/***************************************************************************** Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2015, 2021, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file include/trx0trx.h The transaction Created 3/26/1996 Heikki Tuuri *******************************************************/ #ifndef trx0trx_h #define trx0trx_h #include "trx0types.h" #include "lock0types.h" #include "que0types.h" #include "mem0mem.h" #include "trx0xa.h" #include "ut0vec.h" #include "fts0fts.h" #include "read0types.h" #include "ilist.h" #include #include // Forward declaration struct mtr_t; struct rw_trx_hash_element_t; /******************************************************************//** Set detailed error message for the transaction. */ void trx_set_detailed_error( /*===================*/ trx_t* trx, /*!< in: transaction struct */ const char* msg); /*!< in: detailed error message */ /*************************************************************//** Set detailed error message for the transaction from a file. Note that the file is rewinded before reading from it. */ void trx_set_detailed_error_from_file( /*=============================*/ trx_t* trx, /*!< in: transaction struct */ FILE* file); /*!< in: file to read message from */ /****************************************************************//** Retrieves the error_info field from a trx. @return the error info */ UNIV_INLINE const dict_index_t* trx_get_error_info( /*===============*/ const trx_t* trx); /*!< in: trx object */ /** @return an allocated transaction */ trx_t *trx_create(); /** At shutdown, frees a transaction object. */ void trx_free_at_shutdown(trx_t *trx); /** Disconnect a prepared transaction from MySQL. @param[in,out] trx transaction */ void trx_disconnect_prepared(trx_t *trx); /** Initialize (resurrect) transactions at startup. */ dberr_t trx_lists_init_at_db_start(); /*************************************************************//** Starts the transaction if it is not yet started. */ void trx_start_if_not_started_xa_low( /*============================*/ trx_t* trx, /*!< in/out: transaction */ bool read_write); /*!< in: true if read write transaction */ /*************************************************************//** Starts the transaction if it is not yet started. */ void trx_start_if_not_started_low( /*=========================*/ trx_t* trx, /*!< in/out: transaction */ bool read_write); /*!< in: true if read write transaction */ /*************************************************************//** Starts a transaction for internal processing. */ void trx_start_internal_low( /*===================*/ trx_t* trx); /*!< in/out: transaction */ /** Starts a read-only transaction for internal processing. @param[in,out] trx transaction to be started */ void trx_start_internal_read_only_low( trx_t* trx); #ifdef UNIV_DEBUG #define trx_start_if_not_started_xa(t, rw) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_if_not_started_xa_low((t), rw); \ } while (false) #define trx_start_if_not_started(t, rw) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_if_not_started_low((t), rw); \ } while (false) #define trx_start_internal(t) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_internal_low((t)); \ } while (false) #define trx_start_internal_read_only(t) \ do { \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_internal_read_only_low(t); \ } while (false) #else #define trx_start_if_not_started(t, rw) \ trx_start_if_not_started_low((t), rw) #define trx_start_internal(t) \ trx_start_internal_low((t)) #define trx_start_internal_read_only(t) \ trx_start_internal_read_only_low(t) #define trx_start_if_not_started_xa(t, rw) \ trx_start_if_not_started_xa_low((t), (rw)) #endif /* UNIV_DEBUG */ /*************************************************************//** Starts the transaction for a DDL operation. */ void trx_start_for_ddl_low( /*==================*/ trx_t* trx, /*!< in/out: transaction */ trx_dict_op_t op); /*!< in: dictionary operation type */ #ifdef UNIV_DEBUG #define trx_start_for_ddl(t, o) \ do { \ ut_ad((t)->start_file == 0); \ (t)->start_line = __LINE__; \ (t)->start_file = __FILE__; \ trx_start_for_ddl_low((t), (o)); \ } while (0) #else #define trx_start_for_ddl(t, o) \ trx_start_for_ddl_low((t), (o)) #endif /* UNIV_DEBUG */ /**********************************************************************//** Does the transaction commit for MySQL. @return DB_SUCCESS or error number */ dberr_t trx_commit_for_mysql( /*=================*/ trx_t* trx); /*!< in/out: transaction */ /** XA PREPARE a transaction. @param[in,out] trx transaction to prepare */ void trx_prepare_for_mysql(trx_t* trx); /**********************************************************************//** This function is used to find number of prepared transactions and their transaction objects for a recovery. @return number of prepared transactions */ int trx_recover_for_mysql( /*==================*/ XID* xid_list, /*!< in/out: prepared transactions */ uint len); /*!< in: number of slots in xid_list */ /** Look up an X/Open distributed transaction in XA PREPARE state. @param[in] xid X/Open XA transaction identifier @return transaction on match (the trx_t::xid will be invalidated); note that the trx may have been committed before the caller acquires trx_t::mutex @retval NULL if no match */ trx_t* trx_get_trx_by_xid(const XID* xid); /**********************************************************************//** If required, flushes the log to disk if we called trx_commit_for_mysql() with trx->flush_log_later == TRUE. */ void trx_commit_complete_for_mysql( /*==========================*/ trx_t* trx); /*!< in/out: transaction */ /**********************************************************************//** Marks the latest SQL statement ended. */ void trx_mark_sql_stat_end( /*==================*/ trx_t* trx); /*!< in: trx handle */ /****************************************************************//** Prepares a transaction for commit/rollback. */ void trx_commit_or_rollback_prepare( /*===========================*/ trx_t* trx); /*!< in/out: transaction */ /*********************************************************************//** Creates a commit command node struct. @return own: commit node struct */ commit_node_t* trx_commit_node_create( /*===================*/ mem_heap_t* heap); /*!< in: mem heap where created */ /***********************************************************//** Performs an execution step for a commit type node in a query graph. @return query thread to run next, or NULL */ que_thr_t* trx_commit_step( /*============*/ que_thr_t* thr); /*!< in: query thread */ /**********************************************************************//** Prints info about a transaction. */ void trx_print_low( /*==========*/ FILE* f, /*!< in: output stream */ const trx_t* trx, /*!< in: transaction */ ulint max_query_len, /*!< in: max query length to print, or 0 to use the default max length */ ulint n_rec_locks, /*!< in: lock_number_of_rows_locked(&trx->lock) */ ulint n_trx_locks, /*!< in: length of trx->lock.trx_locks */ ulint heap_size); /*!< in: mem_heap_get_size(trx->lock.lock_heap) */ /**********************************************************************//** Prints info about a transaction. When possible, use trx_print() instead. */ void trx_print_latched( /*==============*/ FILE* f, /*!< in: output stream */ const trx_t* trx, /*!< in: transaction */ ulint max_query_len); /*!< in: max query length to print, or 0 to use the default max length */ /**********************************************************************//** Prints info about a transaction. Acquires and releases lock_sys.mutex. */ void trx_print( /*======*/ FILE* f, /*!< in: output stream */ const trx_t* trx, /*!< in: transaction */ ulint max_query_len); /*!< in: max query length to print, or 0 to use the default max length */ /**********************************************************************//** Determine if a transaction is a dictionary operation. @return dictionary operation mode */ UNIV_INLINE enum trx_dict_op_t trx_get_dict_operation( /*===================*/ const trx_t* trx) /*!< in: transaction */ MY_ATTRIBUTE((warn_unused_result)); /**********************************************************************//** Flag a transaction a dictionary operation. */ UNIV_INLINE void trx_set_dict_operation( /*===================*/ trx_t* trx, /*!< in/out: transaction */ enum trx_dict_op_t op); /*!< in: operation, not TRX_DICT_OP_NONE */ /**********************************************************************//** Determines if a transaction is in the given state. The caller must hold trx->mutex, or it must be the thread that is serving a running transaction. A running RW transaction must be in trx_sys.rw_trx_hash. @return TRUE if trx->state == state */ UNIV_INLINE bool trx_state_eq( /*=========*/ const trx_t* trx, /*!< in: transaction */ trx_state_t state, /*!< in: state; if state != TRX_STATE_NOT_STARTED asserts that trx->state != TRX_STATE_NOT_STARTED */ bool relaxed = false) /*!< in: whether to allow trx->state == TRX_STATE_NOT_STARTED after an error has been reported */ MY_ATTRIBUTE((nonnull, warn_unused_result)); /**********************************************************************//** Determines if the currently running transaction has been interrupted. @return true if interrupted */ bool trx_is_interrupted( /*===============*/ const trx_t* trx); /*!< in: transaction */ /*******************************************************************//** Calculates the "weight" of a transaction. The weight of one transaction is estimated as the number of altered rows + the number of locked rows. @param t transaction @return transaction weight */ #define TRX_WEIGHT(t) ((t)->undo_no + UT_LIST_GET_LEN((t)->lock.trx_locks)) /*******************************************************************//** Compares the "weight" (or size) of two transactions. Transactions that have edited non-transactional tables are considered heavier than ones that have not. @return true if weight(a) >= weight(b) */ bool trx_weight_ge( /*==========*/ const trx_t* a, /*!< in: the transaction to be compared */ const trx_t* b); /*!< in: the transaction to be compared */ /* Maximum length of a string that can be returned by trx_get_que_state_str(). */ #define TRX_QUE_STATE_STR_MAX_LEN 12 /* "ROLLING BACK" */ /*******************************************************************//** Retrieves transaction's que state in a human readable string. The string should not be free()'d or modified. @return string in the data segment */ UNIV_INLINE const char* trx_get_que_state_str( /*==================*/ const trx_t* trx); /*!< in: transaction */ /** Retreieves the transaction ID. In a given point in time it is guaranteed that IDs of the running transactions are unique. The values returned by this function for readonly transactions may be reused, so a subsequent RO transaction may get the same ID as a RO transaction that existed in the past. The values returned by this function should be used for printing purposes only. @param[in] trx transaction whose id to retrieve @return transaction id */ UNIV_INLINE trx_id_t trx_get_id_for_print( const trx_t* trx); /** Create the trx_t pool */ void trx_pool_init(); /** Destroy the trx_t pool */ void trx_pool_close(); /** Set the transaction as a read-write transaction if it is not already tagged as such. @param[in,out] trx Transaction that needs to be "upgraded" to RW from RO */ void trx_set_rw_mode( trx_t* trx); /** Transactions that aren't started by the MySQL server don't set the trx_t::mysql_thd field. For such transactions we set the lock wait timeout to 0 instead of the user configured value that comes from innodb_lock_wait_timeout via trx_t::mysql_thd. @param trx transaction @return lock wait timeout in seconds */ #define trx_lock_wait_timeout_get(t) \ ((t)->mysql_thd != NULL \ ? thd_lock_wait_timeout((t)->mysql_thd) \ : 0) typedef std::vector > lock_list; /*******************************************************************//** Latching protocol for trx_lock_t::que_state. trx_lock_t::que_state captures the state of the query thread during the execution of a query. This is different from a transaction state. The query state of a transaction can be updated asynchronously by other threads. The other threads can be system threads, like the timeout monitor thread or user threads executing other queries. Another thing to be mindful of is that there is a delay between when a query thread is put into LOCK_WAIT state and before it actually starts waiting. Between these two events it is possible that the query thread is granted the lock it was waiting for, which implies that the state can be changed asynchronously. All these operations take place within the context of locking. Therefore state changes within the locking code must acquire both the lock mutex and the trx->mutex when changing trx->lock.que_state to TRX_QUE_LOCK_WAIT or trx->lock.wait_lock to non-NULL but when the lock wait ends it is sufficient to only acquire the trx->mutex. To query the state either of the mutexes is sufficient within the locking code and no mutex is required when the query thread is no longer waiting. */ /** The locks and state of an active transaction. Protected by lock_sys.mutex, trx->mutex or both. */ struct trx_lock_t { #ifdef UNIV_DEBUG /** number of active query threads; at most 1, except for the dummy transaction in trx_purge() */ ulint n_active_thrs; #endif trx_que_t que_state; /*!< valid when trx->state == TRX_STATE_ACTIVE: TRX_QUE_RUNNING, TRX_QUE_LOCK_WAIT, ... */ lock_t* wait_lock; /*!< if trx execution state is TRX_QUE_LOCK_WAIT, this points to the lock request, otherwise this is NULL; set to non-NULL when holding both trx->mutex and lock_sys.mutex; set to NULL when holding lock_sys.mutex; readers should hold lock_sys.mutex, except when they are holding trx->mutex and wait_lock==NULL */ ib_uint64_t deadlock_mark; /*!< A mark field that is initialized to and checked against lock_mark_counter by lock_deadlock_recursive(). */ bool was_chosen_as_deadlock_victim; /*!< when the transaction decides to wait for a lock, it sets this to false; if another transaction chooses this transaction as a victim in deadlock resolution, it sets this to true. Protected by trx->mutex. */ time_t wait_started; /*!< lock wait started at this time, protected only by lock_sys.mutex */ que_thr_t* wait_thr; /*!< query thread belonging to this trx that is in QUE_THR_LOCK_WAIT state. For threads suspended in a lock wait, this is protected by lock_sys.mutex. Otherwise, this may only be modified by the thread that is serving the running transaction. */ #ifdef WITH_WSREP bool was_chosen_as_wsrep_victim; /*!< high priority wsrep thread has marked this trx to abort */ #endif /* WITH_WSREP */ /** Pre-allocated record locks */ struct { ib_lock_t lock; byte pad[256]; } rec_pool[8]; /** Pre-allocated table locks */ ib_lock_t table_pool[8]; /** Next available rec_pool[] entry */ unsigned rec_cached; /** Next available table_pool[] entry */ unsigned table_cached; mem_heap_t* lock_heap; /*!< memory heap for trx_locks; protected by lock_sys.mutex */ trx_lock_list_t trx_locks; /*!< locks requested by the transaction; insertions are protected by trx->mutex and lock_sys.mutex; removals are protected by lock_sys.mutex */ lock_list table_locks; /*!< All table locks requested by this transaction, including AUTOINC locks */ /** List of pending trx_t::evict_table() */ UT_LIST_BASE_NODE_T(dict_table_t) evicted_tables; bool cancel; /*!< true if the transaction is being rolled back either via deadlock detection or due to lock timeout. The caller has to acquire the trx_t::mutex in order to cancel the locks. In lock_trx_table_locks_remove() we check for this cancel of a transaction's locks and avoid reacquiring the trx mutex to prevent recursive deadlocks. Protected by both the lock sys mutex and the trx_t::mutex. */ ulint n_rec_locks; /*!< number of rec locks in this trx */ }; /** Logical first modification time of a table in a transaction */ class trx_mod_table_time_t { /** First modification of the table */ undo_no_t first; /** First modification of a system versioned column */ undo_no_t first_versioned; /** Magic value signifying that a system versioned column of a table was never modified in a transaction. */ static const undo_no_t UNVERSIONED = IB_ID_MAX; public: /** Constructor @param[in] rows number of modified rows so far */ trx_mod_table_time_t(undo_no_t rows) : first(rows), first_versioned(UNVERSIONED) {} #ifdef UNIV_DEBUG /** Validation @param[in] rows number of modified rows so far @return whether the object is valid */ bool valid(undo_no_t rows = UNVERSIONED) const { return first <= first_versioned && first <= rows; } #endif /* UNIV_DEBUG */ /** @return if versioned columns were modified */ bool is_versioned() const { return first_versioned != UNVERSIONED; } /** After writing an undo log record, set is_versioned() if needed @param[in] rows number of modified rows so far */ void set_versioned(undo_no_t rows) { ut_ad(!is_versioned()); first_versioned = rows; ut_ad(valid()); } /** Invoked after partial rollback @param[in] limit number of surviving modified rows @return whether this should be erased from trx_t::mod_tables */ bool rollback(undo_no_t limit) { ut_ad(valid()); if (first >= limit) { return true; } if (first_versioned < limit && is_versioned()) { first_versioned = UNVERSIONED; } return false; } }; /** Collection of persistent tables and their first modification in a transaction. We store pointers to the table objects in memory because we know that a table object will not be destroyed while a transaction that modified it is running. */ typedef std::map< dict_table_t*, trx_mod_table_time_t, std::less, ut_allocator > > trx_mod_tables_t; /** The transaction handle Normally, there is a 1:1 relationship between a transaction handle (trx) and a session (client connection). One session is associated with exactly one user transaction. There are some exceptions to this: * For DDL operations, a subtransaction is allocated that modifies the data dictionary tables. Lock waits and deadlocks are prevented by acquiring the dict_sys.latch before starting the subtransaction and releasing it after committing the subtransaction. * The purge system uses a special transaction that is not associated with any session. * If the system crashed or it was quickly shut down while there were transactions in the ACTIVE or PREPARED state, these transactions would no longer be associated with a session when the server is restarted. A session may be served by at most one thread at a time. The serving thread of a session might change in some MySQL implementations. Therefore we do not have os_thread_get_curr_id() assertions in the code. Normally, only the thread that is currently associated with a running transaction may access (read and modify) the trx object, and it may do so without holding any mutex. The following are exceptions to this: * trx_rollback_recovered() may access resurrected (connectionless) transactions (state == TRX_STATE_ACTIVE && is_recovered) while the system is already processing new user transactions (!is_recovered). * trx_print_low() may access transactions not associated with the current thread. The caller must be holding lock_sys.mutex. * When a transaction handle is in the trx_sys.trx_list, some of its fields must not be modified without holding trx->mutex. * The locking code (in particular, lock_deadlock_recursive() and lock_rec_convert_impl_to_expl()) will access transactions associated to other connections. The locks of transactions are protected by lock_sys.mutex (insertions also by trx->mutex). */ /** Represents an instance of rollback segment along with its state variables.*/ struct trx_undo_ptr_t { trx_rseg_t* rseg; /*!< rollback segment assigned to the transaction, or NULL if not assigned yet */ trx_undo_t* undo; /*!< pointer to the undo log, or NULL if nothing logged yet */ }; /** An instance of temporary rollback segment. */ struct trx_temp_undo_t { /** temporary rollback segment, or NULL if not assigned yet */ trx_rseg_t* rseg; /** pointer to the undo log, or NULL if nothing logged yet */ trx_undo_t* undo; }; /** Rollback segments assigned to a transaction for undo logging. */ struct trx_rsegs_t { /** undo log ptr holding reference to a rollback segment that resides in system/undo tablespace used for undo logging of tables that needs to be recovered on crash. */ trx_undo_ptr_t m_redo; /** undo log for temporary tables; discarded immediately after transaction commit/rollback */ trx_temp_undo_t m_noredo; }; struct trx_t : ilist_node<> { private: /** Least significant 31 bits is count of references. We can't release the locks nor commit the transaction until this reference is 0. We can change the state to TRX_STATE_COMMITTED_IN_MEMORY to signify that it is no longer "active". If the most significant bit is set this transaction should stop inheriting (GAP)locks. Generally set to true during transaction prepare for RC or lower isolation, if requested. Needed for replication replay where we don't want to get blocked on GAP locks taken for protecting concurrent unique insert or replace operation. */ Atomic_relaxed skip_lock_inheritance_and_n_ref; public: TrxMutex mutex; /*!< Mutex protecting the fields state and lock (except some fields of lock, which are protected by lock_sys.mutex) */ trx_id_t id; /*!< transaction id */ /** State of the trx from the point of view of concurrency control and the valid state transitions. Possible states: TRX_STATE_NOT_STARTED TRX_STATE_ACTIVE TRX_STATE_PREPARED TRX_STATE_PREPARED_RECOVERED (special case of TRX_STATE_PREPARED) TRX_STATE_COMMITTED_IN_MEMORY (alias below COMMITTED) Valid state transitions are: Regular transactions: * NOT_STARTED -> ACTIVE -> COMMITTED -> NOT_STARTED Auto-commit non-locking read-only: * NOT_STARTED -> ACTIVE -> NOT_STARTED XA (2PC): * NOT_STARTED -> ACTIVE -> PREPARED -> COMMITTED -> NOT_STARTED Recovered XA: * NOT_STARTED -> PREPARED -> COMMITTED -> (freed) Recovered XA followed by XA ROLLBACK: * NOT_STARTED -> PREPARED -> ACTIVE -> COMMITTED -> (freed) XA (2PC) (shutdown or disconnect before ROLLBACK or COMMIT): * NOT_STARTED -> PREPARED -> (freed) Disconnected XA can become recovered: * ... -> ACTIVE -> PREPARED (connected) -> PREPARED (disconnected) Disconnected means from mysql e.g due to the mysql client disconnection. Latching and various transaction lists membership rules: XA (2PC) transactions are always treated as non-autocommit. Transitions to ACTIVE or NOT_STARTED occur when transaction is not in rw_trx_hash. Autocommit non-locking read-only transactions move between states without holding any mutex. They are not in rw_trx_hash. All transactions, unless they are determined to be ac-nl-ro, explicitly tagged as read-only or read-write, will first be put on the read-only transaction list. Only when a !read-only transaction in the read-only list tries to acquire an X or IX lock on a table do we remove it from the read-only list and put it on the read-write list. During this switch we assign it a rollback segment. When a transaction is NOT_STARTED, it can be in trx_list. It cannot be in rw_trx_hash. ACTIVE->PREPARED->COMMITTED is only possible when trx is in rw_trx_hash. The transition ACTIVE->PREPARED is protected by trx->mutex. ACTIVE->COMMITTED is possible when the transaction is in rw_trx_hash. Transitions to COMMITTED are protected by trx_t::mutex. */ trx_state_t state; #ifdef WITH_WSREP /** whether wsrep_on(mysql_thd) held at the start of transaction */ bool wsrep; bool is_wsrep() const { return UNIV_UNLIKELY(wsrep); } /** true, if BF thread is performing unique secondary index scanning */ bool wsrep_UK_scan; bool is_wsrep_UK_scan() const { return UNIV_UNLIKELY(wsrep_UK_scan); } #else /* WITH_WSREP */ bool is_wsrep() const { return false; } #endif /* WITH_WSREP */ ReadView read_view; /*!< consistent read view used in the transaction, or NULL if not yet set */ trx_lock_t lock; /*!< Information about the transaction locks and state. Protected by lock_sys.mutex (insertions also by trx_t::mutex). */ /* These fields are not protected by any mutex. */ /** false=normal transaction, true=recovered (must be rolled back) or disconnected transaction in XA PREPARE STATE. This field is accessed by the thread that owns the transaction, without holding any mutex. There is only one foreign-thread access in trx_print_low() and a possible race condition with trx_disconnect_prepared(). */ bool is_recovered; const char* op_info; /*!< English text describing the current operation, or an empty string */ uint isolation_level;/*!< TRX_ISO_REPEATABLE_READ, ... */ bool check_foreigns; /*!< normally TRUE, but if the user wants to suppress foreign key checks, (in table imports, for example) we set this FALSE */ /*------------------------------*/ /* MySQL has a transaction coordinator to coordinate two phase commit between multiple storage engines and the binary log. When an engine participates in a transaction, it's responsible for registering itself using the trans_register_ha() API. */ bool is_registered; /* This flag is set to true after the transaction has been registered with the coordinator using the XA API, and is set to false after commit or rollback. */ /** whether this is holding the prepare mutex */ bool active_commit_ordered; /*------------------------------*/ bool check_unique_secondary; /*!< normally TRUE, but if the user wants to speed up inserts by suppressing unique key checks for secondary indexes when we decide if we can use the insert buffer for them, we set this FALSE */ bool flush_log_later;/* In 2PC, we hold the prepare_commit mutex across both phases. In that case, we defer flush of the logs to disk until after we release the mutex. */ bool must_flush_log_later;/*!< set in commit() if flush_log_later was set and redo log was written; in that case we will flush the log in trx_commit_complete_for_mysql() */ ulint duplicates; /*!< TRX_DUP_IGNORE | TRX_DUP_REPLACE */ trx_dict_op_t dict_operation; /**< @see enum trx_dict_op_t */ ib_uint32_t dict_operation_lock_mode; /*!< 0, RW_S_LATCH, or RW_X_LATCH: the latch mode trx currently holds on dict_sys.latch. Protected by dict_sys.latch. */ /** wall-clock time of the latest transition to TRX_STATE_ACTIVE; used for diagnostic purposes only */ time_t start_time; /** microsecond_interval_timer() of transaction start */ ulonglong start_time_micro; lsn_t commit_lsn; /*!< lsn at the time of the commit */ table_id_t table_id; /*!< Table to drop iff dict_operation == TRX_DICT_OP_TABLE, or 0. */ /*------------------------------*/ THD* mysql_thd; /*!< MySQL thread handle corresponding to this trx, or NULL */ const char* mysql_log_file_name; /*!< if MySQL binlog is used, this field contains a pointer to the latest file name; this is NULL if binlog is not used */ ulonglong mysql_log_offset; /*!< if MySQL binlog is used, this field contains the end offset of the binlog entry */ /*------------------------------*/ ib_uint32_t n_mysql_tables_in_use; /*!< number of Innobase tables used in the processing of the current SQL statement in MySQL */ ib_uint32_t mysql_n_tables_locked; /*!< how many tables the current SQL statement uses, except those in consistent read */ dberr_t error_state; /*!< 0 if no error, otherwise error number; NOTE That ONLY the thread doing the transaction is allowed to set this field: this is NOT protected by any mutex */ const dict_index_t*error_info; /*!< if the error number indicates a duplicate key error, a pointer to the problematic index is stored here */ ulint error_key_num; /*!< if the index creation fails to a duplicate key error, a mysql key number of that index is stored here */ que_t* graph; /*!< query currently run in the session, or NULL if none; NOTE that the query belongs to the session, and it can survive over a transaction commit, if it is a stored procedure with a COMMIT WORK statement, for instance */ /*------------------------------*/ UT_LIST_BASE_NODE_T(trx_named_savept_t) trx_savepoints; /*!< savepoints set with SAVEPOINT ..., oldest first */ /*------------------------------*/ undo_no_t undo_no; /*!< next undo log record number to assign; since the undo log is private for a transaction, this is a simple ascending sequence with no gaps; thus it represents the number of modified/inserted rows in a transaction */ trx_savept_t last_sql_stat_start; /*!< undo_no when the last sql statement was started: in case of an error, trx is rolled back down to this number */ trx_rsegs_t rsegs; /* rollback segments for undo logging */ undo_no_t roll_limit; /*!< least undo number to undo during a partial rollback; 0 otherwise */ bool in_rollback; /*!< true when the transaction is executing a partial or full rollback */ ulint pages_undone; /*!< number of undo log pages undone since the last undo log truncation */ /*------------------------------*/ ulint n_autoinc_rows; /*!< no. of AUTO-INC rows required for an SQL statement. This is useful for multi-row INSERTs */ ib_vector_t* autoinc_locks; /* AUTOINC locks held by this transaction. Note that these are also in the lock list trx_locks. This vector needs to be freed explicitly when the trx instance is destroyed. Protected by lock_sys.mutex. */ /*------------------------------*/ bool read_only; /*!< true if transaction is flagged as a READ-ONLY transaction. if auto_commit && !will_lock then it will be handled as a AC-NL-RO-SELECT (Auto Commit Non-Locking Read Only Select). A read only transaction will not be assigned an UNDO log. */ bool auto_commit; /*!< true if it is an autocommit */ bool will_lock; /*!< set to inform trx_start_low() that the transaction may acquire locks */ /*------------------------------*/ fts_trx_t* fts_trx; /*!< FTS information, or NULL if transaction hasn't modified tables with FTS indexes (yet). */ doc_id_t fts_next_doc_id;/* The document id used for updates */ /*------------------------------*/ ib_uint32_t flush_tables; /*!< if "covering" the FLUSH TABLES", count of tables being flushed. */ /*------------------------------*/ bool ddl; /*!< true if it is an internal transaction for DDL */ bool internal; /*!< true if it is a system/internal transaction background task. This includes DDL transactions too. Such transactions are always treated as read-write. */ /*------------------------------*/ #ifdef UNIV_DEBUG unsigned start_line; /*!< Track where it was started from */ const char* start_file; /*!< Filename where it was started */ #endif /* UNIV_DEBUG */ XID* xid; /*!< X/Open XA transaction identification to identify a transaction branch */ trx_mod_tables_t mod_tables; /*!< List of tables that were modified by this transaction */ /*------------------------------*/ char* detailed_error; /*!< detailed error message for last error, or empty. */ rw_trx_hash_element_t *rw_trx_hash_element; LF_PINS *rw_trx_hash_pins; ulint magic_n; /** @return whether any persistent undo log has been generated */ bool has_logged_persistent() const { return(rsegs.m_redo.undo); } /** @return whether any undo log has been generated */ bool has_logged() const { return(has_logged_persistent() || rsegs.m_noredo.undo); } /** @return rollback segment for modifying temporary tables */ trx_rseg_t* get_temp_rseg() { if (trx_rseg_t* rseg = rsegs.m_noredo.rseg) { ut_ad(id != 0); return(rseg); } return(assign_temp_rseg()); } /** Transition to committed state, to release implicit locks. */ inline void commit_state(); /** Release any explicit locks of a committing transaction. */ inline void release_locks(); /** Evict a table definition due to the rollback of ALTER TABLE. @param[in] table_id table identifier */ void evict_table(table_id_t table_id); /** Initiate rollback. @param savept savepoint to which to roll back @return error code or DB_SUCCESS */ dberr_t rollback(trx_savept_t *savept= nullptr); /** Roll back an active transaction. @param savept savepoint to which to roll back */ inline void rollback_low(trx_savept_t *savept= nullptr); /** Finish rollback. @return whether the rollback was completed normally @retval false if the rollback was aborted by shutdown */ inline bool rollback_finish(); private: /** Mark a transaction committed in the main memory data structures. */ inline void commit_in_memory(const mtr_t *mtr); /** Commit the transaction in a mini-transaction. @param mtr mini-transaction (if there are any persistent modifications) */ void commit_low(mtr_t *mtr= nullptr); public: /** Commit the transaction. */ void commit(); bool is_referenced() const { return (skip_lock_inheritance_and_n_ref & ~(1U << 31)) > 0; } void reference() { ut_d(auto old_n_ref =) skip_lock_inheritance_and_n_ref.fetch_add(1); ut_ad(int32_t(old_n_ref << 1) >= 0); } void release_reference() { ut_d(auto old_n_ref =) skip_lock_inheritance_and_n_ref.fetch_sub(1); ut_ad(int32_t(old_n_ref << 1) > 0); } bool is_not_inheriting_locks() const { return skip_lock_inheritance_and_n_ref >> 31; } void set_skip_lock_inheritance() { ut_d(auto old_n_ref=) skip_lock_inheritance_and_n_ref.fetch_add(1U << 31); ut_ad(!(old_n_ref >> 31)); } void reset_skip_lock_inheritance() { #if defined __GNUC__ && (defined __i386__ || defined __x86_64__) __asm__("lock btrl $31, %0" : : "m"(skip_lock_inheritance_and_n_ref)); #elif defined _MSC_VER && (defined _M_IX86 || defined _M_X64) _interlockedbittestandreset( reinterpret_cast(&skip_lock_inheritance_and_n_ref), 31); #else skip_lock_inheritance_and_n_ref.fetch_and(~1U << 31); #endif } /** @return whether the table has lock on mysql.innodb_table_stats and mysql.innodb_index_stats */ bool has_stats_table_lock() const; /** Free the memory to trx_pools */ void free(); void assert_freed() const { ut_ad(state == TRX_STATE_NOT_STARTED); ut_ad(!id); ut_ad(!has_logged()); ut_ad(!is_referenced()); ut_ad(!is_wsrep()); #ifdef WITH_WSREP ut_ad(!lock.was_chosen_as_wsrep_victim); #endif ut_ad(!read_view.is_open()); ut_ad(!lock.wait_thr); ut_ad(UT_LIST_GET_LEN(lock.trx_locks) == 0); ut_ad(lock.table_locks.empty()); ut_ad(!autoinc_locks || ib_vector_is_empty(autoinc_locks)); ut_ad(UT_LIST_GET_LEN(lock.evicted_tables) == 0); ut_ad(dict_operation == TRX_DICT_OP_NONE); ut_ad(!is_not_inheriting_locks()); } /** @return whether this is a non-locking autocommit transaction */ bool is_autocommit_non_locking() const { return auto_commit && !will_lock; } private: /** Assign a rollback segment for modifying temporary tables. @return the assigned rollback segment */ trx_rseg_t *assign_temp_rseg(); }; /** Check if transaction is started. @param[in] trx Transaction whose state we need to check @reutrn true if transaction is in state started */ inline bool trx_is_started(const trx_t* trx) { return trx->state != TRX_STATE_NOT_STARTED; } /* Transaction isolation levels (trx->isolation_level) */ #define TRX_ISO_READ_UNCOMMITTED 0 /* dirty read: non-locking SELECTs are performed so that we do not look at a possible earlier version of a record; thus they are not 'consistent' reads under this isolation level; otherwise like level 2 */ #define TRX_ISO_READ_COMMITTED 1 /* somewhat Oracle-like isolation, except that in range UPDATE and DELETE we must block phantom rows with next-key locks; SELECT ... FOR UPDATE and ... LOCK IN SHARE MODE only lock the index records, NOT the gaps before them, and thus allow free inserting; each consistent read reads its own snapshot */ #define TRX_ISO_REPEATABLE_READ 2 /* this is the default; all consistent reads in the same trx read the same snapshot; full next-key locking used in locking reads to block insertions into gaps */ #define TRX_ISO_SERIALIZABLE 3 /* all plain SELECTs are converted to LOCK IN SHARE MODE reads */ /* Treatment of duplicate values (trx->duplicates; for example, in inserts). Multiple flags can be combined with bitwise OR. */ #define TRX_DUP_IGNORE 1U /* duplicate rows are to be updated */ #define TRX_DUP_REPLACE 2U /* duplicate rows are to be replaced */ /** Commit node states */ enum commit_node_state { COMMIT_NODE_SEND = 1, /*!< about to send a commit signal to the transaction */ COMMIT_NODE_WAIT /*!< commit signal sent to the transaction, waiting for completion */ }; /** Commit command node in a query graph */ struct commit_node_t{ que_common_t common; /*!< node type: QUE_NODE_COMMIT */ enum commit_node_state state; /*!< node execution state */ }; /** Test if trx->mutex is owned. */ #define trx_mutex_own(t) mutex_own(&t->mutex) /** Acquire the trx->mutex. */ #define trx_mutex_enter(t) do { \ mutex_enter(&t->mutex); \ } while (0) /** Release the trx->mutex. */ #define trx_mutex_exit(t) do { \ mutex_exit(&t->mutex); \ } while (0) #include "trx0trx.inl" #endif