/***************************************************************************** Copyright (c) 1995, 2010, Innobase Oy. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /**************************************************//** @file buf/buf0flu.c The database buffer buf_pool flush algorithm Created 11/11/1995 Heikki Tuuri *******************************************************/ #include "buf0flu.h" #ifdef UNIV_NONINL #include "buf0flu.ic" #endif #include "buf0buf.h" #include "srv0srv.h" #include "page0zip.h" #ifndef UNIV_HOTBACKUP #include "ut0byte.h" #include "ut0lst.h" #include "page0page.h" #include "fil0fil.h" #include "buf0lru.h" #include "buf0rea.h" #include "ibuf0ibuf.h" #include "log0log.h" #include "os0file.h" #include "trx0sys.h" #include "mysql/plugin.h" #include "mysql/service_thd_wait.h" /********************************************************************** These statistics are generated for heuristics used in estimating the rate at which we should flush the dirty blocks to avoid bursty IO activity. Note that the rate of flushing not only depends on how many dirty pages we have in the buffer pool but it is also a fucntion of how much redo the workload is generating and at what rate. */ /* @{ */ /** Number of intervals for which we keep the history of these stats. Each interval is 1 second, defined by the rate at which srv_error_monitor_thread() calls buf_flush_stat_update(). */ #define BUF_FLUSH_STAT_N_INTERVAL 20 /** Sampled values buf_flush_stat_cur. Not protected by any mutex. Updated by buf_flush_stat_update(). */ static buf_flush_stat_t buf_flush_stat_arr[BUF_FLUSH_STAT_N_INTERVAL]; /** Cursor to buf_flush_stat_arr[]. Updated in a round-robin fashion. */ static ulint buf_flush_stat_arr_ind; /** Values at start of the current interval. Reset by buf_flush_stat_update(). */ static buf_flush_stat_t buf_flush_stat_cur; /** Running sum of past values of buf_flush_stat_cur. Updated by buf_flush_stat_update(). Not protected by any mutex. */ static buf_flush_stat_t buf_flush_stat_sum; /** Number of pages flushed through non flush_list flushes. */ static ulint buf_lru_flush_page_count = 0; /* @} */ #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /******************************************************************//** Validates the flush list. @return TRUE if ok */ static ibool buf_flush_validate_low( /*===================*/ buf_pool_t* buf_pool); /*!< in: Buffer pool instance */ /******************************************************************//** Validates the flush list some of the time. @return TRUE if ok or the check was skipped */ static ibool buf_flush_validate_skip( /*====================*/ buf_pool_t* buf_pool) /*!< in: Buffer pool instance */ { /** Try buf_flush_validate_low() every this many times */ # define BUF_FLUSH_VALIDATE_SKIP 23 /** The buf_flush_validate_low() call skip counter. Use a signed type because of the race condition below. */ static int buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP; /* There is a race condition below, but it does not matter, because this call is only for heuristic purposes. We want to reduce the call frequency of the costly buf_flush_validate_low() check in debug builds. */ if (--buf_flush_validate_count > 0) { return(TRUE); } buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP; return(buf_flush_validate_low(buf_pool)); } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ /******************************************************************//** Insert a block in the flush_rbt and returns a pointer to its predecessor or NULL if no predecessor. The ordering is maintained on the basis of the key. @return pointer to the predecessor or NULL if no predecessor. */ static buf_page_t* buf_flush_insert_in_flush_rbt( /*==========================*/ buf_page_t* bpage) /*!< in: bpage to be inserted. */ { const ib_rbt_node_t* c_node; const ib_rbt_node_t* p_node; buf_page_t* prev = NULL; buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_flush_list_mutex_own(buf_pool)); /* Insert this buffer into the rbt. */ c_node = rbt_insert(buf_pool->flush_rbt, &bpage, &bpage); ut_a(c_node != NULL); /* Get the predecessor. */ p_node = rbt_prev(buf_pool->flush_rbt, c_node); if (p_node != NULL) { buf_page_t** value; value = rbt_value(buf_page_t*, p_node); prev = *value; ut_a(prev != NULL); } return(prev); } /*********************************************************//** Delete a bpage from the flush_rbt. */ static void buf_flush_delete_from_flush_rbt( /*============================*/ buf_page_t* bpage) /*!< in: bpage to be removed. */ { #ifdef UNIV_DEBUG ibool ret = FALSE; #endif /* UNIV_DEBUG */ buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_flush_list_mutex_own(buf_pool)); #ifdef UNIV_DEBUG ret = #endif /* UNIV_DEBUG */ rbt_delete(buf_pool->flush_rbt, &bpage); ut_ad(ret); } /*****************************************************************//** Compare two modified blocks in the buffer pool. The key for comparison is: key = This comparison is used to maintian ordering of blocks in the buf_pool->flush_rbt. Note that for the purpose of flush_rbt, we only need to order blocks on the oldest_modification. The other two fields are used to uniquely identify the blocks. @return < 0 if b2 < b1, 0 if b2 == b1, > 0 if b2 > b1 */ static int buf_flush_block_cmp( /*================*/ const void* p1, /*!< in: block1 */ const void* p2) /*!< in: block2 */ { int ret; const buf_page_t* b1 = *(const buf_page_t**) p1; const buf_page_t* b2 = *(const buf_page_t**) p2; #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(b1); #endif /* UNIV_DEBUG */ ut_ad(b1 != NULL); ut_ad(b2 != NULL); ut_ad(buf_flush_list_mutex_own(buf_pool)); ut_ad(b1->in_flush_list); ut_ad(b2->in_flush_list); if (b2->oldest_modification > b1->oldest_modification) { return(1); } else if (b2->oldest_modification < b1->oldest_modification) { return(-1); } /* If oldest_modification is same then decide on the space. */ ret = (int)(b2->space - b1->space); /* Or else decide ordering on the offset field. */ return(ret ? ret : (int)(b2->offset - b1->offset)); } /********************************************************************//** Initialize the red-black tree to speed up insertions into the flush_list during recovery process. Should be called at the start of recovery process before any page has been read/written. */ UNIV_INTERN void buf_flush_init_flush_rbt(void) /*==========================*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_flush_list_mutex_enter(buf_pool); /* Create red black tree for speedy insertions in flush list. */ buf_pool->flush_rbt = rbt_create( sizeof(buf_page_t*), buf_flush_block_cmp); buf_flush_list_mutex_exit(buf_pool); } } /********************************************************************//** Frees up the red-black tree. */ UNIV_INTERN void buf_flush_free_flush_rbt(void) /*==========================*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_flush_list_mutex_enter(buf_pool); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_low(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ rbt_free(buf_pool->flush_rbt); buf_pool->flush_rbt = NULL; buf_flush_list_mutex_exit(buf_pool); } } /********************************************************************//** Inserts a modified block into the flush list. */ UNIV_INTERN void buf_flush_insert_into_flush_list( /*=============================*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ buf_block_t* block, /*!< in/out: block which is modified */ ib_uint64_t lsn) /*!< in: oldest modification */ { ut_ad(!buf_pool_mutex_own(buf_pool)); ut_ad(log_flush_order_mutex_own()); ut_ad(mutex_own(&block->mutex)); buf_flush_list_mutex_enter(buf_pool); ut_ad((UT_LIST_GET_FIRST(buf_pool->flush_list) == NULL) || (UT_LIST_GET_FIRST(buf_pool->flush_list)->oldest_modification <= lsn)); /* If we are in the recovery then we need to update the flush red-black tree as well. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_flush_list_mutex_exit(buf_pool); buf_flush_insert_sorted_into_flush_list(buf_pool, block, lsn); return; } ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); ut_ad(!block->page.in_flush_list); ut_d(block->page.in_flush_list = TRUE); block->page.oldest_modification = lsn; UT_LIST_ADD_FIRST(list, buf_pool->flush_list, &block->page); #ifdef UNIV_DEBUG_VALGRIND { ulint zip_size = buf_block_get_zip_size(block); if (UNIV_UNLIKELY(zip_size)) { UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size); } else { UNIV_MEM_ASSERT_RW(block->frame, UNIV_PAGE_SIZE); } } #endif /* UNIV_DEBUG_VALGRIND */ #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_skip(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_list_mutex_exit(buf_pool); } /********************************************************************//** Inserts a modified block into the flush list in the right sorted position. This function is used by recovery, because there the modifications do not necessarily come in the order of lsn's. */ UNIV_INTERN void buf_flush_insert_sorted_into_flush_list( /*====================================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_block_t* block, /*!< in/out: block which is modified */ ib_uint64_t lsn) /*!< in: oldest modification */ { buf_page_t* prev_b; buf_page_t* b; ut_ad(!buf_pool_mutex_own(buf_pool)); ut_ad(log_flush_order_mutex_own()); ut_ad(mutex_own(&block->mutex)); ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); buf_flush_list_mutex_enter(buf_pool); /* The field in_LRU_list is protected by buf_pool->mutex, which we are not holding. However, while a block is in the flush list, it is dirty and cannot be discarded, not from the page_hash or from the LRU list. At most, the uncompressed page frame of a compressed block may be discarded or created (copying the block->page to or from a buf_page_t that is dynamically allocated from buf_buddy_alloc()). Because those transitions hold block->mutex and the flush list mutex (via buf_flush_relocate_on_flush_list()), there is no possibility of a race condition in the assertions below. */ ut_ad(block->page.in_LRU_list); ut_ad(block->page.in_page_hash); /* buf_buddy_block_register() will take a block in the BUF_BLOCK_MEMORY state, not a file page. */ ut_ad(!block->page.in_zip_hash); ut_ad(!block->page.in_flush_list); ut_d(block->page.in_flush_list = TRUE); block->page.oldest_modification = lsn; #ifdef UNIV_DEBUG_VALGRIND { ulint zip_size = buf_block_get_zip_size(block); if (UNIV_UNLIKELY(zip_size)) { UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size); } else { UNIV_MEM_ASSERT_RW(block->frame, UNIV_PAGE_SIZE); } } #endif /* UNIV_DEBUG_VALGRIND */ prev_b = NULL; /* For the most part when this function is called the flush_rbt should not be NULL. In a very rare boundary case it is possible that the flush_rbt has already been freed by the recovery thread before the last page was hooked up in the flush_list by the io-handler thread. In that case we'll just do a simple linear search in the else block. */ if (buf_pool->flush_rbt) { prev_b = buf_flush_insert_in_flush_rbt(&block->page); } else { b = UT_LIST_GET_FIRST(buf_pool->flush_list); while (b && b->oldest_modification > block->page.oldest_modification) { ut_ad(b->in_flush_list); prev_b = b; b = UT_LIST_GET_NEXT(list, b); } } if (prev_b == NULL) { UT_LIST_ADD_FIRST(list, buf_pool->flush_list, &block->page); } else { UT_LIST_INSERT_AFTER(list, buf_pool->flush_list, prev_b, &block->page); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_low(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_list_mutex_exit(buf_pool); } /********************************************************************//** Returns TRUE if the file page block is immediately suitable for replacement, i.e., the transition FILE_PAGE => NOT_USED allowed. @return TRUE if can replace immediately */ UNIV_INTERN ibool buf_flush_ready_for_replace( /*========================*/ buf_page_t* bpage) /*!< in: buffer control block, must be buf_page_in_file(bpage) and in the LRU list */ { #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_pool_mutex_own(buf_pool)); #endif ut_ad(mutex_own(buf_page_get_mutex(bpage))); ut_ad(bpage->in_LRU_list); if (UNIV_LIKELY(buf_page_in_file(bpage))) { return(bpage->oldest_modification == 0 && buf_page_get_io_fix(bpage) == BUF_IO_NONE && bpage->buf_fix_count == 0); } ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: buffer block state %lu" " in the LRU list!\n", (ulong) buf_page_get_state(bpage)); ut_print_buf(stderr, bpage, sizeof(buf_page_t)); putc('\n', stderr); return(FALSE); } /********************************************************************//** Returns TRUE if the block is modified and ready for flushing. @return TRUE if can flush immediately */ UNIV_INLINE ibool buf_flush_ready_for_flush( /*======================*/ buf_page_t* bpage, /*!< in: buffer control block, must be buf_page_in_file(bpage) */ enum buf_flush flush_type)/*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_pool_mutex_own(buf_pool)); #endif ut_a(buf_page_in_file(bpage)); ut_ad(mutex_own(buf_page_get_mutex(bpage))); ut_ad(flush_type == BUF_FLUSH_LRU || BUF_FLUSH_LIST); if (bpage->oldest_modification != 0 && buf_page_get_io_fix(bpage) == BUF_IO_NONE) { ut_ad(bpage->in_flush_list); if (flush_type != BUF_FLUSH_LRU) { return(TRUE); } else if (bpage->buf_fix_count == 0) { /* If we are flushing the LRU list, to avoid deadlocks we require the block not to be bufferfixed, and hence not latched. */ return(TRUE); } } return(FALSE); } /********************************************************************//** Remove a block from the flush list of modified blocks. */ UNIV_INTERN void buf_flush_remove( /*=============*/ buf_page_t* bpage) /*!< in: pointer to the block in question */ { buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_pool_mutex_own(buf_pool)); ut_ad(mutex_own(buf_page_get_mutex(bpage))); ut_ad(bpage->in_flush_list); buf_flush_list_mutex_enter(buf_pool); switch (buf_page_get_state(bpage)) { case BUF_BLOCK_ZIP_PAGE: /* Clean compressed pages should not be on the flush list */ case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; return; case BUF_BLOCK_ZIP_DIRTY: buf_page_set_state(bpage, BUF_BLOCK_ZIP_PAGE); UT_LIST_REMOVE(list, buf_pool->flush_list, bpage); buf_LRU_insert_zip_clean(bpage); break; case BUF_BLOCK_FILE_PAGE: UT_LIST_REMOVE(list, buf_pool->flush_list, bpage); break; } /* If the flush_rbt is active then delete from there as well. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_flush_delete_from_flush_rbt(bpage); } /* Must be done after we have removed it from the flush_rbt because we assert on in_flush_list in comparison function. */ ut_d(bpage->in_flush_list = FALSE); bpage->oldest_modification = 0; #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_skip(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_list_mutex_exit(buf_pool); } /*******************************************************************//** Relocates a buffer control block on the flush_list. Note that it is assumed that the contents of bpage have already been copied to dpage. IMPORTANT: When this function is called bpage and dpage are not exact copies of each other. For example, they both will have different ::state. Also the ::list pointers in dpage may be stale. We need to use the current list node (bpage) to do the list manipulation because the list pointers could have changed between the time that we copied the contents of bpage to the dpage and the flush list manipulation below. */ UNIV_INTERN void buf_flush_relocate_on_flush_list( /*=============================*/ buf_page_t* bpage, /*!< in/out: control block being moved */ buf_page_t* dpage) /*!< in/out: destination block */ { buf_page_t* prev; buf_page_t* prev_b = NULL; buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_pool_mutex_own(buf_pool)); /* Must reside in the same buffer pool. */ ut_ad(buf_pool == buf_pool_from_bpage(dpage)); ut_ad(mutex_own(buf_page_get_mutex(bpage))); buf_flush_list_mutex_enter(buf_pool); /* FIXME: At this point we have both buf_pool and flush_list mutexes. Theoretically removal of a block from flush list is only covered by flush_list mutex but currently we do have buf_pool mutex in buf_flush_remove() therefore this block is guaranteed to be in the flush list. We need to check if this will work without the assumption of block removing code having the buf_pool mutex. */ ut_ad(bpage->in_flush_list); ut_ad(dpage->in_flush_list); /* If recovery is active we must swap the control blocks in the flush_rbt as well. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_flush_delete_from_flush_rbt(bpage); prev_b = buf_flush_insert_in_flush_rbt(dpage); } /* Must be done after we have removed it from the flush_rbt because we assert on in_flush_list in comparison function. */ ut_d(bpage->in_flush_list = FALSE); prev = UT_LIST_GET_PREV(list, bpage); UT_LIST_REMOVE(list, buf_pool->flush_list, bpage); if (prev) { ut_ad(prev->in_flush_list); UT_LIST_INSERT_AFTER( list, buf_pool->flush_list, prev, dpage); } else { UT_LIST_ADD_FIRST( list, buf_pool->flush_list, dpage); } /* Just an extra check. Previous in flush_list should be the same control block as in flush_rbt. */ ut_a(!buf_pool->flush_rbt || prev_b == prev); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_low(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_list_mutex_exit(buf_pool); } /********************************************************************//** Updates the flush system data structures when a write is completed. */ UNIV_INTERN void buf_flush_write_complete( /*=====================*/ buf_page_t* bpage) /*!< in: pointer to the block in question */ { enum buf_flush flush_type; buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(bpage); buf_flush_remove(bpage); flush_type = buf_page_get_flush_type(bpage); buf_pool->n_flush[flush_type]--; if (flush_type == BUF_FLUSH_LRU) { /* Put the block to the end of the LRU list to wait to be moved to the free list */ buf_LRU_make_block_old(bpage); buf_pool->LRU_flush_ended++; } /* fprintf(stderr, "n pending flush %lu\n", buf_pool->n_flush[flush_type]); */ if (buf_pool->n_flush[flush_type] == 0 && buf_pool->init_flush[flush_type] == FALSE) { /* The running flush batch has ended */ os_event_set(buf_pool->no_flush[flush_type]); } } /********************************************************************//** Flush a batch of writes to the datafiles that have already been written by the OS. */ static void buf_flush_sync_datafiles(void) /*==========================*/ { /* Wake possible simulated aio thread to actually post the writes to the operating system */ os_aio_simulated_wake_handler_threads(); /* Wait that all async writes to tablespaces have been posted to the OS */ os_aio_wait_until_no_pending_writes(); /* Now we flush the data to disk (for example, with fsync) */ fil_flush_file_spaces(FIL_TABLESPACE); return; } /********************************************************************//** Flushes possible buffered writes from the doublewrite memory buffer to disk, and also wakes up the aio thread if simulated aio is used. It is very important to call this function after a batch of writes has been posted, and also when we may have to wait for a page latch! Otherwise a deadlock of threads can occur. */ static void buf_flush_buffered_writes(void) /*===========================*/ { byte* write_buf; ulint len; ulint len2; ulint i; if (!srv_use_doublewrite_buf || trx_doublewrite == NULL) { /* Sync the writes to the disk. */ buf_flush_sync_datafiles(); return; } mutex_enter(&(trx_doublewrite->mutex)); /* Write first to doublewrite buffer blocks. We use synchronous aio and thus know that file write has been completed when the control returns. */ if (trx_doublewrite->first_free == 0) { mutex_exit(&(trx_doublewrite->mutex)); return; } for (i = 0; i < trx_doublewrite->first_free; i++) { const buf_block_t* block; block = (buf_block_t*) trx_doublewrite->buf_block_arr[i]; if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE || block->page.zip.data) { /* No simple validate for compressed pages exists. */ continue; } if (UNIV_UNLIKELY (memcmp(block->frame + (FIL_PAGE_LSN + 4), block->frame + (UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: ERROR: The page to be written" " seems corrupt!\n" "InnoDB: The lsn fields do not match!" " Noticed in the buffer pool\n" "InnoDB: before posting to the" " doublewrite buffer.\n"); } if (!block->check_index_page_at_flush) { } else if (page_is_comp(block->frame)) { if (UNIV_UNLIKELY (!page_simple_validate_new(block->frame))) { corrupted_page: buf_page_print(block->frame, 0); ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Apparent corruption of an" " index page n:o %lu in space %lu\n" "InnoDB: to be written to data file." " We intentionally crash server\n" "InnoDB: to prevent corrupt data" " from ending up in data\n" "InnoDB: files.\n", (ulong) buf_block_get_page_no(block), (ulong) buf_block_get_space(block)); ut_error; } } else if (UNIV_UNLIKELY (!page_simple_validate_old(block->frame))) { goto corrupted_page; } } /* increment the doublewrite flushed pages counter */ srv_dblwr_pages_written+= trx_doublewrite->first_free; srv_dblwr_writes++; len = ut_min(TRX_SYS_DOUBLEWRITE_BLOCK_SIZE, trx_doublewrite->first_free) * UNIV_PAGE_SIZE; write_buf = trx_doublewrite->write_buf; i = 0; fil_io(OS_FILE_WRITE, TRUE, TRX_SYS_SPACE, 0, trx_doublewrite->block1, 0, len, (void*) write_buf, NULL); for (len2 = 0; len2 + UNIV_PAGE_SIZE <= len; len2 += UNIV_PAGE_SIZE, i++) { const buf_block_t* block = (buf_block_t*) trx_doublewrite->buf_block_arr[i]; if (UNIV_LIKELY(!block->page.zip.data) && UNIV_LIKELY(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE) && UNIV_UNLIKELY (memcmp(write_buf + len2 + (FIL_PAGE_LSN + 4), write_buf + len2 + (UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: ERROR: The page to be written" " seems corrupt!\n" "InnoDB: The lsn fields do not match!" " Noticed in the doublewrite block1.\n"); } } if (trx_doublewrite->first_free <= TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) { goto flush; } len = (trx_doublewrite->first_free - TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) * UNIV_PAGE_SIZE; write_buf = trx_doublewrite->write_buf + TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * UNIV_PAGE_SIZE; ut_ad(i == TRX_SYS_DOUBLEWRITE_BLOCK_SIZE); fil_io(OS_FILE_WRITE, TRUE, TRX_SYS_SPACE, 0, trx_doublewrite->block2, 0, len, (void*) write_buf, NULL); for (len2 = 0; len2 + UNIV_PAGE_SIZE <= len; len2 += UNIV_PAGE_SIZE, i++) { const buf_block_t* block = (buf_block_t*) trx_doublewrite->buf_block_arr[i]; if (UNIV_LIKELY(!block->page.zip.data) && UNIV_LIKELY(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE) && UNIV_UNLIKELY (memcmp(write_buf + len2 + (FIL_PAGE_LSN + 4), write_buf + len2 + (UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: ERROR: The page to be" " written seems corrupt!\n" "InnoDB: The lsn fields do not match!" " Noticed in" " the doublewrite block2.\n"); } } flush: /* Now flush the doublewrite buffer data to disk */ fil_flush(TRX_SYS_SPACE); /* We know that the writes have been flushed to disk now and in recovery we will find them in the doublewrite buffer blocks. Next do the writes to the intended positions. */ for (i = 0; i < trx_doublewrite->first_free; i++) { const buf_block_t* block = (buf_block_t*) trx_doublewrite->buf_block_arr[i]; ut_a(buf_page_in_file(&block->page)); if (UNIV_LIKELY_NULL(block->page.zip.data)) { fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER, FALSE, buf_page_get_space(&block->page), buf_page_get_zip_size(&block->page), buf_page_get_page_no(&block->page), 0, buf_page_get_zip_size(&block->page), (void*)block->page.zip.data, (void*)block); /* Increment the counter of I/O operations used for selecting LRU policy. */ buf_LRU_stat_inc_io(); continue; } ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); if (UNIV_UNLIKELY(memcmp(block->frame + (FIL_PAGE_LSN + 4), block->frame + (UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: ERROR: The page to be written" " seems corrupt!\n" "InnoDB: The lsn fields do not match!" " Noticed in the buffer pool\n" "InnoDB: after posting and flushing" " the doublewrite buffer.\n" "InnoDB: Page buf fix count %lu," " io fix %lu, state %lu\n", (ulong)block->page.buf_fix_count, (ulong)buf_block_get_io_fix(block), (ulong)buf_block_get_state(block)); } fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER, FALSE, buf_block_get_space(block), 0, buf_block_get_page_no(block), 0, UNIV_PAGE_SIZE, (void*)block->frame, (void*)block); /* Increment the counter of I/O operations used for selecting LRU policy. */ buf_LRU_stat_inc_io(); } /* Sync the writes to the disk. */ buf_flush_sync_datafiles(); /* We can now reuse the doublewrite memory buffer: */ trx_doublewrite->first_free = 0; mutex_exit(&(trx_doublewrite->mutex)); } /********************************************************************//** Posts a buffer page for writing. If the doublewrite memory buffer is full, calls buf_flush_buffered_writes and waits for for free space to appear. */ static void buf_flush_post_to_doublewrite_buf( /*==============================*/ buf_page_t* bpage) /*!< in: buffer block to write */ { ulint zip_size; try_again: mutex_enter(&(trx_doublewrite->mutex)); ut_a(buf_page_in_file(bpage)); if (trx_doublewrite->first_free >= 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) { mutex_exit(&(trx_doublewrite->mutex)); buf_flush_buffered_writes(); goto try_again; } zip_size = buf_page_get_zip_size(bpage); if (UNIV_UNLIKELY(zip_size)) { UNIV_MEM_ASSERT_RW(bpage->zip.data, zip_size); /* Copy the compressed page and clear the rest. */ memcpy(trx_doublewrite->write_buf + UNIV_PAGE_SIZE * trx_doublewrite->first_free, bpage->zip.data, zip_size); memset(trx_doublewrite->write_buf + UNIV_PAGE_SIZE * trx_doublewrite->first_free + zip_size, 0, UNIV_PAGE_SIZE - zip_size); } else { ut_a(buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); UNIV_MEM_ASSERT_RW(((buf_block_t*) bpage)->frame, UNIV_PAGE_SIZE); memcpy(trx_doublewrite->write_buf + UNIV_PAGE_SIZE * trx_doublewrite->first_free, ((buf_block_t*) bpage)->frame, UNIV_PAGE_SIZE); } trx_doublewrite->buf_block_arr[trx_doublewrite->first_free] = bpage; trx_doublewrite->first_free++; if (trx_doublewrite->first_free >= 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) { mutex_exit(&(trx_doublewrite->mutex)); buf_flush_buffered_writes(); return; } mutex_exit(&(trx_doublewrite->mutex)); } #endif /* !UNIV_HOTBACKUP */ /********************************************************************//** Initializes a page for writing to the tablespace. */ UNIV_INTERN void buf_flush_init_for_writing( /*=======================*/ byte* page, /*!< in/out: page */ void* page_zip_, /*!< in/out: compressed page, or NULL */ ib_uint64_t newest_lsn) /*!< in: newest modification lsn to the page */ { ut_ad(page); if (page_zip_) { page_zip_des_t* page_zip = page_zip_; ulint zip_size = page_zip_get_size(page_zip); ut_ad(zip_size); ut_ad(ut_is_2pow(zip_size)); ut_ad(zip_size <= UNIV_PAGE_SIZE); switch (UNIV_EXPECT(fil_page_get_type(page), FIL_PAGE_INDEX)) { case FIL_PAGE_TYPE_ALLOCATED: case FIL_PAGE_INODE: case FIL_PAGE_IBUF_BITMAP: case FIL_PAGE_TYPE_FSP_HDR: case FIL_PAGE_TYPE_XDES: /* These are essentially uncompressed pages. */ memcpy(page_zip->data, page, zip_size); /* fall through */ case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: case FIL_PAGE_INDEX: mach_write_to_8(page_zip->data + FIL_PAGE_LSN, newest_lsn); memset(page_zip->data + FIL_PAGE_FILE_FLUSH_LSN, 0, 8); mach_write_to_4(page_zip->data + FIL_PAGE_SPACE_OR_CHKSUM, srv_use_checksums ? page_zip_calc_checksum( page_zip->data, zip_size) : BUF_NO_CHECKSUM_MAGIC); return; } ut_print_timestamp(stderr); fputs(" InnoDB: ERROR: The compressed page to be written" " seems corrupt:", stderr); ut_print_buf(stderr, page, zip_size); fputs("\nInnoDB: Possibly older version of the page:", stderr); ut_print_buf(stderr, page_zip->data, zip_size); putc('\n', stderr); ut_error; } /* Write the newest modification lsn to the page header and trailer */ mach_write_to_8(page + FIL_PAGE_LSN, newest_lsn); mach_write_to_8(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM, newest_lsn); /* Store the new formula checksum */ mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM, srv_use_checksums ? buf_calc_page_new_checksum(page) : BUF_NO_CHECKSUM_MAGIC); /* We overwrite the first 4 bytes of the end lsn field to store the old formula checksum. Since it depends also on the field FIL_PAGE_SPACE_OR_CHKSUM, it has to be calculated after storing the new formula checksum. */ mach_write_to_4(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM, srv_use_checksums ? buf_calc_page_old_checksum(page) : BUF_NO_CHECKSUM_MAGIC); } #ifndef UNIV_HOTBACKUP /********************************************************************//** Does an asynchronous write of a buffer page. NOTE: in simulated aio and also when the doublewrite buffer is used, we must call buf_flush_buffered_writes after we have posted a batch of writes! */ static void buf_flush_write_block_low( /*======================*/ buf_page_t* bpage) /*!< in: buffer block to write */ { ulint zip_size = buf_page_get_zip_size(bpage); page_t* frame = NULL; #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(!buf_pool_mutex_own(buf_pool)); #endif #ifdef UNIV_LOG_DEBUG static ibool univ_log_debug_warned; #endif /* UNIV_LOG_DEBUG */ ut_ad(buf_page_in_file(bpage)); /* We are not holding buf_pool->mutex or block_mutex here. Nevertheless, it is safe to access bpage, because it is io_fixed and oldest_modification != 0. Thus, it cannot be relocated in the buffer pool or removed from flush_list or LRU_list. */ ut_ad(!buf_pool_mutex_own(buf_pool)); ut_ad(!buf_flush_list_mutex_own(buf_pool)); ut_ad(!mutex_own(buf_page_get_mutex(bpage))); ut_ad(buf_page_get_io_fix(bpage) == BUF_IO_WRITE); ut_ad(bpage->oldest_modification != 0); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(bpage->space, bpage->offset) == 0); #endif ut_ad(bpage->newest_modification != 0); #ifdef UNIV_LOG_DEBUG if (!univ_log_debug_warned) { univ_log_debug_warned = TRUE; fputs("Warning: cannot force log to disk if" " UNIV_LOG_DEBUG is defined!\n" "Crash recovery will not work!\n", stderr); } #else /* Force the log to the disk before writing the modified block */ log_write_up_to(bpage->newest_modification, LOG_WAIT_ALL_GROUPS, TRUE); #endif switch (buf_page_get_state(bpage)) { case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_ZIP_PAGE: /* The page should be dirty. */ case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; case BUF_BLOCK_ZIP_DIRTY: frame = bpage->zip.data; if (UNIV_LIKELY(srv_use_checksums)) { ut_a(mach_read_from_4(frame + FIL_PAGE_SPACE_OR_CHKSUM) == page_zip_calc_checksum(frame, zip_size)); } mach_write_to_8(frame + FIL_PAGE_LSN, bpage->newest_modification); memset(frame + FIL_PAGE_FILE_FLUSH_LSN, 0, 8); break; case BUF_BLOCK_FILE_PAGE: frame = bpage->zip.data; if (!frame) { frame = ((buf_block_t*) bpage)->frame; } buf_flush_init_for_writing(((buf_block_t*) bpage)->frame, bpage->zip.data ? &bpage->zip : NULL, bpage->newest_modification); break; } if (!srv_use_doublewrite_buf || !trx_doublewrite) { fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER, FALSE, buf_page_get_space(bpage), zip_size, buf_page_get_page_no(bpage), 0, zip_size ? zip_size : UNIV_PAGE_SIZE, frame, bpage); } else { buf_flush_post_to_doublewrite_buf(bpage); } } # if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG /********************************************************************//** Writes a flushable page asynchronously from the buffer pool to a file. NOTE: buf_pool->mutex and block->mutex must be held upon entering this function, and they will be released by this function after flushing. This is loosely based on buf_flush_batch() and buf_flush_page(). @return TRUE if the page was flushed and the mutexes released */ UNIV_INTERN ibool buf_flush_page_try( /*===============*/ buf_pool_t* buf_pool, /*!< in/out: buffer pool instance */ buf_block_t* block) /*!< in/out: buffer control block */ { ut_ad(buf_pool_mutex_own(buf_pool)); ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); ut_ad(mutex_own(&block->mutex)); if (!buf_flush_ready_for_flush(&block->page, BUF_FLUSH_LRU)) { return(FALSE); } if (buf_pool->n_flush[BUF_FLUSH_LRU] > 0 || buf_pool->init_flush[BUF_FLUSH_LRU]) { /* There is already a flush batch of the same type running */ return(FALSE); } buf_pool->init_flush[BUF_FLUSH_LRU] = TRUE; buf_page_set_io_fix(&block->page, BUF_IO_WRITE); buf_page_set_flush_type(&block->page, BUF_FLUSH_LRU); if (buf_pool->n_flush[BUF_FLUSH_LRU]++ == 0) { os_event_reset(buf_pool->no_flush[BUF_FLUSH_LRU]); } /* VERY IMPORTANT: Because any thread may call the LRU flush, even when owning locks on pages, to avoid deadlocks, we must make sure that the s-lock is acquired on the page without waiting: this is accomplished because buf_flush_ready_for_flush() must hold, and that requires the page not to be bufferfixed. */ rw_lock_s_lock_gen(&block->lock, BUF_IO_WRITE); /* Note that the s-latch is acquired before releasing the buf_pool mutex: this ensures that the latch is acquired immediately. */ mutex_exit(&block->mutex); buf_pool_mutex_exit(buf_pool); /* Even though block is not protected by any mutex at this point, it is safe to access block, because it is io_fixed and oldest_modification != 0. Thus, it cannot be relocated in the buffer pool or removed from flush_list or LRU_list. */ buf_flush_write_block_low(&block->page); buf_pool_mutex_enter(buf_pool); buf_pool->init_flush[BUF_FLUSH_LRU] = FALSE; if (buf_pool->n_flush[BUF_FLUSH_LRU] == 0) { /* The running flush batch has ended */ os_event_set(buf_pool->no_flush[BUF_FLUSH_LRU]); } buf_pool_mutex_exit(buf_pool); buf_flush_buffered_writes(); return(TRUE); } # endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /********************************************************************//** Writes a flushable page asynchronously from the buffer pool to a file. NOTE: in simulated aio we must call os_aio_simulated_wake_handler_threads after we have posted a batch of writes! NOTE: buf_pool->mutex and buf_page_get_mutex(bpage) must be held upon entering this function, and they will be released by this function. */ static void buf_flush_page( /*===========*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_page_t* bpage, /*!< in: buffer control block */ enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { mutex_t* block_mutex; ibool is_uncompressed; ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); ut_ad(buf_pool_mutex_own(buf_pool)); ut_ad(buf_page_in_file(bpage)); block_mutex = buf_page_get_mutex(bpage); ut_ad(mutex_own(block_mutex)); ut_ad(buf_flush_ready_for_flush(bpage, flush_type)); buf_page_set_io_fix(bpage, BUF_IO_WRITE); buf_page_set_flush_type(bpage, flush_type); if (buf_pool->n_flush[flush_type] == 0) { os_event_reset(buf_pool->no_flush[flush_type]); } buf_pool->n_flush[flush_type]++; is_uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); ut_ad(is_uncompressed == (block_mutex != &buf_pool->zip_mutex)); switch (flush_type) { ibool is_s_latched; case BUF_FLUSH_LIST: /* If the simulated aio thread is not running, we must not wait for any latch, as we may end up in a deadlock: if buf_fix_count == 0, then we know we need not wait */ is_s_latched = (bpage->buf_fix_count == 0); if (is_s_latched && is_uncompressed) { rw_lock_s_lock_gen(&((buf_block_t*) bpage)->lock, BUF_IO_WRITE); } mutex_exit(block_mutex); buf_pool_mutex_exit(buf_pool); /* Even though bpage is not protected by any mutex at this point, it is safe to access bpage, because it is io_fixed and oldest_modification != 0. Thus, it cannot be relocated in the buffer pool or removed from flush_list or LRU_list. */ if (!is_s_latched) { buf_flush_buffered_writes(); if (is_uncompressed) { rw_lock_s_lock_gen(&((buf_block_t*) bpage) ->lock, BUF_IO_WRITE); } } break; case BUF_FLUSH_LRU: /* VERY IMPORTANT: Because any thread may call the LRU flush, even when owning locks on pages, to avoid deadlocks, we must make sure that the s-lock is acquired on the page without waiting: this is accomplished because buf_flush_ready_for_flush() must hold, and that requires the page not to be bufferfixed. */ if (is_uncompressed) { rw_lock_s_lock_gen(&((buf_block_t*) bpage)->lock, BUF_IO_WRITE); } /* Note that the s-latch is acquired before releasing the buf_pool mutex: this ensures that the latch is acquired immediately. */ mutex_exit(block_mutex); buf_pool_mutex_exit(buf_pool); break; default: ut_error; } /* Even though bpage is not protected by any mutex at this point, it is safe to access bpage, because it is io_fixed and oldest_modification != 0. Thus, it cannot be relocated in the buffer pool or removed from flush_list or LRU_list. */ #ifdef UNIV_DEBUG if (buf_debug_prints) { fprintf(stderr, "Flushing %u space %u page %u\n", flush_type, bpage->space, bpage->offset); } #endif /* UNIV_DEBUG */ buf_flush_write_block_low(bpage); } /***********************************************************//** Flushes to disk all flushable pages within the flush area. @return number of pages flushed */ static ulint buf_flush_try_neighbors( /*====================*/ ulint space, /*!< in: space id */ ulint offset, /*!< in: page offset */ enum buf_flush flush_type, /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ ulint n_flushed, /*!< in: number of pages flushed so far in this batch */ ulint n_to_flush) /*!< in: maximum number of pages we are allowed to flush */ { ulint i; ulint low; ulint high; ulint count = 0; buf_pool_t* buf_pool = buf_pool_get(space, offset); ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); if (UT_LIST_GET_LEN(buf_pool->LRU) < BUF_LRU_OLD_MIN_LEN) { /* If there is little space, it is better not to flush any block except from the end of the LRU list */ low = offset; high = offset + 1; } else { /* When flushed, dirty blocks are searched in neighborhoods of this size, and flushed along with the original page. */ ulint buf_flush_area; buf_flush_area = ut_min( BUF_READ_AHEAD_AREA(buf_pool), buf_pool->curr_size / 16); low = (offset / buf_flush_area) * buf_flush_area; high = (offset / buf_flush_area + 1) * buf_flush_area; } /* fprintf(stderr, "Flush area: low %lu high %lu\n", low, high); */ if (high > fil_space_get_size(space)) { high = fil_space_get_size(space); } for (i = low; i < high; i++) { buf_page_t* bpage; if ((count + n_flushed) >= n_to_flush) { /* We have already flushed enough pages and should call it a day. There is, however, one exception. If the page whose neighbors we are flushing has not been flushed yet then we'll try to flush the victim that we selected originally. */ if (i <= offset) { i = offset; } else { break; } } buf_pool = buf_pool_get(space, i); buf_pool_mutex_enter(buf_pool); /* We only want to flush pages from this buffer pool. */ bpage = buf_page_hash_get(buf_pool, space, i); if (!bpage) { buf_pool_mutex_exit(buf_pool); continue; } ut_a(buf_page_in_file(bpage)); /* We avoid flushing 'non-old' blocks in an LRU flush, because the flushed blocks are soon freed */ if (flush_type != BUF_FLUSH_LRU || i == offset || buf_page_is_old(bpage)) { mutex_t* block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); if (buf_flush_ready_for_flush(bpage, flush_type) && (i == offset || !bpage->buf_fix_count)) { /* We only try to flush those neighbors != offset where the buf fix count is zero, as we then know that we probably can latch the page without a semaphore wait. Semaphore waits are expensive because we must flush the doublewrite buffer before we start waiting. */ buf_flush_page(buf_pool, bpage, flush_type); ut_ad(!mutex_own(block_mutex)); ut_ad(!buf_pool_mutex_own(buf_pool)); count++; continue; } else { mutex_exit(block_mutex); } } buf_pool_mutex_exit(buf_pool); } return(count); } /********************************************************************//** Check if the block is modified and ready for flushing. If the the block is ready to flush then flush the page and try o flush its neighbors. @return TRUE if buf_pool mutex was not released during this function. This does not guarantee that some pages were written as well. Number of pages written are incremented to the count. */ static ibool buf_flush_page_and_try_neighbors( /*=============================*/ buf_page_t* bpage, /*!< in: buffer control block, must be buf_page_in_file(bpage) */ enum buf_flush flush_type, /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ ulint n_to_flush, /*!< in: number of pages to flush */ ulint* count) /*!< in/out: number of pages flushed */ { mutex_t* block_mutex; ibool flushed = FALSE; #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); #endif /* UNIV_DEBUG */ ut_ad(buf_pool_mutex_own(buf_pool)); block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); ut_a(buf_page_in_file(bpage)); if (buf_flush_ready_for_flush(bpage, flush_type)) { ulint space; ulint offset; buf_pool_t* buf_pool; buf_pool = buf_pool_from_bpage(bpage); buf_pool_mutex_exit(buf_pool); /* These fields are protected by both the buffer pool mutex and block mutex. */ space = buf_page_get_space(bpage); offset = buf_page_get_page_no(bpage); mutex_exit(block_mutex); /* Try to flush also all the neighbors */ *count += buf_flush_try_neighbors(space, offset, flush_type, *count, n_to_flush); buf_pool_mutex_enter(buf_pool); flushed = TRUE; } else { mutex_exit(block_mutex); } ut_ad(buf_pool_mutex_own(buf_pool)); return(flushed); } /*******************************************************************//** This utility flushes dirty blocks from the end of the LRU list. In the case of an LRU flush the calling thread may own latches to pages: to avoid deadlocks, this function must be written so that it cannot end up waiting for these latches! @return number of blocks for which the write request was queued. */ static ulint buf_flush_LRU_list_batch( /*=====================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint max) /*!< in: max of blocks to flush */ { buf_page_t* bpage; ulint count = 0; ut_ad(buf_pool_mutex_own(buf_pool)); do { /* Start from the end of the list looking for a suitable block to be flushed. */ bpage = UT_LIST_GET_LAST(buf_pool->LRU); /* Iterate backwards over the flush list till we find a page that isn't ready for flushing. */ while (bpage != NULL && !buf_flush_page_and_try_neighbors( bpage, BUF_FLUSH_LRU, max, &count)) { bpage = UT_LIST_GET_PREV(LRU, bpage); } } while (bpage != NULL && count < max); /* We keep track of all flushes happening as part of LRU flush. When estimating the desired rate at which flush_list should be flushed, we factor in this value. */ buf_lru_flush_page_count += count; ut_ad(buf_pool_mutex_own(buf_pool)); return(count); } /*******************************************************************//** This utility flushes dirty blocks from the end of the flush_list. the calling thread is not allowed to own any latches on pages! @return number of blocks for which the write request was queued; ULINT_UNDEFINED if there was a flush of the same type already running */ static ulint buf_flush_flush_list_batch( /*=======================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint min_n, /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ ib_uint64_t lsn_limit) /*!< all blocks whose oldest_modification is smaller than this should be flushed (if their number does not exceed min_n) */ { ulint len; buf_page_t* bpage; ulint count = 0; ut_ad(buf_pool_mutex_own(buf_pool)); /* If we have flushed enough, leave the loop */ do { /* Start from the end of the list looking for a suitable block to be flushed. */ buf_flush_list_mutex_enter(buf_pool); /* We use len here because theoretically insertions can happen in the flush_list below while we are traversing it for a suitable candidate for flushing. We'd like to set a limit on how farther we are willing to traverse the list. */ len = UT_LIST_GET_LEN(buf_pool->flush_list); bpage = UT_LIST_GET_LAST(buf_pool->flush_list); if (bpage) { ut_a(bpage->oldest_modification > 0); } if (!bpage || bpage->oldest_modification >= lsn_limit) { /* We have flushed enough */ buf_flush_list_mutex_exit(buf_pool); break; } ut_a(bpage->oldest_modification > 0); ut_ad(bpage->in_flush_list); buf_flush_list_mutex_exit(buf_pool); /* The list may change during the flushing and we cannot safely preserve within this function a pointer to a block in the list! */ while (bpage != NULL && len > 0 && !buf_flush_page_and_try_neighbors( bpage, BUF_FLUSH_LIST, min_n, &count)) { buf_flush_list_mutex_enter(buf_pool); /* If we are here that means that buf_pool->mutex was not released in buf_flush_page_and_try_neighbors() above and this guarantees that bpage didn't get relocated since we released the flush_list mutex above. There is a chance, however, that the bpage got removed from flush_list (not currently possible because flush_list_remove() also obtains buf_pool mutex but that may change in future). To avoid this scenario we check the oldest_modification and if it is zero we start all over again. */ if (bpage->oldest_modification == 0) { buf_flush_list_mutex_exit(buf_pool); break; } bpage = UT_LIST_GET_PREV(list, bpage); ut_ad(!bpage || bpage->in_flush_list); buf_flush_list_mutex_exit(buf_pool); --len; } } while (count < min_n && bpage != NULL && len > 0); ut_ad(buf_pool_mutex_own(buf_pool)); return(count); } /*******************************************************************//** This utility flushes dirty blocks from the end of the LRU list or flush_list. NOTE 1: in the case of an LRU flush the calling thread may own latches to pages: to avoid deadlocks, this function must be written so that it cannot end up waiting for these latches! NOTE 2: in the case of a flush list flush, the calling thread is not allowed to own any latches on pages! @return number of blocks for which the write request was queued; ULINT_UNDEFINED if there was a flush of the same type already running */ static ulint buf_flush_batch( /*============*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ enum buf_flush flush_type, /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST; if BUF_FLUSH_LIST, then the caller must not own any latches on pages */ ulint min_n, /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ ib_uint64_t lsn_limit) /*!< in: in the case of BUF_FLUSH_LIST all blocks whose oldest_modification is smaller than this should be flushed (if their number does not exceed min_n), otherwise ignored */ { ulint count = 0; ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); #ifdef UNIV_SYNC_DEBUG ut_ad((flush_type != BUF_FLUSH_LIST) || sync_thread_levels_empty_gen(TRUE)); #endif /* UNIV_SYNC_DEBUG */ buf_pool_mutex_enter(buf_pool); /* Note: The buffer pool mutex is released and reacquired within the flush functions. */ switch(flush_type) { case BUF_FLUSH_LRU: count = buf_flush_LRU_list_batch(buf_pool, min_n); break; case BUF_FLUSH_LIST: count = buf_flush_flush_list_batch(buf_pool, min_n, lsn_limit); break; default: ut_error; } buf_pool_mutex_exit(buf_pool); buf_flush_buffered_writes(); #ifdef UNIV_DEBUG if (buf_debug_prints && count > 0) { fprintf(stderr, flush_type == BUF_FLUSH_LRU ? "Flushed %lu pages in LRU flush\n" : "Flushed %lu pages in flush list flush\n", (ulong) count); } #endif /* UNIV_DEBUG */ srv_buf_pool_flushed += count; return(count); } /******************************************************************//** Gather the aggregated stats for both flush list and LRU list flushing */ static void buf_flush_common( /*=============*/ enum buf_flush flush_type, /*!< in: type of flush */ ulint page_count) /*!< in: number of pages flushed */ { buf_flush_buffered_writes(); ut_a(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); #ifdef UNIV_DEBUG if (buf_debug_prints && page_count > 0) { fprintf(stderr, flush_type == BUF_FLUSH_LRU ? "Flushed %lu pages in LRU flush\n" : "Flushed %lu pages in flush list flush\n", (ulong) page_count); } #endif /* UNIV_DEBUG */ srv_buf_pool_flushed += page_count; if (flush_type == BUF_FLUSH_LRU) { /* We keep track of all flushes happening as part of LRU flush. When estimating the desired rate at which flush_list should be flushed we factor in this value. */ buf_lru_flush_page_count += page_count; } } /******************************************************************//** Start a buffer flush batch for LRU or flush list */ static ibool buf_flush_start( /*============*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { buf_pool_mutex_enter(buf_pool); if (buf_pool->n_flush[flush_type] > 0 || buf_pool->init_flush[flush_type] == TRUE) { /* There is already a flush batch of the same type running */ buf_pool_mutex_exit(buf_pool); return(FALSE); } buf_pool->init_flush[flush_type] = TRUE; buf_pool_mutex_exit(buf_pool); return(TRUE); } /******************************************************************//** End a buffer flush batch for LRU or flush list */ static void buf_flush_end( /*==========*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { buf_pool_mutex_enter(buf_pool); buf_pool->init_flush[flush_type] = FALSE; if (buf_pool->n_flush[flush_type] == 0) { /* The running flush batch has ended */ os_event_set(buf_pool->no_flush[flush_type]); } buf_pool_mutex_exit(buf_pool); } /******************************************************************//** Waits until a flush batch of the given type ends */ UNIV_INTERN void buf_flush_wait_batch_end( /*=====================*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ enum buf_flush type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { ut_ad(type == BUF_FLUSH_LRU || type == BUF_FLUSH_LIST); if (buf_pool == NULL) { ulint i; for (i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); thd_wait_begin(NULL, THD_WAIT_DISKIO); os_event_wait(buf_pool->no_flush[type]); thd_wait_end(NULL); } } else { thd_wait_begin(NULL, THD_WAIT_DISKIO); os_event_wait(buf_pool->no_flush[type]); thd_wait_end(NULL); } } /*******************************************************************//** This utility flushes dirty blocks from the end of the LRU list. NOTE: The calling thread may own latches to pages: to avoid deadlocks, this function must be written so that it cannot end up waiting for these latches! @return number of blocks for which the write request was queued; ULINT_UNDEFINED if there was a flush of the same type already running */ UNIV_INTERN ulint buf_flush_LRU( /*==========*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint min_n) /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ { ulint page_count; if (!buf_flush_start(buf_pool, BUF_FLUSH_LRU)) { return(ULINT_UNDEFINED); } page_count = buf_flush_batch(buf_pool, BUF_FLUSH_LRU, min_n, 0); buf_flush_end(buf_pool, BUF_FLUSH_LRU); buf_flush_common(BUF_FLUSH_LRU, page_count); return(page_count); } /*******************************************************************//** This utility flushes dirty blocks from the end of the flush list of all buffer pool instances. NOTE: The calling thread is not allowed to own any latches on pages! @return number of blocks for which the write request was queued; ULINT_UNDEFINED if there was a flush of the same type already running */ UNIV_INTERN ulint buf_flush_list( /*===========*/ ulint min_n, /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ ib_uint64_t lsn_limit) /*!< in the case BUF_FLUSH_LIST all blocks whose oldest_modification is smaller than this should be flushed (if their number does not exceed min_n), otherwise ignored */ { ulint i; ulint total_page_count = 0; ibool skipped = FALSE; if (min_n != ULINT_MAX) { /* Ensure that flushing is spread evenly amongst the buffer pool instances. When min_n is ULINT_MAX we need to flush everything up to the lsn limit so no limit here. */ min_n = (min_n + srv_buf_pool_instances - 1) / srv_buf_pool_instances; } /* Flush to lsn_limit in all buffer pool instances */ for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; ulint page_count = 0; buf_pool = buf_pool_from_array(i); if (!buf_flush_start(buf_pool, BUF_FLUSH_LIST)) { /* We have two choices here. If lsn_limit was specified then skipping an instance of buffer pool means we cannot guarantee that all pages up to lsn_limit has been flushed. We can return right now with failure or we can try to flush remaining buffer pools up to the lsn_limit. We attempt to flush other buffer pools based on the assumption that it will help in the retry which will follow the failure. */ skipped = TRUE; continue; } page_count = buf_flush_batch( buf_pool, BUF_FLUSH_LIST, min_n, lsn_limit); buf_flush_end(buf_pool, BUF_FLUSH_LIST); buf_flush_common(BUF_FLUSH_LIST, page_count); total_page_count += page_count; } return(lsn_limit != IB_ULONGLONG_MAX && skipped ? ULINT_UNDEFINED : total_page_count); } /******************************************************************//** Gives a recommendation of how many blocks should be flushed to establish a big enough margin of replaceable blocks near the end of the LRU list and in the free list. @return number of blocks which should be flushed from the end of the LRU list */ static ulint buf_flush_LRU_recommendation( /*=========================*/ buf_pool_t* buf_pool) /*!< in: Buffer pool instance */ { buf_page_t* bpage; ulint n_replaceable; ulint distance = 0; buf_pool_mutex_enter(buf_pool); n_replaceable = UT_LIST_GET_LEN(buf_pool->free); bpage = UT_LIST_GET_LAST(buf_pool->LRU); while ((bpage != NULL) && (n_replaceable < BUF_FLUSH_FREE_BLOCK_MARGIN(buf_pool) + BUF_FLUSH_EXTRA_MARGIN(buf_pool)) && (distance < BUF_LRU_FREE_SEARCH_LEN(buf_pool))) { mutex_t* block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); if (buf_flush_ready_for_replace(bpage)) { n_replaceable++; } mutex_exit(block_mutex); distance++; bpage = UT_LIST_GET_PREV(LRU, bpage); } buf_pool_mutex_exit(buf_pool); if (n_replaceable >= BUF_FLUSH_FREE_BLOCK_MARGIN(buf_pool)) { return(0); } return(BUF_FLUSH_FREE_BLOCK_MARGIN(buf_pool) + BUF_FLUSH_EXTRA_MARGIN(buf_pool) - n_replaceable); } /*********************************************************************//** Flushes pages from the end of the LRU list if there is too small a margin of replaceable pages there or in the free list. VERY IMPORTANT: this function is called also by threads which have locks on pages. To avoid deadlocks, we flush only pages such that the s-lock required for flushing can be acquired immediately, without waiting. */ UNIV_INTERN void buf_flush_free_margin( /*==================*/ buf_pool_t* buf_pool) /*!< in: Buffer pool instance */ { ulint n_to_flush; n_to_flush = buf_flush_LRU_recommendation(buf_pool); if (n_to_flush > 0) { ulint n_flushed; n_flushed = buf_flush_LRU(buf_pool, n_to_flush); if (n_flushed == ULINT_UNDEFINED) { /* There was an LRU type flush batch already running; let us wait for it to end */ buf_flush_wait_batch_end(buf_pool, BUF_FLUSH_LRU); } } } /*********************************************************************//** Flushes pages from the end of all the LRU lists. */ UNIV_INTERN void buf_flush_free_margins(void) /*========================*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_flush_free_margin(buf_pool); } } /********************************************************************* Update the historical stats that we are collecting for flush rate heuristics at the end of each interval. Flush rate heuristic depends on (a) rate of redo log generation and (b) the rate at which LRU flush is happening. */ UNIV_INTERN void buf_flush_stat_update(void) /*=======================*/ { buf_flush_stat_t* item; ib_uint64_t lsn_diff; ib_uint64_t lsn; ulint n_flushed; lsn = log_get_lsn(); if (buf_flush_stat_cur.redo == 0) { /* First time around. Just update the current LSN and return. */ buf_flush_stat_cur.redo = lsn; return; } item = &buf_flush_stat_arr[buf_flush_stat_arr_ind]; /* values for this interval */ lsn_diff = lsn - buf_flush_stat_cur.redo; n_flushed = buf_lru_flush_page_count - buf_flush_stat_cur.n_flushed; /* add the current value and subtract the obsolete entry. */ buf_flush_stat_sum.redo += lsn_diff - item->redo; buf_flush_stat_sum.n_flushed += n_flushed - item->n_flushed; /* put current entry in the array. */ item->redo = lsn_diff; item->n_flushed = n_flushed; /* update the index */ buf_flush_stat_arr_ind++; buf_flush_stat_arr_ind %= BUF_FLUSH_STAT_N_INTERVAL; /* reset the current entry. */ buf_flush_stat_cur.redo = lsn; buf_flush_stat_cur.n_flushed = buf_lru_flush_page_count; } /********************************************************************* Determines the fraction of dirty pages that need to be flushed based on the speed at which we generate redo log. Note that if redo log is generated at a significant rate without corresponding increase in the number of dirty pages (for example, an in-memory workload) it can cause IO bursts of flushing. This function implements heuristics to avoid this burstiness. @return number of dirty pages to be flushed / second */ UNIV_INTERN ulint buf_flush_get_desired_flush_rate(void) /*==================================*/ { ulint i; lint rate; ulint redo_avg; ulint n_dirty = 0; ulint n_flush_req; ulint lru_flush_avg; ib_uint64_t lsn = log_get_lsn(); ulint log_capacity = log_get_capacity(); /* log_capacity should never be zero after the initialization of log subsystem. */ ut_ad(log_capacity != 0); /* Get total number of dirty pages. It is OK to access flush_list without holding any mutex as we are using this only for heuristics. */ for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); n_dirty += UT_LIST_GET_LEN(buf_pool->flush_list); } /* An overflow can happen if we generate more than 2^32 bytes of redo in this interval i.e.: 4G of redo in 1 second. We can safely consider this as infinity because if we ever come close to 4G we'll start a synchronous flush of dirty pages. */ /* redo_avg below is average at which redo is generated in past BUF_FLUSH_STAT_N_INTERVAL + redo generated in the current interval. */ redo_avg = (ulint) (buf_flush_stat_sum.redo / BUF_FLUSH_STAT_N_INTERVAL + (lsn - buf_flush_stat_cur.redo)); /* An overflow can happen possibly if we flush more than 2^32 pages in BUF_FLUSH_STAT_N_INTERVAL. This is a very very unlikely scenario. Even when this happens it means that our flush rate will be off the mark. It won't affect correctness of any subsystem. */ /* lru_flush_avg below is rate at which pages are flushed as part of LRU flush in past BUF_FLUSH_STAT_N_INTERVAL + the number of pages flushed in the current interval. */ lru_flush_avg = buf_flush_stat_sum.n_flushed / BUF_FLUSH_STAT_N_INTERVAL + (buf_lru_flush_page_count - buf_flush_stat_cur.n_flushed); n_flush_req = (n_dirty * redo_avg) / log_capacity; /* The number of pages that we want to flush from the flush list is the difference between the required rate and the number of pages that we are historically flushing from the LRU list */ rate = n_flush_req - lru_flush_avg; return(rate > 0 ? (ulint) rate : 0); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /******************************************************************//** Validates the flush list. @return TRUE if ok */ static ibool buf_flush_validate_low( /*===================*/ buf_pool_t* buf_pool) /*!< in: Buffer pool instance */ { buf_page_t* bpage; const ib_rbt_node_t* rnode = NULL; ut_ad(buf_flush_list_mutex_own(buf_pool)); UT_LIST_VALIDATE(list, buf_page_t, buf_pool->flush_list, ut_ad(ut_list_node_313->in_flush_list)); bpage = UT_LIST_GET_FIRST(buf_pool->flush_list); /* If we are in recovery mode i.e.: flush_rbt != NULL then each block in the flush_list must also be present in the flush_rbt. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { rnode = rbt_first(buf_pool->flush_rbt); } while (bpage != NULL) { const ib_uint64_t om = bpage->oldest_modification; ut_ad(buf_pool_from_bpage(bpage) == buf_pool); ut_ad(bpage->in_flush_list); /* A page in buf_pool->flush_list can be in BUF_BLOCK_REMOVE_HASH state. This happens when a page is in the middle of being relocated. In that case the original descriptor can have this state and still be in the flush list waiting to acquire the buf_pool->flush_list_mutex to complete the relocation. */ ut_a(buf_page_in_file(bpage) || buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH); ut_a(om > 0); if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_page_t** prpage; ut_a(rnode); prpage = rbt_value(buf_page_t*, rnode); ut_a(*prpage); ut_a(*prpage == bpage); rnode = rbt_next(buf_pool->flush_rbt, rnode); } bpage = UT_LIST_GET_NEXT(list, bpage); ut_a(!bpage || om >= bpage->oldest_modification); } /* By this time we must have exhausted the traversal of flush_rbt (if active) as well. */ ut_a(rnode == NULL); return(TRUE); } /******************************************************************//** Validates the flush list. @return TRUE if ok */ UNIV_INTERN ibool buf_flush_validate( /*===============*/ buf_pool_t* buf_pool) /*!< buffer pool instance */ { ibool ret; buf_flush_list_mutex_enter(buf_pool); ret = buf_flush_validate_low(buf_pool); buf_flush_list_mutex_exit(buf_pool); return(ret); } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #endif /* !UNIV_HOTBACKUP */