_ASC_TOKEN}; UNIV_INTERN pars_res_word_t pars_desc_token = {PARS_DESC_TOKEN}; UNIV_INTERN pars_res_word_t pars_open_token = {PARS_OPEN_TOKEN}; UNIV_INTERN pars_res_word_t pars_close_token = {PARS_CLOSE_TOKEN}; UNIV_INTERN pars_res_word_t pars_share_token = {PARS_SHARE_TOKEN}; UNIV_INTERN pars_res_word_t pars_unique_token = {PARS_UNIQUE_TOKEN}; UNIV_INTERN pars_res_word_t pars_clustered_token = {PARS_CLUSTERED_TOKEN}; /** Global variable used to denote the '*' in SELECT * FROM.. */ UNIV_INTERN ulint pars_star_denoter = 12345678; /*********************************************************************//** Determines the class of a function code. @return function class: PARS_FUNC_ARITH, ... */ static ulint pars_func_get_class( /*================*/ int func) /*!< in: function code: '=', PARS_GE_TOKEN, ... */ { switch (func) { case '+': case '-': case '*': case '/': return(PARS_FUNC_ARITH); case '=': case '<': case '>': case PARS_GE_TOKEN: case PARS_LE_TOKEN: case PARS_NE_TOKEN: return(PARS_FUNC_CMP); case PARS_AND_TOKEN: case PARS_OR_TOKEN: case PARS_NOT_TOKEN: return(PARS_FUNC_LOGICAL); case PARS_COUNT_TOKEN: case PARS_SUM_TOKEN: return(PARS_FUNC_AGGREGATE); case PARS_TO_CHAR_TOKEN: case PARS_TO_NUMBER_TOKEN: case PARS_TO_BINARY_TOKEN: case PARS_BINARY_TO_NUMBER_TOKEN: case PARS_SUBSTR_TOKEN: case PARS_CONCAT_TOKEN: case PARS_LENGTH_TOKEN: case PARS_INSTR_TOKEN: case PARS_SYSDATE_TOKEN: case PARS_NOTFOUND_TOKEN: case PARS_PRINTF_TOKEN: case PARS_ASSERT_TOKEN: case PARS_RND_TOKEN: case PARS_RND_STR_TOKEN: case PARS_REPLSTR_TOKEN: return(PARS_FUNC_PREDEFINED); default: return(PARS_FUNC_OTHER); } } /*********************************************************************//** Parses an operator or predefined function expression. @return own: function node in a query tree */ static func_node_t* pars_func_low( /*==========*/ int func, /*!< in: function token code */ que_node_t* arg) /*!< in: first argument in the argument list */ { func_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(func_node_t)); node->common.type = QUE_NODE_FUNC; dfield_set_data(&(node->common.val), NULL, 0); node->common.val_buf_size = 0; node->func = func; node->class = pars_func_get_class(func); node->args = arg; UT_LIST_ADD_LAST(func_node_list, pars_sym_tab_global->func_node_list, node); return(node); } /*********************************************************************//** Parses a function expression. @return own: function node in a query tree */ UNIV_INTERN func_node_t* pars_func( /*======*/ que_node_t* res_word,/*!< in: function name reserved word */ que_node_t* arg) /*!< in: first argument in the argument list */ { return(pars_func_low(((pars_res_word_t*)res_word)->code, arg)); } /*********************************************************************//** Parses an operator expression. @return own: function node in a query tree */ UNIV_INTERN func_node_t* pars_op( /*====*/ int func, /*!< in: operator token code */ que_node_t* arg1, /*!< in: first argument */ que_node_t* arg2) /*!< in: second argument or NULL for an unary operator */ { que_node_list_add_last(NULL, arg1); if (arg2) { que_node_list_add_last(arg1, arg2); } return(pars_func_low(func, arg1)); } /*********************************************************************//** Parses an ORDER BY clause. Order by a single column only is supported. @return own: order-by node in a query tree */ UNIV_INTERN order_node_t* pars_order_by( /*==========*/ sym_node_t* column, /*!< in: column name */ pars_res_word_t* asc) /*!< in: &pars_asc_token or pars_desc_token */ { order_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(order_node_t)); node->common.type = QUE_NODE_ORDER; node->column = column; if (asc == &pars_asc_token) { node->asc = TRUE; } else { ut_a(asc == &pars_desc_token); node->asc = FALSE; } return(node); } /*********************************************************************//** Determine if a data type is a built-in string data type of the InnoDB SQL parser. @return TRUE if string data type */ static ibool pars_is_string_type( /*================*/ ulint mtype) /*!< in: main data type */ { switch (mtype) { case DATA_VARCHAR: case DATA_CHAR: case DATA_FIXBINARY: case DATA_BINARY: return(TRUE); } return(FALSE); } /*********************************************************************//** Resolves the data type of a function in an expression. The argument data types must already be resolved. */ static void pars_resolve_func_data_type( /*========================*/ func_node_t* node) /*!< in: function node */ { que_node_t* arg; ut_a(que_node_get_type(node) == QUE_NODE_FUNC); arg = node->args; switch (node->func) { case PARS_SUM_TOKEN: case '+': case '-': case '*': case '/': /* Inherit the data type from the first argument (which must not be the SQL null literal whose type is DATA_ERROR) */ dtype_copy(que_node_get_data_type(node), que_node_get_data_type(arg)); ut_a(dtype_get_mtype(que_node_get_data_type(node)) == DATA_INT); break; case PARS_COUNT_TOKEN: ut_a(arg); dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4); break; case PARS_TO_CHAR_TOKEN: case PARS_RND_STR_TOKEN: ut_a(dtype_get_mtype(que_node_get_data_type(arg)) == DATA_INT); dtype_set(que_node_get_data_type(node), DATA_VARCHAR, DATA_ENGLISH, 0); break; case PARS_TO_BINARY_TOKEN: if (dtype_get_mtype(que_node_get_data_type(arg)) == DATA_INT) { dtype_set(que_node_get_data_type(node), DATA_VARCHAR, DATA_ENGLISH, 0); } else { dtype_set(que_node_get_data_type(node), DATA_BINARY, 0, 0); } break; case PARS_TO_NUMBER_TOKEN: case PARS_BINARY_TO_NUMBER_TOKEN: case PARS_LENGTH_TOKEN: case PARS_INSTR_TOKEN: ut_a(pars_is_string_type(que_node_get_data_type(arg)->mtype)); dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4); break; case PARS_SYSDATE_TOKEN: ut_a(arg == NULL); dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4); break; case PARS_SUBSTR_TOKEN: case PARS_CONCAT_TOKEN: ut_a(pars_is_string_type(que_node_get_data_type(arg)->mtype)); dtype_set(que_node_get_data_type(node), DATA_VARCHAR, DATA_ENGLISH, 0); break; case '>': case '<': case '=': case PARS_GE_TOKEN: case PARS_LE_TOKEN: case PARS_NE_TOKEN: case PARS_AND_TOKEN: case PARS_OR_TOKEN: case PARS_NOT_TOKEN: case PARS_NOTFOUND_TOKEN: /* We currently have no iboolean type: use integer type */ dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4); break; case PARS_RND_TOKEN: ut_a(dtype_get_mtype(que_node_get_data_type(arg)) == DATA_INT); dtype_set(que_node_get_data_type(node), DATA_INT, 0, 4); break; default: ut_error; } } /*********************************************************************//** Resolves the meaning of variables in an expression and the data types of functions. It is an error if some identifier cannot be resolved here. */ static void pars_resolve_exp_variables_and_types( /*=================================*/ sel_node_t* select_node, /*!< in: select node or NULL; if this is not NULL then the variable sym nodes are added to the copy_variables list of select_node */ que_node_t* exp_node) /*!< in: expression */ { func_node_t* func_node; que_node_t* arg; sym_node_t* sym_node; sym_node_t* node; ut_a(exp_node); if (que_node_get_type(exp_node) == QUE_NODE_FUNC) { func_node = exp_node; arg = func_node->args; while (arg) { pars_resolve_exp_variables_and_types(select_node, arg); arg = que_node_get_next(arg); } pars_resolve_func_data_type(func_node); return; } ut_a(que_node_get_type(exp_node) == QUE_NODE_SYMBOL); sym_node = exp_node; if (sym_node->resolved) { return; } /* Not resolved yet: look in the symbol table for a variable or a cursor or a function with the same name */ node = UT_LIST_GET_FIRST(pars_sym_tab_global->sym_list); while (node) { if (node->resolved && ((node->token_type == SYM_VAR) || (node->token_type == SYM_CURSOR) || (node->token_type == SYM_FUNCTION)) && node->name && (sym_node->name_len == node->name_len) && (ut_memcmp(sym_node->name, node->name, node->name_len) == 0)) { /* Found a variable or a cursor declared with the same name */ break; } node = UT_LIST_GET_NEXT(sym_list, node); } if (!node) { fprintf(stderr, "PARSER ERROR: Unresolved identifier %s\n", sym_node->name); } ut_a(node); sym_node->resolved = TRUE; sym_node->token_type = SYM_IMPLICIT_VAR; sym_node->alias = node; sym_node->indirection = node; if (select_node) { UT_LIST_ADD_LAST(col_var_list, select_node->copy_variables, sym_node); } dfield_set_type(que_node_get_val(sym_node), que_node_get_data_type(node)); } /*********************************************************************//** Resolves the meaning of variables in an expression list. It is an error if some identifier cannot be resolved here. Resolves also the data types of functions. */ static void pars_resolve_exp_list_variables_and_types( /*======================================*/ sel_node_t* select_node, /*!< in: select node or NULL */ que_node_t* exp_node) /*!< in: expression list first node, or NULL */ { while (exp_node) { pars_resolve_exp_variables_and_types(select_node, exp_node); exp_node = que_node_get_next(exp_node); } } /*********************************************************************//** Resolves the columns in an expression. */ static void pars_resolve_exp_columns( /*=====================*/ sym_node_t* table_node, /*!< in: first node in a table list */ que_node_t* exp_node) /*!< in: expression */ { func_node_t* func_node; que_node_t* arg; sym_node_t* sym_node; dict_table_t* table; sym_node_t* t_node; ulint n_cols; ulint i; ut_a(exp_node); if (que_node_get_type(exp_node) == QUE_NODE_FUNC) { func_node = exp_node; arg = func_node->args; while (arg) { pars_resolve_exp_columns(table_node, arg); arg = que_node_get_next(arg); } return; } ut_a(que_node_get_type(exp_node) == QUE_NODE_SYMBOL); sym_node = exp_node; if (sym_node->resolved) { return; } /* Not resolved yet: look in the table list for a column with the same name */ t_node = table_node; while (t_node) { table = t_node->table; n_cols = dict_table_get_n_cols(table); for (i = 0; i < n_cols; i++) { const dict_col_t* col = dict_table_get_nth_col(table, i); const char* col_name = dict_table_get_col_name(table, i); if ((sym_node->name_len == ut_strlen(col_name)) && (0 == ut_memcmp(sym_node->name, col_name, sym_node->name_len))) { /* Found */ sym_node->resolved = TRUE; sym_node->token_type = SYM_COLUMN; sym_node->table = table; sym_node->col_no = i; sym_node->prefetch_buf = NULL; dict_col_copy_type( col, dfield_get_type(&sym_node ->common.val)); return; } } t_node = que_node_get_next(t_node); } } /*********************************************************************//** Resolves the meaning of columns in an expression list. */ static void pars_resolve_exp_list_columns( /*==========================*/ sym_node_t* table_node, /*!< in: first node in a table list */ que_node_t* exp_node) /*!< in: expression list first node, or NULL */ { while (exp_node) { pars_resolve_exp_columns(table_node, exp_node); exp_node = que_node_get_next(exp_node); } } /*********************************************************************//** Retrieves the table definition for a table name id. */ static void pars_retrieve_table_def( /*====================*/ sym_node_t* sym_node) /*!< in: table node */ { const char* table_name; ut_a(sym_node); ut_a(que_node_get_type(sym_node) == QUE_NODE_SYMBOL); sym_node->resolved = TRUE; sym_node->token_type = SYM_TABLE; table_name = (const char*) sym_node->name; sym_node->table = dict_table_get_low(table_name); ut_a(sym_node->table); } /*********************************************************************//** Retrieves the table definitions for a list of table name ids. @return number of tables */ static ulint pars_retrieve_table_list_defs( /*==========================*/ sym_node_t* sym_node) /*!< in: first table node in list */ { ulint count = 0; if (sym_node == NULL) { return(count); } while (sym_node) { pars_retrieve_table_def(sym_node); count++; sym_node = que_node_get_next(sym_node); } return(count); } /*********************************************************************//** Adds all columns to the select list if the query is SELECT * FROM ... */ static void pars_select_all_columns( /*====================*/ sel_node_t* select_node) /*!< in: select node already containing the table list */ { sym_node_t* col_node; sym_node_t* table_node; dict_table_t* table; ulint i; select_node->select_list = NULL; table_node = select_node->table_list; while (table_node) { table = table_node->table; for (i = 0; i < dict_table_get_n_user_cols(table); i++) { const char* col_name = dict_table_get_col_name( table, i); col_node = sym_tab_add_id(pars_sym_tab_global, (byte*)col_name, ut_strlen(col_name)); select_node->select_list = que_node_list_add_last( select_node->select_list, col_node); } table_node = que_node_get_next(table_node); } } /*********************************************************************//** Parses a select list; creates a query graph node for the whole SELECT statement. @return own: select node in a query tree */ UNIV_INTERN sel_node_t* pars_select_list( /*=============*/ que_node_t* select_list, /*!< in: select list */ sym_node_t* into_list) /*!< in: variables list or NULL */ { sel_node_t* node; node = sel_node_create(pars_sym_tab_global->heap); node->select_list = select_list; node->into_list = into_list; pars_resolve_exp_list_variables_and_types(NULL, into_list); return(node); } /*********************************************************************//** Checks if the query is an aggregate query, in which case the selct list must contain only aggregate function items. */ static void pars_check_aggregate( /*=================*/ sel_node_t* select_node) /*!< in: select node already containing the select list */ { que_node_t* exp_node; func_node_t* func_node; ulint n_nodes = 0; ulint n_aggregate_nodes = 0; exp_node = select_node->select_list; while (exp_node) { n_nodes++; if (que_node_get_type(exp_node) == QUE_NODE_FUNC) { func_node = exp_node; if (func_node->class == PARS_FUNC_AGGREGATE) { n_aggregate_nodes++; } } exp_node = que_node_get_next(exp_node); } if (n_aggregate_nodes > 0) { ut_a(n_nodes == n_aggregate_nodes); select_node->is_aggregate = TRUE; } else { select_node->is_aggregate = FALSE; } } /*********************************************************************//** Parses a select statement. @return own: select node in a query tree */ UNIV_INTERN sel_node_t* pars_select_statement( /*==================*/ sel_node_t* select_node, /*!< in: select node already containing the select list */ sym_node_t* table_list, /*!< in: table list */ que_node_t* search_cond, /*!< in: search condition or NULL */ pars_res_word_t* for_update, /*!< in: NULL or &pars_update_token */ pars_res_word_t* lock_shared, /*!< in: NULL or &pars_share_token */ order_node_t* order_by) /*!< in: NULL or an order-by node */ { select_node->state = SEL_NODE_OPEN; select_node->table_list = table_list; select_node->n_tables = pars_retrieve_table_list_defs(table_list); if (select_node->select_list == &pars_star_denoter) { /* SELECT * FROM ... */ pars_select_all_columns(select_node); } if (select_node->into_list) { ut_a(que_node_list_get_len(select_node->into_list) == que_node_list_get_len(select_node->select_list)); } UT_LIST_INIT(select_node->copy_variables); pars_resolve_exp_list_columns(table_list, select_node->select_list); pars_resolve_exp_list_variables_and_types(select_node, select_node->select_list); pars_check_aggregate(select_node); select_node->search_cond = search_cond; if (search_cond) { pars_resolve_exp_columns(table_list, search_cond); pars_resolve_exp_variables_and_types(select_node, search_cond); } if (for_update) { ut_a(!lock_shared); select_node->set_x_locks = TRUE; select_node->row_lock_mode = LOCK_X; select_node->consistent_read = FALSE; select_node->read_view = NULL; } else if (lock_shared){ select_node->set_x_locks = FALSE; select_node->row_lock_mode = LOCK_S; select_node->consistent_read = FALSE; select_node->read_view = NULL; } else { select_node->set_x_locks = FALSE; select_node->row_lock_mode = LOCK_S; select_node->consistent_read = TRUE; } select_node->order_by = order_by; if (order_by) { pars_resolve_exp_columns(table_list, order_by->column); } /* The final value of the following fields depend on the environment where the select statement appears: */ select_node->can_get_updated = FALSE; select_node->explicit_cursor = NULL; opt_search_plan(select_node); return(select_node); } /*********************************************************************//** Parses a cursor declaration. @return sym_node */ UNIV_INTERN que_node_t* pars_cursor_declaration( /*====================*/ sym_node_t* sym_node, /*!< in: cursor id node in the symbol table */ sel_node_t* select_node) /*!< in: select node */ { sym_node->resolved = TRUE; sym_node->token_type = SYM_CURSOR; sym_node->cursor_def = select_node; select_node->state = SEL_NODE_CLOSED; select_node->explicit_cursor = sym_node; return(sym_node); } /*********************************************************************//** Parses a function declaration. @return sym_node */ UNIV_INTERN que_node_t* pars_function_declaration( /*======================*/ sym_node_t* sym_node) /*!< in: function id node in the symbol table */ { sym_node->resolved = TRUE; sym_node->token_type = SYM_FUNCTION; /* Check that the function exists. */ ut_a(pars_info_get_user_func(pars_sym_tab_global->info, sym_node->name)); return(sym_node); } /*********************************************************************//** Parses a delete or update statement start. @return own: update node in a query tree */ UNIV_INTERN upd_node_t* pars_update_statement_start( /*========================*/ ibool is_delete, /*!< in: TRUE if delete */ sym_node_t* table_sym, /*!< in: table name node */ col_assign_node_t* col_assign_list)/*!< in: column assignment list, NULL if delete */ { upd_node_t* node; node = upd_node_create(pars_sym_tab_global->heap); node->is_delete = is_delete; node->table_sym = table_sym; node->col_assign_list = col_assign_list; return(node); } /*********************************************************************//** Parses a column assignment in an update. @return column assignment node */ UNIV_INTERN col_assign_node_t* pars_column_assignment( /*===================*/ sym_node_t* column, /*!< in: column to assign */ que_node_t* exp) /*!< in: value to assign */ { col_assign_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(col_assign_node_t)); node->common.type = QUE_NODE_COL_ASSIGNMENT; node->col = column; node->val = exp; return(node); } /*********************************************************************//** Processes an update node assignment list. */ static void pars_process_assign_list( /*=====================*/ upd_node_t* node) /*!< in: update node */ { col_assign_node_t* col_assign_list; sym_node_t* table_sym; col_assign_node_t* assign_node; upd_field_t* upd_field; dict_index_t* clust_index; sym_node_t* col_sym; ulint changes_ord_field; ulint changes_field_size; ulint n_assigns; ulint i; table_sym = node->table_sym; col_assign_list = node->col_assign_list; clust_index = dict_table_get_first_index(node->table); assign_node = col_assign_list; n_assigns = 0; while (assign_node) { pars_resolve_exp_columns(table_sym, assign_node->col); pars_resolve_exp_columns(table_sym, assign_node->val); pars_resolve_exp_variables_and_types(NULL, assign_node->val); #if 0 ut_a(dtype_get_mtype( dfield_get_type(que_node_get_val( assign_node->col))) == dtype_get_mtype( dfield_get_type(que_node_get_val( assign_node->val)))); #endif /* Add to the update node all the columns found in assignment values as columns to copy: therefore, TRUE */ opt_find_all_cols(TRUE, clust_index, &(node->columns), NULL, assign_node->val); n_assigns++; assign_node = que_node_get_next(assign_node); } node->update = upd_create(n_assigns, pars_sym_tab_global->heap); assign_node = col_assign_list; changes_field_size = UPD_NODE_NO_SIZE_CHANGE; for (i = 0; i < n_assigns; i++) { upd_field = upd_get_nth_field(node->update, i); col_sym = assign_node->col; upd_field_set_field_no(upd_field, dict_index_get_nth_col_pos( clust_index, col_sym->col_no), clust_index, NULL); upd_field->exp = assign_node->val; if (!dict_col_get_fixed_size( dict_index_get_nth_col(clust_index, upd_field->field_no), dict_table_is_comp(node->table))) { changes_field_size = 0; } assign_node = que_node_get_next(assign_node); } /* Find out if the update can modify an ordering field in any index */ changes_ord_field = UPD_NODE_NO_ORD_CHANGE; if (row_upd_changes_some_index_ord_field_binary(node->table, node->update)) { changes_ord_field = 0; } node->cmpl_info = changes_ord_field | changes_field_size; } /*********************************************************************//** Parses an update or delete statement. @return own: update node in a query tree */ UNIV_INTERN upd_node_t* pars_update_statement( /*==================*/ upd_node_t* node, /*!< in: update node */ sym_node_t* cursor_sym, /*!< in: pointer to a cursor entry in the symbol table or NULL */ que_node_t* search_cond) /*!< in: search condition or NULL */ { sym_node_t* table_sym; sel_node_t* sel_node; plan_t* plan; table_sym = node->table_sym; pars_retrieve_table_def(table_sym); node->table = table_sym->table; UT_LIST_INIT(node->columns); /* Make the single table node into a list of table nodes of length 1 */ que_node_list_add_last(NULL, table_sym); if (cursor_sym) { pars_resolve_exp_variables_and_types(NULL, cursor_sym); sel_node = cursor_sym->alias->cursor_def; node->searched_update = FALSE; } else { sel_node = pars_select_list(NULL, NULL); pars_select_statement(sel_node, table_sym, search_cond, NULL, &pars_share_token, NULL); node->searched_update = TRUE; sel_node->common.parent = node; } node->select = sel_node; ut_a(!node->is_delete || (node->col_assign_list == NULL)); ut_a(node->is_delete || (node->col_assign_list != NULL)); if (node->is_delete) { node->cmpl_info = 0; } else { pars_process_assign_list(node); } if (node->searched_update) { node->has_clust_rec_x_lock = TRUE; sel_node->set_x_locks = TRUE; sel_node->row_lock_mode = LOCK_X; } else { node->has_clust_rec_x_lock = sel_node->set_x_locks; } ut_a(sel_node->n_tables == 1); ut_a(sel_node->consistent_read == FALSE); ut_a(sel_node->order_by == NULL); ut_a(sel_node->is_aggregate == FALSE); sel_node->can_get_updated = TRUE; node->state = UPD_NODE_UPDATE_CLUSTERED; plan = sel_node_get_nth_plan(sel_node, 0); plan->no_prefetch = TRUE; if (!dict_index_is_clust(plan->index)) { plan->must_get_clust = TRUE; node->pcur = &(plan->clust_pcur); } else { node->pcur = &(plan->pcur); } return(node); } /*********************************************************************//** Parses an insert statement. @return own: update node in a query tree */ UNIV_INTERN ins_node_t* pars_insert_statement( /*==================*/ sym_node_t* table_sym, /*!< in: table name node */ que_node_t* values_list, /*!< in: value expression list or NULL */ sel_node_t* select) /*!< in: select condition or NULL */ { ins_node_t* node; dtuple_t* row; ulint ins_type; ut_a(values_list || select); ut_a(!values_list || !select); if (values_list) { ins_type = INS_VALUES; } else { ins_type = INS_SEARCHED; } pars_retrieve_table_def(table_sym); node = ins_node_create(ins_type, table_sym->table, pars_sym_tab_global->heap); row = dtuple_create(pars_sym_tab_global->heap, dict_table_get_n_cols(node->table)); dict_table_copy_types(row, table_sym->table); ins_node_set_new_row(node, row); node->select = select; if (select) { select->common.parent = node; ut_a(que_node_list_get_len(select->select_list) == dict_table_get_n_user_cols(table_sym->table)); } node->values_list = values_list; if (node->values_list) { pars_resolve_exp_list_variables_and_types(NULL, values_list); ut_a(que_node_list_get_len(values_list) == dict_table_get_n_user_cols(table_sym->table)); } return(node); } /*********************************************************************//** Set the type of a dfield. */ static void pars_set_dfield_type( /*=================*/ dfield_t* dfield, /*!< in: dfield */ pars_res_word_t* type, /*!< in: pointer to a type token */ ulint len, /*!< in: length, or 0 */ ibool is_unsigned, /*!< in: if TRUE, column is UNSIGNED. */ ibool is_not_null) /*!< in: if TRUE, column is NOT NULL. */ { ulint flags = 0; if (is_not_null) { flags |= DATA_NOT_NULL; } if (is_unsigned) { flags |= DATA_UNSIGNED; } if (type == &pars_int_token) { ut_a(len == 0); dtype_set(dfield_get_type(dfield), DATA_INT, flags, 4); } else if (type == &pars_char_token) { ut_a(len == 0); dtype_set(dfield_get_type(dfield), DATA_VARCHAR, DATA_ENGLISH | flags, 0); } else if (type == &pars_binary_token) { ut_a(len != 0); dtype_set(dfield_get_type(dfield), DATA_FIXBINARY, DATA_BINARY_TYPE | flags, len); } else if (type == &pars_blob_token) { ut_a(len == 0); dtype_set(dfield_get_type(dfield), DATA_BLOB, DATA_BINARY_TYPE | flags, 0); } else { ut_error; } } /*********************************************************************//** Parses a variable declaration. @return own: symbol table node of type SYM_VAR */ UNIV_INTERN sym_node_t* pars_variable_declaration( /*======================*/ sym_node_t* node, /*!< in: symbol table node allocated for the id of the variable */ pars_res_word_t* type) /*!< in: pointer to a type token */ { node->resolved = TRUE; node->token_type = SYM_VAR; node->param_type = PARS_NOT_PARAM; pars_set_dfield_type(que_node_get_val(node), type, 0, FALSE, FALSE); return(node); } /*********************************************************************//** Parses a procedure parameter declaration. @return own: symbol table node of type SYM_VAR */ UNIV_INTERN sym_node_t* pars_parameter_declaration( /*=======================*/ sym_node_t* node, /*!< in: symbol table node allocated for the id of the parameter */ ulint param_type, /*!< in: PARS_INPUT or PARS_OUTPUT */ pars_res_word_t* type) /*!< in: pointer to a type token */ { ut_a((param_type == PARS_INPUT) || (param_type == PARS_OUTPUT)); pars_variable_declaration(node, type); node->param_type = param_type; return(node); } /*********************************************************************//** Sets the parent field in a query node list. */ static void pars_set_parent_in_list( /*====================*/ que_node_t* node_list, /*!< in: first node in a list */ que_node_t* parent) /*!< in: parent value to set in all nodes of the list */ { que_common_t* common; common = node_list; while (common) { common->parent = parent; common = que_node_get_next(common); } } /*********************************************************************//** Parses an elsif element. @return elsif node */ UNIV_INTERN elsif_node_t* pars_elsif_element( /*===============*/ que_node_t* cond, /*!< in: if-condition */ que_node_t* stat_list) /*!< in: statement list */ { elsif_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(elsif_node_t)); node->common.type = QUE_NODE_ELSIF; node->cond = cond; pars_resolve_exp_variables_and_types(NULL, cond); node->stat_list = stat_list; return(node); } /*********************************************************************//** Parses an if-statement. @return if-statement node */ UNIV_INTERN if_node_t* pars_if_statement( /*==============*/ que_node_t* cond, /*!< in: if-condition */ que_node_t* stat_list, /*!< in: statement list */ que_node_t* else_part) /*!< in: else-part statement list or elsif element list */ { if_node_t* node; elsif_node_t* elsif_node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(if_node_t)); node->common.type = QUE_NODE_IF; node->cond = cond; pars_resolve_exp_variables_and_types(NULL, cond); node->stat_list = stat_list; if (else_part && (que_node_get_type(else_part) == QUE_NODE_ELSIF)) { /* There is a list of elsif conditions */ node->else_part = NULL; node->elsif_list = else_part; elsif_node = else_part; while (elsif_node) { pars_set_parent_in_list(elsif_node->stat_list, node); elsif_node = que_node_get_next(elsif_node); } } else { node->else_part = else_part; node->elsif_list = NULL; pars_set_parent_in_list(else_part, node); } pars_set_parent_in_list(stat_list, node); return(node); } /*********************************************************************//** Parses a while-statement. @return while-statement node */ UNIV_INTERN while_node_t* pars_while_statement( /*=================*/ que_node_t* cond, /*!< in: while-condition */ que_node_t* stat_list) /*!< in: statement list */ { while_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(while_node_t)); node->common.type = QUE_NODE_WHILE; node->cond = cond; pars_resolve_exp_variables_and_types(NULL, cond); node->stat_list = stat_list; pars_set_parent_in_list(stat_list, node); return(node); } /*********************************************************************//** Parses a for-loop-statement. @return for-statement node */ UNIV_INTERN for_node_t* pars_for_statement( /*===============*/ sym_node_t* loop_var, /*!< in: loop variable */ que_node_t* loop_start_limit,/*!< in: loop start expression */ que_node_t* loop_end_limit, /*!< in: loop end expression */ que_node_t* stat_list) /*!< in: statement list */ { for_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(for_node_t)); node->common.type = QUE_NODE_FOR; pars_resolve_exp_variables_and_types(NULL, loop_var); pars_resolve_exp_variables_and_types(NULL, loop_start_limit); pars_resolve_exp_variables_and_types(NULL, loop_end_limit); node->loop_var = loop_var->indirection; ut_a(loop_var->indirection); node->loop_start_limit = loop_start_limit; node->loop_end_limit = loop_end_limit; node->stat_list = stat_list; pars_set_parent_in_list(stat_list, node); return(node); } /*********************************************************************//** Parses an exit statement. @return exit statement node */ UNIV_INTERN exit_node_t* pars_exit_statement(void) /*=====================*/ { exit_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(exit_node_t)); node->common.type = QUE_NODE_EXIT; return(node); } /*********************************************************************//** Parses a return-statement. @return return-statement node */ UNIV_INTERN return_node_t* pars_return_statement(void) /*=======================*/ { return_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(return_node_t)); node->common.type = QUE_NODE_RETURN; return(node); } /*********************************************************************//** Parses an assignment statement. @return assignment statement node */ UNIV_INTERN assign_node_t* pars_assignment_statement( /*======================*/ sym_node_t* var, /*!< in: variable to assign */ que_node_t* val) /*!< in: value to assign */ { assign_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(assign_node_t)); node->common.type = QUE_NODE_ASSIGNMENT; node->var = var; node->val = val; pars_resolve_exp_variables_and_types(NULL, var); pars_resolve_exp_variables_and_types(NULL, val); ut_a(dtype_get_mtype(dfield_get_type(que_node_get_val(var))) == dtype_get_mtype(dfield_get_type(que_node_get_val(val)))); return(node); } /*********************************************************************//** Parses a procedure call. @return function node */ UNIV_INTERN func_node_t* pars_procedure_call( /*================*/ que_node_t* res_word,/*!< in: procedure name reserved word */ que_node_t* args) /*!< in: argument list */ { func_node_t* node; node = pars_func(res_word, args); pars_resolve_exp_list_variables_and_types(NULL, args); return(node); } /*********************************************************************//** Parses a fetch statement. into_list or user_func (but not both) must be non-NULL. @return fetch statement node */ UNIV_INTERN fetch_node_t* pars_fetch_statement( /*=================*/ sym_node_t* cursor, /*!< in: cursor node */ sym_node_t* into_list, /*!< in: variables to set, or NULL */ sym_node_t* user_func) /*!< in: user function name, or NULL */ { sym_node_t* cursor_decl; fetch_node_t* node; /* Logical XOR. */ ut_a(!into_list != !user_func); node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(fetch_node_t)); node->common.type = QUE_NODE_FETCH; pars_resolve_exp_variables_and_types(NULL, cursor); if (into_list) { pars_resolve_exp_list_variables_and_types(NULL, into_list); node->into_list = into_list; node->func = NULL; } else { pars_resolve_exp_variables_and_types(NULL, user_func); node->func = pars_info_get_user_func(pars_sym_tab_global->info, user_func->name); ut_a(node->func); node->into_list = NULL; } cursor_decl = cursor->alias; ut_a(cursor_decl->token_type == SYM_CURSOR); node->cursor_def = cursor_decl->cursor_def; if (into_list) { ut_a(que_node_list_get_len(into_list) == que_node_list_get_len(node->cursor_def->select_list)); } return(node); } /*********************************************************************//** Parses an open or close cursor statement. @return fetch statement node */ UNIV_INTERN open_node_t* pars_open_statement( /*================*/ ulint type, /*!< in: ROW_SEL_OPEN_CURSOR or ROW_SEL_CLOSE_CURSOR */ sym_node_t* cursor) /*!< in: cursor node */ { sym_node_t* cursor_decl; open_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(open_node_t)); node->common.type = QUE_NODE_OPEN; pars_resolve_exp_variables_and_types(NULL, cursor); cursor_decl = cursor->alias; ut_a(cursor_decl->token_type == SYM_CURSOR); node->op_type = type; node->cursor_def = cursor_decl->cursor_def; return(node); } /*********************************************************************//** Parses a row_printf-statement. @return row_printf-statement node */ UNIV_INTERN row_printf_node_t* pars_row_printf_statement( /*======================*/ sel_node_t* sel_node) /*!< in: select node */ { row_printf_node_t* node; node = mem_heap_alloc(pars_sym_tab_global->heap, sizeof(row_printf_node_t)); node->common.type = QUE_NODE_ROW_PRINTF; node->sel_node = sel_node; sel_node->common.parent = node; return(node); } /*********************************************************************//** Parses a commit statement. @return own: commit node struct */ UNIV_INTERN commit_node_t* pars_commit_statement(void) /*=======================*/ { return(commit_node_create(pars_sym_tab_global->heap)); } /*********************************************************************//** Parses a rollback statement. @return own: rollback node struct */ UNIV_INTERN roll_node_t* pars_rollback_statement(void) /*=========================*/ { return(roll_node_create(pars_sym_tab_global->heap)); } /*********************************************************************//** Parses a column definition at a table creation. @return column sym table node */ UNIV_INTERN sym_node_t* pars_column_def( /*============*/ sym_node_t* sym_node, /*!< in: column node in the symbol table */ pars_res_word_t* type, /*!< in: data type */ sym_node_t* len, /*!< in: length of column, or NULL */ void* is_unsigned, /*!< in: if not NULL, column is of type UNSIGNED. */ void* is_not_null) /*!< in: if not NULL, column is of type NOT NULL. */ { ulint len2; if (len) { len2 = eval_node_get_int_val(len); } else { len2 = 0; } pars_set_dfield_type(que_node_get_val(sym_node), type, len2, is_unsigned != NULL, is_not_null != NULL); return(sym_node); } /*********************************************************************//** Parses a table creation operation. @return table create subgraph */ UNIV_INTERN tab_node_t* pars_create_table( /*==============*/ sym_node_t* table_sym, /*!< in: table name node in the symbol table */ sym_node_t* column_defs, /*!< in: list of column names */ void* not_fit_in_memory __attribute__((unused))) /*!< in: a non-NULL pointer means that this is a table which in simulations should be simulated as not fitting in memory; thread is put to sleep to simulate disk accesses; NOTE that this flag is not stored to the data dictionary on disk, and the database will forget about non-NULL value if it has to reload the table definition from disk */ { dict_table_t* table; sym_node_t* column; tab_node_t* node; const dtype_t* dtype; ulint n_cols; n_cols = que_node_list_get_len(column_defs); /* As the InnoDB SQL parser is for internal use only, for creating some system tables, this function will only create tables in the old (not compact) record format. */ table = dict_mem_table_create(table_sym->name, 0, n_cols, 0); #ifdef UNIV_DEBUG if (not_fit_in_memory != NULL) { table->does_not_fit_in_memory = TRUE; } #endif /* UNIV_DEBUG */ column = column_defs; while (column) { dtype = dfield_get_type(que_node_get_val(column)); dict_mem_table_add_col(table, table->heap, column->name, dtype->mtype, dtype->prtype, dtype->len); column->resolved = TRUE; column->token_type = SYM_COLUMN; column = que_node_get_next(column); } node = tab_create_graph_create(table, pars_sym_tab_global->heap); table_sym->resolved = TRUE; table_sym->token_type = SYM_TABLE; return(node); } /*********************************************************************//** Parses an index creation operation. @return index create subgraph */ UNIV_INTERN ind_node_t* pars_create_index( /*==============*/ pars_res_word_t* unique_def, /*!< in: not NULL if a unique index */ pars_res_word_t* clustered_def, /*!< in: not NULL if a clustered index */ sym_node_t* index_sym, /*!< in: index name node in the symbol table */ sym_node_t* table_sym, /*!< in: table name node in the symbol table */ sym_node_t* column_list) /*!< in: list of column names */ { dict_index_t* index; sym_node_t* column; ind_node_t* node; ulint n_fields; ulint ind_type; n_fields = que_node_list_get_len(column_list); ind_type = 0; if (unique_def) { ind_type = ind_type | DICT_UNIQUE; } if (clustered_def) { ind_type = ind_type | DICT_CLUSTERED; } index = dict_mem_index_create(table_sym->name, index_sym->name, 0, ind_type, n_fields); column = column_list; while (column) { dict_mem_index_add_field(index, column->name, 0); column->resolved = TRUE; column->token_type = SYM_COLUMN; column = que_node_get_next(column); } node = ind_create_graph_create(index, pars_sym_tab_global->heap); table_sym->resolved = TRUE; table_sym->token_type = SYM_TABLE; index_sym->resolved = TRUE; index_sym->token_type = SYM_TABLE; return(node); } /*********************************************************************//** Parses a procedure definition. @return query fork node */ UNIV_INTERN que_fork_t* pars_procedure_definition( /*======================*/ sym_node_t* sym_node, /*!< in: procedure id node in the symbol table */ sym_node_t* param_list, /*!< in: parameter declaration list */ que_node_t* stat_list) /*!< in: statement list */ { proc_node_t* node; que_fork_t* fork; que_thr_t* thr; mem_heap_t* heap; heap = pars_sym_tab_global->heap; fork = que_fork_create(NULL, NULL, QUE_FORK_PROCEDURE, heap); fork->trx = NULL; thr = que_thr_create(fork, heap); node = mem_heap_alloc(heap, sizeof(proc_node_t)); node->common.type = QUE_NODE_PROC; node->common.parent = thr; sym_node->token_type = SYM_PROCEDURE_NAME; sym_node->resolved = TRUE; node->proc_id = sym_node; node->param_list = param_list; node->stat_list = stat_list; pars_set_parent_in_list(stat_list, node); node->sym_tab = pars_sym_tab_global; thr->child = node; pars_sym_tab_global->query_graph = fork; return(fork); } /*************************************************************//** Parses a stored procedure call, when this is not within another stored procedure, that is, the client issues a procedure call directly. In MySQL/InnoDB, stored InnoDB procedures are invoked via the parsed procedure tree, not via InnoDB SQL, so this function is not used. @return query graph */ UNIV_INTERN que_fork_t* pars_stored_procedure_call( /*=======================*/ sym_node_t* sym_node __attribute__((unused))) /*!< in: stored procedure name */ { ut_error; return(NULL); } /*************************************************************//** Retrieves characters to the lexical analyzer. */ UNIV_INTERN void pars_get_lex_chars( /*===============*/ char* buf, /*!< in/out: buffer where to copy */ int* result, /*!< out: number of characters copied or EOF */ int max_size) /*!< in: maximum number of characters which fit in the buffer */ { int len; len = pars_sym_tab_global->string_len - pars_sym_tab_global->next_char_pos; if (len == 0) { #ifdef YYDEBUG /* fputs("SQL string ends\n", stderr); */ #endif *result = 0; return; } if (len > max_size) { len = max_size; } #ifdef UNIV_SQL_DEBUG if (pars_print_lexed) { if (len >= 5) { len = 5; } fwrite(pars_sym_tab_global->sql_string + pars_sym_tab_global->next_char_pos, 1, len, stderr); } #endif /* UNIV_SQL_DEBUG */ ut_memcpy(buf, pars_sym_tab_global->sql_string + pars_sym_tab_global->next_char_pos, len); *result = len; pars_sym_tab_global->next_char_pos += len; } /*************************************************************//** Called by yyparse on error. */ UNIV_INTERN void yyerror( /*====*/ const char* s __attribute__((unused))) /*!< in: error message string */ { ut_ad(s); fputs("PARSER ERROR: Syntax error in SQL string\n", stderr); ut_error; } /*************************************************************//** Parses an SQL string returning the query graph. @return own: the query graph */ UNIV_INTERN que_t* pars_sql( /*=====*/ pars_info_t* info, /*!< in: extra information, or NULL */ const char* str) /*!< in: SQL string */ { sym_node_t* sym_node; mem_heap_t* heap; que_t* graph; ut_ad(str); heap = mem_heap_create(256); /* Currently, the parser is not reentrant: */ ut_ad(mutex_own(&(dict_sys->mutex))); pars_sym_tab_global = sym_tab_create(heap); pars_sym_tab_global->string_len = strlen(str); pars_sym_tab_global->sql_string = mem_heap_dup( heap, str, pars_sym_tab_global->string_len + 1); pars_sym_tab_global->next_char_pos = 0; pars_sym_tab_global->info = info; yyparse(); sym_node = UT_LIST_GET_FIRST(pars_sym_tab_global->sym_list); while (sym_node) { ut_a(sym_node->resolved); sym_node = UT_LIST_GET_NEXT(sym_list, sym_node); } graph = pars_sym_tab_global->query_graph; graph->sym_tab = pars_sym_tab_global; graph->info = info; /* fprintf(stderr, "SQL graph size %lu\n", mem_heap_get_size(heap)); */ return(graph); } /******************************************************************//** Completes a query graph by adding query thread and fork nodes above it and prepares the graph for running. The fork created is of type QUE_FORK_MYSQL_INTERFACE. @return query thread node to run */ UNIV_INTERN que_thr_t* pars_complete_graph_for_exec( /*=========================*/ que_node_t* node, /*!< in: root node for an incomplete query graph */ trx_t* trx, /*!< in: transaction handle */ mem_heap_t* heap) /*!< in: memory heap from which allocated */ { que_fork_t* fork; que_thr_t* thr; fork = que_fork_create(NULL, NULL, QUE_FORK_MYSQL_INTERFACE, heap); fork->trx = trx; thr = que_thr_create(fork, heap); thr->child = node; que_node_set_parent(node, thr); trx->graph = NULL; return(thr); } /****************************************************************//** Create parser info struct. @return own: info struct */ UNIV_INTERN pars_info_t* pars_info_create(void) /*==================*/ { pars_info_t* info; mem_heap_t* heap; heap = mem_heap_create(512); info = mem_heap_alloc(heap, sizeof(*info)); info->heap = heap; info->funcs = NULL; info->bound_lits = NULL; info->bound_ids = NULL; info->graph_owns_us = TRUE; return(info); } /****************************************************************//** Free info struct and everything it contains. */ UNIV_INTERN void pars_info_free( /*===========*/ pars_info_t* info) /*!< in, own: info struct */ { mem_heap_free(info->heap); } /****************************************************************//** Add bound literal. */ UNIV_INTERN void pars_info_add_literal( /*==================*/ pars_info_t* info, /*!< in: info struct */ const char* name, /*!< in: name */ const void* address, /*!< in: address */ ulint length, /*!< in: length of data */ ulint type, /*!< in: type, e.g. DATA_FIXBINARY */ ulint prtype) /*!< in: precise type, e.g. DATA_UNSIGNED */ { pars_bound_lit_t* pbl; ut_ad(!pars_info_get_bound_lit(info, name)); pbl = mem_heap_alloc(info->heap, sizeof(*pbl)); pbl->name = name; pbl->address = address; pbl->length = length; pbl->type = type; pbl->prtype = prtype; if (!info->bound_lits) { info->bound_lits = ib_vector_create(info->heap, 8); } ib_vector_push(info->bound_lits, pbl); } /****************************************************************//** Equivalent to pars_info_add_literal(info, name, str, strlen(str), DATA_VARCHAR, DATA_ENGLISH). */ UNIV_INTERN void pars_info_add_str_literal( /*======================*/ pars_info_t* info, /*!< in: info struct */ const char* name, /*!< in: name */ const char* str) /*!< in: string */ { pars_info_add_literal(info, name, str, strlen(str), DATA_VARCHAR, DATA_ENGLISH); } /****************************************************************//** Equivalent to: char buf[4]; mach_write_to_4(buf, val); pars_info_add_literal(info, name, buf, 4, DATA_INT, 0); except that the buffer is dynamically allocated from the info struct's heap. */ UNIV_INTERN void pars_info_add_int4_literal( /*=======================*/ pars_info_t* info, /*!< in: info struct */ const char* name, /*!< in: name */ lint val) /*!< in: value */ { byte* buf = mem_heap_alloc(info->heap, 4); mach_write_to_4(buf, val); pars_info_add_literal(info, name, buf, 4, DATA_INT, 0); } /****************************************************************//** Equivalent to: char buf[8]; mach_write_to_8(buf, val); pars_info_add_literal(info, name, buf, 8, DATA_FIXBINARY, 0); except that the buffer is dynamically allocated from the info struct's heap. */ UNIV_INTERN void pars_info_add_ull_literal( /*======================*/ pars_info_t* info, /*!< in: info struct */ const char* name, /*!< in: name */ ib_uint64_t val) /*!< in: value */ { byte* buf = mem_heap_alloc(info->heap, 8); mach_write_to_8(buf, val); pars_info_add_literal(info, name, buf, 8, DATA_FIXBINARY, 0); } /****************************************************************//** Add user function. */ UNIV_INTERN void pars_info_add_function( /*===================*/ pars_info_t* info, /*!< in: info struct */ const char* name, /*!< in: function name */ pars_user_func_cb_t func, /*!< in: function address */ void* arg) /*!< in: user-supplied argument */ { pars_user_func_t* puf; ut_ad(!pars_info_get_user_func(info, name)); puf = mem_heap_alloc(info->heap, sizeof(*puf)); puf->name = name; puf->func = func; puf->arg = arg; if (!info->funcs) { info->funcs = ib_vector_create(info->heap, 8); } ib_vector_push(info->funcs, puf); } /****************************************************************//** Add bound id. */ UNIV_INTERN void pars_info_add_id( /*=============*/ pars_info_t* info, /*!< in: info struct */ const char* name, /*!< in: name */ const char* id) /*!< in: id */ { pars_bound_id_t* bid; ut_ad(!pars_info_get_bound_id(info, name)); bid = mem_heap_alloc(info->heap, sizeof(*bid)); bid->name = name; bid->id = id; if (!info->bound_ids) { info->bound_ids = ib_vector_create(info->heap, 8); } ib_vector_push(info->bound_ids, bid); } /****************************************************************//** Get user function with the given name. @return user func, or NULL if not found */ UNIV_INTERN pars_user_func_t* pars_info_get_user_func( /*====================*/ pars_info_t* info, /*!< in: info struct */ const char* name) /*!< in: function name to find*/ { ulint i; ib_vector_t* vec; if (!info || !info->funcs) { return(NULL); } vec = info->funcs; for (i = 0; i < ib_vector_size(vec); i++) { pars_user_func_t* puf = ib_vector_get(vec, i); if (strcmp(puf->name, name) == 0) { return(puf); } } return(NULL); } /****************************************************************//** Get bound literal with the given name. @return bound literal, or NULL if not found */ UNIV_INTERN pars_bound_lit_t* pars_info_get_bound_lit( /*====================*/ pars_info_t* info, /*!< in: info struct */ const char* name) /*!< in: bound literal name to find */ { ulint i; ib_vector_t* vec; if (!info || !info->bound_lits) { return(NULL); } vec = info->bound_lits; for (i = 0; i < ib_vector_size(vec); i++) { pars_bound_lit_t* pbl = ib_vector_get(vec, i); if (strcmp(pbl->name, name) == 0) { return(pbl); } } return(NULL); } /****************************************************************//** Get bound id with the given name. @return bound id, or NULL if not found */ UNIV_INTERN pars_bound_id_t* pars_info_get_bound_id( /*===================*/ pars_info_t* info, /*!< in: info struct */ const char* name) /*!< in: bound id name to find */ { ulint i; ib_vector_t* vec; if (!info || !info->bound_ids) { return(NULL); } vec = info->bound_ids; for (i = 0; i < ib_vector_size(vec); i++) { pars_bound_id_t* bid = ib_vector_get(vec, i); if (strcmp(bid->name, name) == 0) { return(bid); } } return(NULL); }