/************************************************************************ Record manager (c) 1994-2001 Innobase Oy Created 5/30/1994 Heikki Tuuri *************************************************************************/ #include "rem0rec.h" #ifdef UNIV_NONINL #include "rem0rec.ic" #endif #include "mtr0mtr.h" #include "mtr0log.h" /* PHYSICAL RECORD (OLD STYLE) =========================== The physical record, which is the data type of all the records found in index pages of the database, has the following format (lower addresses and more significant bits inside a byte are below represented on a higher text line): | offset of the end of the last field of data, the most significant bit is set to 1 if and only if the field is SQL-null, if the offset is 2-byte, then the second most significant bit is set to 1 if the field is stored on another page: mostly this will occur in the case of big BLOB fields | ... | offset of the end of the first field of data + the SQL-null bit | | 4 bits used to delete mark a record, and mark a predefined minimum record in alphabetical order | | 4 bits giving the number of records owned by this record (this term is explained in page0page.h) | | 13 bits giving the order number of this record in the heap of the index page | | 10 bits giving the number of fields in this record | | 1 bit which is set to 1 if the offsets above are given in one byte format, 0 if in two byte format | | two bytes giving an absolute pointer to the next record in the page | ORIGIN of the record | first field of data | ... | last field of data | The origin of the record is the start address of the first field of data. The offsets are given relative to the origin. The offsets of the data fields are stored in an inverted order because then the offset of the first fields are near the origin, giving maybe a better processor cache hit rate in searches. The offsets of the data fields are given as one-byte (if there are less than 127 bytes of data in the record) or two-byte unsigned integers. The most significant bit is not part of the offset, instead it indicates the SQL-null if the bit is set to 1. */ /* PHYSICAL RECORD (NEW STYLE) =========================== The physical record, which is the data type of all the records found in index pages of the database, has the following format (lower addresses and more significant bits inside a byte are below represented on a higher text line): | length of the last non-null variable-length field of data: if the maximum length is 255, one byte; otherwise, 0xxxxxxx (one byte, length=0..127), or 1exxxxxxxxxxxxxx (two bytes, length=128..16383, extern storage flag) | ... | length of first variable-length field of data | | SQL-null flags (1 bit per nullable field), padded to full bytes | | 4 bits used to delete mark a record, and mark a predefined minimum record in alphabetical order | | 4 bits giving the number of records owned by this record (this term is explained in page0page.h) | | 13 bits giving the order number of this record in the heap of the index page | | 3 bits record type: 000=conventional, 001=node pointer (inside B-tree), 010=infimum, 011=supremum, 1xx=reserved | | two bytes giving a relative pointer to the next record in the page | ORIGIN of the record | first field of data | ... | last field of data | The origin of the record is the start address of the first field of data. The offsets are given relative to the origin. The offsets of the data fields are stored in an inverted order because then the offset of the first fields are near the origin, giving maybe a better processor cache hit rate in searches. The offsets of the data fields are given as one-byte (if there are less than 127 bytes of data in the record) or two-byte unsigned integers. The most significant bit is not part of the offset, instead it indicates the SQL-null if the bit is set to 1. */ /* CANONICAL COORDINATES. A record can be seen as a single string of 'characters' in the following way: catenate the bytes in each field, in the order of fields. An SQL-null field is taken to be an empty sequence of bytes. Then after the position of each field insert in the string the 'character' , except that after an SQL-null field insert . Now the ordinal position of each byte in this canonical string is its canonical coordinate. So, for the record ("AA", SQL-NULL, "BB", ""), the canonical string is "AABB". We identify prefixes (= initial segments) of a record with prefixes of the canonical string. The canonical length of the prefix is the length of the corresponding prefix of the canonical string. The canonical length of a record is the length of its canonical string. For example, the maximal common prefix of records ("AA", SQL-NULL, "BB", "C") and ("AA", SQL-NULL, "B", "C") is "AAB", and its canonical length is 5. A complete-field prefix of a record is a prefix which ends at the end of some field (containing also ). A record is a complete-field prefix of another record, if the corresponding canonical strings have the same property. */ ulint rec_dummy; /* this is used to fool compiler in rec_validate */ /******************************************************************* Validates the consistency of an old-style physical record. */ static ibool rec_validate_old( /*=============*/ /* out: TRUE if ok */ const rec_t* rec); /* in: physical record */ /********************************************************** Determine how many of the first n columns in a compact physical record are stored externally. */ ulint rec_get_n_extern_new( /*=================*/ /* out: number of externally stored columns */ const rec_t* rec, /* in: compact physical record */ dict_index_t* index, /* in: record descriptor */ ulint n) /* in: number of columns to scan */ { const byte* nulls; const byte* lens; dict_field_t* field; ulint null_mask; ulint n_extern; ulint i; ut_ad(dict_table_is_comp(index->table)); ut_ad(rec_get_status(rec) == REC_STATUS_ORDINARY); ut_ad(n == ULINT_UNDEFINED || n <= dict_index_get_n_fields(index)); if (n == ULINT_UNDEFINED) { n = dict_index_get_n_fields(index); } nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1); lens = nulls - (index->n_nullable + 7) / 8; null_mask = 1; n_extern = 0; i = 0; /* read the lengths of fields 0..n */ do { ulint len; field = dict_index_get_nth_field(index, i); if (!(dict_field_get_col(field)->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. */ continue; } null_mask <<= 1; } if (UNIV_UNLIKELY(!field->fixed_len)) { /* Variable-length field: read the length */ const dict_col_t* col = dict_field_get_col(field); len = *lens--; if (UNIV_UNLIKELY(col->len > 255) || UNIV_UNLIKELY(col->mtype == DATA_BLOB)) { if (len & 0x80) { /* 1exxxxxxx xxxxxxxx */ if (len & 0x40) { n_extern++; } lens--; } } } } while (++i < n); return(n_extern); } /********************************************************** Determine the offset to each field in a leaf-page record in ROW_FORMAT=COMPACT. This is a special case of rec_init_offsets() and rec_get_offsets_func(). */ void rec_init_offsets_comp_ordinary( /*===========================*/ const rec_t* rec, /* in: physical record in ROW_FORMAT=COMPACT */ ulint extra, /* in: number of bytes to reserve between the record header and the data payload (usually REC_N_NEW_EXTRA_BYTES) */ dict_index_t* index, /* in: record descriptor */ ulint* offsets)/* in/out: array of offsets; in: n=rec_offs_n_fields(offsets) */ { ulint i = 0; ulint offs = 0; ulint any_ext = 0; const byte* nulls = rec - (extra + 1); const byte* lens = nulls - (index->n_nullable + 7) / 8;; dict_field_t* field; ulint null_mask = 1; /* read the lengths of fields 0..n */ do { ulint len; field = dict_index_get_nth_field(index, i); if (!(dict_field_get_col(field)->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. We do not advance offs, and we set the length to zero and enable the SQL NULL flag in offsets[]. */ len = offs | REC_OFFS_SQL_NULL; goto resolved; } null_mask <<= 1; } if (UNIV_UNLIKELY(!field->fixed_len)) { /* Variable-length field: read the length */ const dict_col_t* col = dict_field_get_col(field); len = *lens--; if (UNIV_UNLIKELY(col->len > 255) || UNIV_UNLIKELY(col->mtype == DATA_BLOB)) { if (len & 0x80) { /* 1exxxxxxx xxxxxxxx */ len <<= 8; len |= *lens--; offs += len & 0x3fff; if (UNIV_UNLIKELY(len & 0x4000)) { ut_ad(dict_index_is_clust (index)); any_ext = REC_OFFS_EXTERNAL; len = offs | REC_OFFS_EXTERNAL; } else { len = offs; } goto resolved; } } len = offs += len; } else { len = offs += field->fixed_len; } resolved: rec_offs_base(offsets)[i + 1] = len; } while (++i < rec_offs_n_fields(offsets)); *rec_offs_base(offsets) = (rec - (lens + 1)) | REC_OFFS_COMPACT | any_ext; } /********************************************************** The following function determines the offsets to each field in the record. The offsets are written to a previously allocated array of ulint, where rec_offs_n_fields(offsets) has been initialized to the number of fields in the record. The rest of the array will be initialized by this function. rec_offs_base(offsets)[0] will be set to the extra size (if REC_OFFS_COMPACT is set, the record is in the new format; if REC_OFFS_EXTERNAL is set, the record contains externally stored columns), and rec_offs_base(offsets)[1..n_fields] will be set to offsets past the end of fields 0..n_fields, or to the beginning of fields 1..n_fields+1. When the high-order bit of the offset at [i+1] is set (REC_OFFS_SQL_NULL), the field i is NULL. When the second high-order bit of the offset at [i+1] is set (REC_OFFS_EXTERNAL), the field i is being stored externally. */ static void rec_init_offsets( /*=============*/ const rec_t* rec, /* in: physical record */ dict_index_t* index, /* in: record descriptor */ ulint* offsets)/* in/out: array of offsets; in: n=rec_offs_n_fields(offsets) */ { ulint i = 0; ulint offs; rec_offs_make_valid(rec, index, offsets); if (dict_table_is_comp(index->table)) { const byte* nulls; const byte* lens; dict_field_t* field; ulint null_mask; ulint status = rec_get_status(rec); ulint n_node_ptr_field = ULINT_UNDEFINED; switch (UNIV_EXPECT(status, REC_STATUS_ORDINARY)) { case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* the field is 8 bytes long */ rec_offs_base(offsets)[0] = REC_N_NEW_EXTRA_BYTES | REC_OFFS_COMPACT; rec_offs_base(offsets)[1] = 8; return; case REC_STATUS_NODE_PTR: n_node_ptr_field = dict_index_get_n_unique_in_tree(index); break; case REC_STATUS_ORDINARY: rec_init_offsets_comp_ordinary(rec, REC_N_NEW_EXTRA_BYTES, index, offsets); return; } nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1); lens = nulls - (index->n_nullable + 7) / 8; offs = 0; null_mask = 1; /* read the lengths of fields 0..n */ do { ulint len; if (UNIV_UNLIKELY(i == n_node_ptr_field)) { len = offs += 4; goto resolved; } field = dict_index_get_nth_field(index, i); if (!(dict_field_get_col(field)->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. We do not advance offs, and we set the length to zero and enable the SQL NULL flag in offsets[]. */ len = offs | REC_OFFS_SQL_NULL; goto resolved; } null_mask <<= 1; } if (UNIV_UNLIKELY(!field->fixed_len)) { /* Variable-length field: read the length */ const dict_col_t* col = dict_field_get_col(field); len = *lens--; if (UNIV_UNLIKELY(col->len > 255) || UNIV_UNLIKELY(col->mtype == DATA_BLOB)) { if (len & 0x80) { /* 1exxxxxxx xxxxxxxx */ len <<= 8; len |= *lens--; ut_a(len <= 0x3fff); offs += len; len = offs; goto resolved; } } len = offs += len; } else { len = offs += field->fixed_len; } resolved: rec_offs_base(offsets)[i + 1] = len; } while (++i < rec_offs_n_fields(offsets)); *rec_offs_base(offsets) = (rec - (lens + 1)) | REC_OFFS_COMPACT; } else { /* Old-style record: determine extra size and end offsets */ offs = REC_N_OLD_EXTRA_BYTES; if (rec_get_1byte_offs_flag(rec)) { offs += rec_offs_n_fields(offsets); *rec_offs_base(offsets) = offs; /* Determine offsets to fields */ do { offs = rec_1_get_field_end_info(rec, i); if (offs & REC_1BYTE_SQL_NULL_MASK) { offs &= ~REC_1BYTE_SQL_NULL_MASK; offs |= REC_OFFS_SQL_NULL; } rec_offs_base(offsets)[1 + i] = offs; } while (++i < rec_offs_n_fields(offsets)); } else { offs += 2 * rec_offs_n_fields(offsets); *rec_offs_base(offsets) = offs; /* Determine offsets to fields */ do { offs = rec_2_get_field_end_info(rec, i); if (offs & REC_2BYTE_SQL_NULL_MASK) { offs &= ~REC_2BYTE_SQL_NULL_MASK; offs |= REC_OFFS_SQL_NULL; } if (offs & REC_2BYTE_EXTERN_MASK) { offs &= ~REC_2BYTE_EXTERN_MASK; offs |= REC_OFFS_EXTERNAL; *rec_offs_base(offsets) |= REC_OFFS_EXTERNAL; } rec_offs_base(offsets)[1 + i] = offs; } while (++i < rec_offs_n_fields(offsets)); } } } /********************************************************** The following function determines the offsets to each field in the record. It can reuse a previously returned array. */ ulint* rec_get_offsets_func( /*=================*/ /* out: the new offsets */ const rec_t* rec, /* in: physical record */ dict_index_t* index, /* in: record descriptor */ ulint* offsets,/* in: array consisting of offsets[0] allocated elements, or an array from rec_get_offsets(), or NULL */ ulint n_fields,/* in: maximum number of initialized fields (ULINT_UNDEFINED if all fields) */ mem_heap_t** heap, /* in/out: memory heap */ const char* file, /* in: file name where called */ ulint line) /* in: line number where called */ { ulint n; ulint size; ut_ad(rec); ut_ad(index); ut_ad(heap); if (dict_table_is_comp(index->table)) { switch (UNIV_EXPECT(rec_get_status(rec), REC_STATUS_ORDINARY)) { case REC_STATUS_ORDINARY: n = dict_index_get_n_fields(index); break; case REC_STATUS_NODE_PTR: n = dict_index_get_n_unique_in_tree(index) + 1; break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* infimum or supremum record */ n = 1; break; default: ut_error; return(NULL); } } else { n = rec_get_n_fields_old(rec); } if (UNIV_UNLIKELY(n_fields < n)) { n = n_fields; } size = n + (1 + REC_OFFS_HEADER_SIZE); if (UNIV_UNLIKELY(!offsets) || UNIV_UNLIKELY(rec_offs_get_n_alloc(offsets) < size)) { if (!*heap) { *heap = mem_heap_create_func(size * sizeof(ulint), MEM_HEAP_DYNAMIC, file, line); } offsets = mem_heap_alloc(*heap, size * sizeof(ulint)); rec_offs_set_n_alloc(offsets, size); } rec_offs_set_n_fields(offsets, n); rec_init_offsets(rec, index, offsets); return(offsets); } /********************************************************** The following function determines the offsets to each field in the record. It can reuse a previously allocated array. */ void rec_get_offsets_reverse( /*====================*/ const byte* extra, /* in: the extra bytes of a compact record in reverse order, excluding the fixed-size REC_N_NEW_EXTRA_BYTES */ dict_index_t* index, /* in: record descriptor */ ulint node_ptr,/* in: nonzero=node pointer, 0=leaf node */ ulint* offsets)/* in/out: array consisting of offsets[0] allocated elements */ { ulint n; ulint i; ulint offs; ulint any_ext; const byte* nulls; const byte* lens; dict_field_t* field; ulint null_mask; ulint n_node_ptr_field; ut_ad(extra); ut_ad(index); ut_ad(offsets); ut_ad(dict_table_is_comp(index->table)); if (UNIV_UNLIKELY(node_ptr)) { n_node_ptr_field = dict_index_get_n_unique_in_tree(index); n = n_node_ptr_field + 1; } else { n_node_ptr_field = ULINT_UNDEFINED; n = dict_index_get_n_fields(index); } ut_a(rec_offs_get_n_alloc(offsets) >= n + (1 + REC_OFFS_HEADER_SIZE)); rec_offs_set_n_fields(offsets, n); nulls = extra; lens = nulls + (index->n_nullable + 7) / 8; i = offs = 0; null_mask = 1; any_ext = 0; /* read the lengths of fields 0..n */ do { ulint len; if (UNIV_UNLIKELY(i == n_node_ptr_field)) { len = offs += 4; goto resolved; } field = dict_index_get_nth_field(index, i); if (!(dict_field_get_col(field)->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls++; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. We do not advance offs, and we set the length to zero and enable the SQL NULL flag in offsets[]. */ len = offs | REC_OFFS_SQL_NULL; goto resolved; } null_mask <<= 1; } if (UNIV_UNLIKELY(!field->fixed_len)) { /* Variable-length field: read the length */ const dict_col_t* col = dict_field_get_col(field); len = *lens++; if (UNIV_UNLIKELY(col->len > 255) || UNIV_UNLIKELY(col->mtype == DATA_BLOB)) { if (len & 0x80) { /* 1exxxxxxx xxxxxxxx */ len <<= 8; len |= *lens++; offs += len & 0x3fff; if (UNIV_UNLIKELY(len & 0x4000)) { any_ext = REC_OFFS_EXTERNAL; len = offs | REC_OFFS_EXTERNAL; } else { len = offs; } goto resolved; } } len = offs += len; } else { len = offs += field->fixed_len; } resolved: rec_offs_base(offsets)[i + 1] = len; } while (++i < rec_offs_n_fields(offsets)); ut_ad(lens >= extra); *rec_offs_base(offsets) = (lens - extra + REC_N_NEW_EXTRA_BYTES) | REC_OFFS_COMPACT | any_ext; } /**************************************************************** The following function is used to get the offset to the nth data field in an old-style record. */ ulint rec_get_nth_field_offs_old( /*=======================*/ /* out: offset to the field */ const rec_t* rec, /* in: record */ ulint n, /* in: index of the field */ ulint* len) /* out: length of the field; UNIV_SQL_NULL if SQL null */ { ulint os; ulint next_os; ut_ad(rec && len); ut_ad(n < rec_get_n_fields_old(rec)); if (n > REC_MAX_N_FIELDS) { fprintf(stderr, "Error: trying to access field %lu in rec\n", (ulong) n); ut_error; } if (rec == NULL) { fputs("Error: rec is NULL pointer\n", stderr); ut_error; } if (rec_get_1byte_offs_flag(rec)) { os = rec_1_get_field_start_offs(rec, n); next_os = rec_1_get_field_end_info(rec, n); if (next_os & REC_1BYTE_SQL_NULL_MASK) { *len = UNIV_SQL_NULL; return(os); } next_os = next_os & ~REC_1BYTE_SQL_NULL_MASK; } else { os = rec_2_get_field_start_offs(rec, n); next_os = rec_2_get_field_end_info(rec, n); if (next_os & REC_2BYTE_SQL_NULL_MASK) { *len = UNIV_SQL_NULL; return(os); } next_os = next_os & ~(REC_2BYTE_SQL_NULL_MASK | REC_2BYTE_EXTERN_MASK); } *len = next_os - os; ut_ad(*len < UNIV_PAGE_SIZE); return(os); } /************************************************************** Determines the size of a data tuple in ROW_FORMAT=COMPACT. */ ulint rec_get_converted_size_comp( /*========================*/ /* out: size */ dict_index_t* index, /* in: record descriptor; dict_table_is_comp() is assumed to hold */ const dtuple_t* dtuple, /* in: data tuple */ const ulint* ext, /* in: array of extern field numbers */ ulint n_ext) /* in: number of elements in ext */ { ulint size = REC_N_NEW_EXTRA_BYTES + (index->n_nullable + 7) / 8; ulint i; ulint j; ulint n_fields; ut_ad(index && dtuple); ut_ad(dtuple_validate(dtuple)); switch (dtuple_get_info_bits(dtuple) & REC_NEW_STATUS_MASK) { case REC_STATUS_ORDINARY: n_fields = dict_index_get_n_fields(index); ut_ad(n_fields == dtuple_get_n_fields(dtuple)); break; case REC_STATUS_NODE_PTR: n_fields = dict_index_get_n_unique_in_tree(index); ut_ad(n_fields + 1 == dtuple_get_n_fields(dtuple)); ut_ad(dtuple_get_nth_field(dtuple, n_fields)->len == 4); size += 4; /* child page number */ break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* infimum or supremum record, 8 bytes */ return(size + 8); /* no extra data needed */ default: ut_error; return(ULINT_UNDEFINED); } /* read the lengths of fields 0..n */ for (i = j = 0; i < n_fields; i++) { dict_field_t* field; ulint len; const dict_col_t* col; field = dict_index_get_nth_field(index, i); len = dtuple_get_nth_field(dtuple, i)->len; col = dict_field_get_col(field); ut_ad(len != UNIV_SQL_NULL || !(col->prtype & DATA_NOT_NULL)); if (len == UNIV_SQL_NULL) { /* No length is stored for NULL fields. */ continue; } ut_ad(len <= col->len || col->mtype == DATA_BLOB); ut_ad(!field->fixed_len || len == field->fixed_len); if (field->fixed_len) { } else if (UNIV_UNLIKELY(j < n_ext) && i == ext[j]) { j++; size += 2; } else if (len < 128 || (col->len < 256 && col->mtype != DATA_BLOB)) { size++; } else { size += 2; } size += len; } ut_ad(j == n_ext); return(size); } /*************************************************************** Sets the value of the ith field SQL null bit of an old-style record. */ void rec_set_nth_field_null_bit( /*=======================*/ rec_t* rec, /* in: record */ ulint i, /* in: ith field */ ibool val) /* in: value to set */ { ulint info; if (rec_get_1byte_offs_flag(rec)) { info = rec_1_get_field_end_info(rec, i); if (val) { info = info | REC_1BYTE_SQL_NULL_MASK; } else { info = info & ~REC_1BYTE_SQL_NULL_MASK; } rec_1_set_field_end_info(rec, i, info); return; } info = rec_2_get_field_end_info(rec, i); if (val) { info = info | REC_2BYTE_SQL_NULL_MASK; } else { info = info & ~REC_2BYTE_SQL_NULL_MASK; } rec_2_set_field_end_info(rec, i, info); } /*************************************************************** Sets an old-style record field to SQL null. The physical size of the field is not changed. */ void rec_set_nth_field_sql_null( /*=======================*/ rec_t* rec, /* in: record */ ulint n) /* in: index of the field */ { ulint offset; offset = rec_get_field_start_offs(rec, n); data_write_sql_null(rec + offset, rec_get_nth_field_size(rec, n)); rec_set_nth_field_null_bit(rec, n, TRUE); } /************************************************************* Builds an old-style physical record out of a data tuple and stores it beginning from the start of the given buffer. */ static rec_t* rec_convert_dtuple_to_rec_old( /*==========================*/ /* out: pointer to the origin of physical record */ byte* buf, /* in: start address of the physical record */ const dtuple_t* dtuple, /* in: data tuple */ const ulint* ext, /* in: array of extern field numbers, in ascending order */ ulint n_ext) /* in: number of externally stored columns */ { const dfield_t* field; ulint n_fields; ulint data_size; rec_t* rec; ulint end_offset; ulint ored_offset; const byte* data; ulint len; ulint i; ut_ad(buf && dtuple); ut_ad(dtuple_validate(dtuple)); ut_ad(dtuple_check_typed(dtuple)); n_fields = dtuple_get_n_fields(dtuple); data_size = dtuple_get_data_size(dtuple); ut_ad(n_fields > 0); /* Calculate the offset of the origin in the physical record */ rec = buf + rec_get_converted_extra_size(data_size, n_fields, n_ext); #ifdef UNIV_DEBUG /* Suppress Valgrind warnings of ut_ad() in mach_write_to_1(), mach_write_to_2() et al. */ memset(buf, 0xff, rec - buf + data_size); #endif /* UNIV_DEBUG */ /* Store the number of fields */ rec_set_n_fields_old(rec, n_fields); /* Set the info bits of the record */ rec_set_info_bits_old(rec, dtuple_get_info_bits(dtuple) & REC_INFO_BITS_MASK); /* Store the data and the offsets */ end_offset = 0; if (!n_ext && data_size <= REC_1BYTE_OFFS_LIMIT) { rec_set_1byte_offs_flag(rec, TRUE); for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(dtuple, i); data = dfield_get_data(field); len = dfield_get_len(field); if (len == UNIV_SQL_NULL) { len = dtype_get_sql_null_size( dfield_get_type(field)); data_write_sql_null(rec + end_offset, len); end_offset += len; ored_offset = end_offset | REC_1BYTE_SQL_NULL_MASK; } else { /* If the data is not SQL null, store it */ ut_memcpy(rec + end_offset, data, len); end_offset += len; ored_offset = end_offset; } rec_1_set_field_end_info(rec, i, ored_offset); } } else { ulint j; rec_set_1byte_offs_flag(rec, FALSE); for (i = j = 0; i < n_fields; i++) { field = dtuple_get_nth_field(dtuple, i); data = dfield_get_data(field); len = dfield_get_len(field); if (len == UNIV_SQL_NULL) { len = dtype_get_sql_null_size( dfield_get_type(field)); data_write_sql_null(rec + end_offset, len); end_offset += len; ored_offset = end_offset | REC_2BYTE_SQL_NULL_MASK; } else { /* If the data is not SQL null, store it */ ut_memcpy(rec + end_offset, data, len); end_offset += len; ored_offset = end_offset; if (UNIV_UNLIKELY(j < n_ext) && i == ext[j]) { j++; ored_offset |= REC_2BYTE_EXTERN_MASK; } } rec_2_set_field_end_info(rec, i, ored_offset); } ut_ad(j == n_ext); } return(rec); } /************************************************************* Builds a ROW_FORMAT=COMPACT record out of a data tuple. */ byte* rec_convert_dtuple_to_rec_comp( /*===========================*/ /* out: pointer to the start of data payload */ byte* buf, /* in: start address of the data area */ ulint extra, /* in: number of bytes to reserve between the record header and the data payload (usually REC_N_NEW_EXTRA_BYTES) */ dict_index_t* index, /* in: record descriptor */ const dtuple_t* dtuple, /* in: data tuple */ const ulint* ext, /* in: array of extern field numbers, in ascending order */ ulint n_ext) /* in: number of elements in ext */ { const dfield_t* field; const dtype_t* type; rec_t* rec = buf + extra; byte* end; byte* nulls; byte* lens; ulint len; ulint i; ulint j; ulint n_node_ptr_field; ulint fixed_len; ulint null_mask = 1; const ulint n_fields = dtuple_get_n_fields(dtuple); ut_ad(dict_table_is_comp(index->table)); ut_ad(n_fields > 0); /* Try to ensure that the memset() between the for() loops completes fast. The address is not exact, but UNIV_PREFETCH should never generate a memory fault. */ UNIV_PREFETCH_RW(buf - n_fields); UNIV_PREFETCH_RW(rec); switch (UNIV_EXPECT(dtuple_get_info_bits(dtuple) & REC_NEW_STATUS_MASK, REC_STATUS_ORDINARY)) { case REC_STATUS_ORDINARY: ut_ad(n_fields <= dict_index_get_n_fields(index)); n_node_ptr_field = ULINT_UNDEFINED; break; case REC_STATUS_NODE_PTR: ut_ad(n_fields == dict_index_get_n_unique_in_tree(index) + 1); n_node_ptr_field = n_fields - 1; break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: ut_ad(n_fields == 1); n_node_ptr_field = ULINT_UNDEFINED; ut_d(j = 0); goto init; default: ut_error; return(0); } /* Calculate the offset of the origin in the physical record. We must loop over all fields to do this. */ rec += (index->n_nullable + 7) / 8; for (i = j = 0; i < n_fields; i++) { if (UNIV_UNLIKELY(i == n_node_ptr_field)) { #ifdef UNIV_DEBUG field = dtuple_get_nth_field(dtuple, i); type = dfield_get_type(field); ut_ad(dtype_get_prtype(type) & DATA_NOT_NULL); ut_ad(dfield_get_len(field) == 4); #endif /* UNIV_DEBUG */ goto init; } field = dtuple_get_nth_field(dtuple, i); type = dfield_get_type(field); len = dfield_get_len(field); fixed_len = dict_index_get_nth_field(index, i)->fixed_len; if (!(dtype_get_prtype(type) & DATA_NOT_NULL)) { if (len == UNIV_SQL_NULL) continue; } /* only nullable fields can be null */ ut_ad(len != UNIV_SQL_NULL); if (fixed_len) { ut_ad(len == fixed_len); } else { ut_ad(len <= dtype_get_len(type) || dtype_get_mtype(type) == DATA_BLOB); rec++; if (len >= 128 && (dtype_get_len(type) >= 256 || dtype_get_mtype(type) == DATA_BLOB)) { rec++; } else if (UNIV_UNLIKELY(j < n_ext) && i == ext[j]) { j++; rec++; } } } init: ut_ad(j == n_ext); end = rec; nulls = rec - (extra + 1); lens = nulls - (index->n_nullable + 7) / 8; /* clear the SQL-null flags */ memset(lens + 1, 0, nulls - lens); /* Store the data and the offsets */ for (i = j = 0; i < n_fields; i++) { field = dtuple_get_nth_field(dtuple, i); type = dfield_get_type(field); len = dfield_get_len(field); if (UNIV_UNLIKELY(i == n_node_ptr_field)) { ut_ad(dtype_get_prtype(type) & DATA_NOT_NULL); ut_ad(len == 4); memcpy(end, dfield_get_data(field), len); end += 4; break; } fixed_len = dict_index_get_nth_field(index, i)->fixed_len; if (!(dtype_get_prtype(type) & DATA_NOT_NULL)) { /* nullable field */ ut_ad(index->n_nullable > 0); if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } ut_ad(*nulls < null_mask); /* set the null flag if necessary */ if (len == UNIV_SQL_NULL) { *nulls |= null_mask; null_mask <<= 1; continue; } null_mask <<= 1; } /* only nullable fields can be null */ ut_ad(len != UNIV_SQL_NULL); if (fixed_len) { ut_ad(len == fixed_len); } else { ut_ad(len <= dtype_get_len(type) || dtype_get_mtype(type) == DATA_BLOB); if (UNIV_UNLIKELY(j < n_ext) && i == ext[j]) { j++; ut_ad(len < REC_MAX_INDEX_COL_LEN); *lens-- = (byte) (len >> 8) | 0xc0; *lens-- = (byte) len; } else if (len < 128 || (dtype_get_len(type) < 256 && dtype_get_mtype(type) != DATA_BLOB)) { *lens-- = (byte) len; } else { ut_ad(len < 16384); *lens-- = (byte) (len >> 8) | 0x80; *lens-- = (byte) len; } } memcpy(end, dfield_get_data(field), len); end += len; } ut_ad(j == n_ext); return(rec); } /************************************************************* Builds a new-style physical record out of a data tuple and stores it beginning from the start of the given buffer. */ static rec_t* rec_convert_dtuple_to_rec_new( /*==========================*/ /* out: pointer to the origin of physical record */ byte* buf, /* in: start address of the physical record */ dict_index_t* index, /* in: record descriptor */ const dtuple_t* dtuple, /* in: data tuple */ const ulint* ext, /* in: array of extern field numbers, in ascending order */ ulint n_ext) /* in: number of elements in ext */ { rec_t* rec = rec_convert_dtuple_to_rec_comp( buf, REC_N_NEW_EXTRA_BYTES, index, dtuple, ext, n_ext); /* Set the info bits of the record */ rec_set_info_and_status_bits(rec, dtuple_get_info_bits(dtuple)); return(rec); } /************************************************************* Builds a physical record out of a data tuple and stores it beginning from the start of the given buffer. */ rec_t* rec_convert_dtuple_to_rec( /*======================*/ /* out: pointer to the origin of physical record */ byte* buf, /* in: start address of the physical record */ dict_index_t* index, /* in: record descriptor */ const dtuple_t* dtuple, /* in: data tuple */ const ulint* ext, /* in: array of extern field numbers, in ascending order */ ulint n_ext) /* in: number of elements in ext */ { rec_t* rec; ut_ad(buf && index && dtuple); ut_ad(dtuple_validate(dtuple)); ut_ad(dtuple_check_typed(dtuple)); if (dict_table_is_comp(index->table)) { rec = rec_convert_dtuple_to_rec_new(buf, index, dtuple, ext, n_ext); } else { rec = rec_convert_dtuple_to_rec_old(buf, dtuple, ext, n_ext); } #ifdef UNIV_DEBUG { mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; const ulint* offsets; *offsets_ = (sizeof offsets_) / sizeof *offsets_; offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap); ut_ad(rec_validate(rec, offsets)); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } #endif /* UNIV_DEBUG */ return(rec); } /****************************************************************** Copies the first n fields of a physical record to a data tuple. The fields are copied to the memory heap. */ void rec_copy_prefix_to_dtuple( /*======================*/ dtuple_t* tuple, /* out: data tuple */ const rec_t* rec, /* in: physical record */ dict_index_t* index, /* in: record descriptor */ ulint n_fields, /* in: number of fields to copy */ mem_heap_t* heap) /* in: memory heap */ { dfield_t* field; const byte* data; ulint len; byte* buf = NULL; ulint i; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; *offsets_ = (sizeof offsets_) / sizeof *offsets_; offsets = rec_get_offsets(rec, index, offsets, n_fields, &heap); ut_ad(rec_validate(rec, offsets)); ut_ad(dtuple_check_typed(tuple)); dtuple_set_info_bits(tuple, rec_get_info_bits( rec, dict_table_is_comp(index->table))); for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(tuple, i); data = rec_get_nth_field(rec, offsets, i, &len); if (len != UNIV_SQL_NULL) { buf = mem_heap_alloc(heap, len); ut_memcpy(buf, data, len); } dfield_set_data(field, buf, len); } } /****************************************************************** Copies the first n fields of an old-style physical record to a new physical record in a buffer. */ static rec_t* rec_copy_prefix_to_buf_old( /*=======================*/ /* out, own: copied record */ const rec_t* rec, /* in: physical record */ ulint n_fields, /* in: number of fields to copy */ ulint area_end, /* in: end of the prefix data */ byte** buf, /* in/out: memory buffer for the copied prefix, or NULL */ ulint* buf_size) /* in/out: buffer size */ { rec_t* copy_rec; ulint area_start; ulint prefix_len; if (rec_get_1byte_offs_flag(rec)) { area_start = REC_N_OLD_EXTRA_BYTES + n_fields; } else { area_start = REC_N_OLD_EXTRA_BYTES + 2 * n_fields; } prefix_len = area_start + area_end; if ((*buf == NULL) || (*buf_size < prefix_len)) { if (*buf != NULL) { mem_free(*buf); } *buf = mem_alloc(prefix_len); *buf_size = prefix_len; } ut_memcpy(*buf, rec - area_start, prefix_len); copy_rec = *buf + area_start; rec_set_n_fields_old(copy_rec, n_fields); return(copy_rec); } /****************************************************************** Copies the first n fields of a physical record to a new physical record in a buffer. */ rec_t* rec_copy_prefix_to_buf( /*===================*/ /* out, own: copied record */ const rec_t* rec, /* in: physical record */ dict_index_t* index, /* in: record descriptor */ ulint n_fields, /* in: number of fields to copy */ byte** buf, /* in/out: memory buffer for the copied prefix, or NULL */ ulint* buf_size) /* in/out: buffer size */ { const byte* nulls; const byte* lens; ulint i; ulint prefix_len; ulint null_mask; ulint status; UNIV_PREFETCH_RW(*buf); if (!dict_table_is_comp(index->table)) { ut_ad(rec_validate_old(rec)); return(rec_copy_prefix_to_buf_old( rec, n_fields, rec_get_field_start_offs(rec, n_fields), buf, buf_size)); } status = rec_get_status(rec); switch (status) { case REC_STATUS_ORDINARY: ut_ad(n_fields <= dict_index_get_n_fields(index)); break; case REC_STATUS_NODE_PTR: /* it doesn't make sense to copy the child page number field */ ut_ad(n_fields <= dict_index_get_n_unique_in_tree(index)); break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* infimum or supremum record: no sense to copy anything */ default: ut_error; return(NULL); } nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1); lens = nulls - (index->n_nullable + 7) / 8; UNIV_PREFETCH_R(lens); prefix_len = 0; null_mask = 1; /* read the lengths of fields 0..n */ for (i = 0; i < n_fields; i++) { const dict_field_t* field; const dict_col_t* col; field = dict_index_get_nth_field(index, i); col = dict_field_get_col(field); if (!(col->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; continue; } null_mask <<= 1; } if (field->fixed_len) { prefix_len += field->fixed_len; } else { ulint len = *lens--; if (col->len > 255 || col->mtype == DATA_BLOB) { if (len & 0x80) { /* 1exxxxxx */ len &= 0x3f; len <<= 8; len |= *lens--; UNIV_PREFETCH_R(lens); } } prefix_len += len; } } UNIV_PREFETCH_R(rec + prefix_len); prefix_len += rec - (lens + 1); if ((*buf == NULL) || (*buf_size < prefix_len)) { if (*buf != NULL) { mem_free(*buf); } *buf = mem_alloc(prefix_len); *buf_size = prefix_len; } memcpy(*buf, lens + 1, prefix_len); return(*buf + (rec - (lens + 1))); } /******************************************************************* Validates the consistency of an old-style physical record. */ static ibool rec_validate_old( /*=============*/ /* out: TRUE if ok */ const rec_t* rec) /* in: physical record */ { const byte* data; ulint len; ulint n_fields; ulint len_sum = 0; ulint sum = 0; ulint i; ut_a(rec); n_fields = rec_get_n_fields_old(rec); if ((n_fields == 0) || (n_fields > REC_MAX_N_FIELDS)) { fprintf(stderr, "InnoDB: Error: record has %lu fields\n", (ulong) n_fields); return(FALSE); } for (i = 0; i < n_fields; i++) { data = rec_get_nth_field_old(rec, i, &len); if (!((len < UNIV_PAGE_SIZE) || (len == UNIV_SQL_NULL))) { fprintf(stderr, "InnoDB: Error: record field %lu len %lu\n", (ulong) i, (ulong) len); return(FALSE); } if (len != UNIV_SQL_NULL) { len_sum += len; sum += *(data + len -1); /* dereference the end of the field to cause a memory trap if possible */ } else { len_sum += rec_get_nth_field_size(rec, i); } } if (len_sum != rec_get_data_size_old(rec)) { fprintf(stderr, "InnoDB: Error: record len should be %lu, len %lu\n", (ulong) len_sum, rec_get_data_size_old(rec)); return(FALSE); } rec_dummy = sum; /* This is here only to fool the compiler */ return(TRUE); } /******************************************************************* Validates the consistency of a physical record. */ ibool rec_validate( /*=========*/ /* out: TRUE if ok */ const rec_t* rec, /* in: physical record */ const ulint* offsets)/* in: array returned by rec_get_offsets() */ { const byte* data; ulint len; ulint n_fields; ulint len_sum = 0; ulint sum = 0; ulint i; ut_a(rec); n_fields = rec_offs_n_fields(offsets); if ((n_fields == 0) || (n_fields > REC_MAX_N_FIELDS)) { fprintf(stderr, "InnoDB: Error: record has %lu fields\n", (ulong) n_fields); return(FALSE); } ut_a(rec_offs_comp(offsets) || n_fields <= rec_get_n_fields_old(rec)); for (i = 0; i < n_fields; i++) { data = rec_get_nth_field(rec, offsets, i, &len); if (!((len < UNIV_PAGE_SIZE) || (len == UNIV_SQL_NULL))) { fprintf(stderr, "InnoDB: Error: record field %lu len %lu\n", (ulong) i, (ulong) len); return(FALSE); } if (len != UNIV_SQL_NULL) { len_sum += len; sum += *(data + len -1); /* dereference the end of the field to cause a memory trap if possible */ } else if (!rec_offs_comp(offsets)) { len_sum += rec_get_nth_field_size(rec, i); } } if (len_sum != rec_offs_data_size(offsets)) { fprintf(stderr, "InnoDB: Error: record len should be %lu, len %lu\n", (ulong) len_sum, (ulong) rec_offs_data_size(offsets)); return(FALSE); } rec_dummy = sum; /* This is here only to fool the compiler */ if (!rec_offs_comp(offsets)) { ut_a(rec_validate_old(rec)); } return(TRUE); } /******************************************************************* Prints an old-style physical record. */ void rec_print_old( /*==========*/ FILE* file, /* in: file where to print */ const rec_t* rec) /* in: physical record */ { const byte* data; ulint len; ulint n; ulint i; ut_ad(rec); n = rec_get_n_fields_old(rec); fprintf(file, "PHYSICAL RECORD: n_fields %lu;" " %u-byte offsets; info bits %lu\n", (ulong) n, rec_get_1byte_offs_flag(rec) ? 1 : 2, (ulong) rec_get_info_bits(rec, FALSE)); for (i = 0; i < n; i++) { data = rec_get_nth_field_old(rec, i, &len); fprintf(file, " %lu:", (ulong) i); if (len != UNIV_SQL_NULL) { if (len <= 30) { ut_print_buf(file, data, len); } else { ut_print_buf(file, data, 30); fputs("...(truncated)", file); } } else { fprintf(file, " SQL NULL, size %lu ", rec_get_nth_field_size(rec, i)); } putc(';', file); } putc('\n', file); rec_validate_old(rec); } /******************************************************************* Prints a physical record. */ void rec_print_new( /*==========*/ FILE* file, /* in: file where to print */ const rec_t* rec, /* in: physical record */ const ulint* offsets)/* in: array returned by rec_get_offsets() */ { const byte* data; ulint len; ulint i; ut_ad(rec_offs_validate(rec, NULL, offsets)); if (!rec_offs_comp(offsets)) { rec_print_old(file, rec); return; } ut_ad(rec); fprintf(file, "PHYSICAL RECORD: n_fields %lu;" " compact format; info bits %lu\n", (ulong) rec_offs_n_fields(offsets), (ulong) rec_get_info_bits(rec, TRUE)); for (i = 0; i < rec_offs_n_fields(offsets); i++) { data = rec_get_nth_field(rec, offsets, i, &len); fprintf(file, " %lu:", (ulong) i); if (len != UNIV_SQL_NULL) { if (len <= 30) { ut_print_buf(file, data, len); } else { ut_print_buf(file, data, 30); fputs("...(truncated)", file); } } else { fputs(" SQL NULL", file); } putc(';', file); } putc('\n', file); rec_validate(rec, offsets); } /******************************************************************* Prints a physical record. */ void rec_print( /*======*/ FILE* file, /* in: file where to print */ const rec_t* rec, /* in: physical record */ dict_index_t* index) /* in: record descriptor */ { ut_ad(index); if (!dict_table_is_comp(index->table)) { rec_print_old(file, rec); return; } else { mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; *offsets_ = (sizeof offsets_) / sizeof *offsets_; rec_print_new(file, rec, rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap)); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } }