/* Copyright (C) 2004-2006 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "mysql_priv.h" #include "event_queue.h" #include "event_data_objects.h" #include "event_db_repository.h" #include "event_scheduler.h" #define EVENT_QUEUE_INITIAL_SIZE 30 #define EVENT_QUEUE_EXTENT 30 #ifdef __GNUC__ #if __GNUC__ >= 2 #define SCHED_FUNC __FUNCTION__ #endif #else #define SCHED_FUNC "" #endif #define LOCK_QUEUE_DATA() lock_data(SCHED_FUNC, __LINE__) #define UNLOCK_QUEUE_DATA() unlock_data(SCHED_FUNC, __LINE__) struct event_queue_param { THD *thd; Event_queue *queue; pthread_mutex_t LOCK_loaded; pthread_cond_t COND_loaded; bool loading_finished; }; /* Compares the execute_at members of two Event_queue_element instances. Used as callback for the prioritized queue when shifting elements inside. SYNOPSIS event_queue_element_data_compare_q() vptr Not used (set it to NULL) a First Event_queue_element object b Second Event_queue_element object RETURN VALUE -1 a->execute_at < b->execute_at 0 a->execute_at == b->execute_at 1 a->execute_at > b->execute_at NOTES execute_at.second_part is not considered during comparison */ static int event_queue_element_compare_q(void *vptr, byte* a, byte *b) { return my_time_compare(&((Event_queue_element *)a)->execute_at, &((Event_queue_element *)b)->execute_at); } pthread_handler_t event_queue_loader_thread(void *arg) { /* needs to be first for thread_stack */ THD *thd= (THD *)((struct event_queue_param *) arg)->thd; struct event_queue_param *param= (struct event_queue_param *) arg; thd->thread_stack= (char *) &thd; if (post_init_event_thread(thd)) goto end; DBUG_ENTER("event_queue_loader_thread"); pthread_mutex_lock(¶m->LOCK_loaded); param->queue->check_system_tables(thd); param->queue->load_events_from_db(thd); param->loading_finished= TRUE; pthread_cond_signal(¶m->COND_loaded); pthread_mutex_unlock(¶m->LOCK_loaded); end: deinit_event_thread(thd); DBUG_RETURN(0); // Against gcc warnings } /* Constructor of class Event_queue. SYNOPSIS Event_queue::Event_queue() */ Event_queue::Event_queue() { mutex_last_unlocked_at_line= mutex_last_locked_at_line= mutex_last_attempted_lock_at_line= 0; mutex_last_unlocked_in_func= mutex_last_locked_in_func= mutex_last_attempted_lock_in_func= ""; mutex_queue_data_locked= mutex_queue_data_attempting_lock= FALSE; } /* Inits mutexes. SYNOPSIS Event_queue::init_mutexes() */ void Event_queue::init_mutexes() { pthread_mutex_init(&LOCK_event_queue, MY_MUTEX_INIT_FAST); } /* Destroys mutexes. SYNOPSIS Event_queue::deinit_mutexes() */ void Event_queue::deinit_mutexes() { pthread_mutex_destroy(&LOCK_event_queue); } /* Inits the queue SYNOPSIS Event_queue::init() RETURN VALUE FALSE OK TRUE Error */ bool Event_queue::init_queue(Event_db_repository *db_repo, Event_scheduler *sched) { THD *new_thd; pthread_t th; bool res; struct event_queue_param *event_queue_param_value= NULL; DBUG_ENTER("Event_queue::init_queue"); DBUG_PRINT("enter", ("this=0x%lx", this)); LOCK_QUEUE_DATA(); db_repository= db_repo; scheduler= sched; if (init_queue_ex(&queue, EVENT_QUEUE_INITIAL_SIZE , 0 /*offset*/, 0 /*smallest_on_top*/, event_queue_element_compare_q, NULL, EVENT_QUEUE_EXTENT)) { sql_print_error("SCHEDULER: Can't initialize the execution queue"); goto err; } if (sizeof(my_time_t) != sizeof(time_t)) { sql_print_error("SCHEDULER: sizeof(my_time_t) != sizeof(time_t) ." "The scheduler may not work correctly. Stopping."); DBUG_ASSERT(0); goto err; } if (!(new_thd= new THD)) goto err; pre_init_event_thread(new_thd); event_queue_param_value= (struct event_queue_param *) my_malloc(sizeof(struct event_queue_param), MYF(0)); event_queue_param_value->thd= new_thd; event_queue_param_value->queue= this; event_queue_param_value->loading_finished= FALSE; pthread_mutex_init(&event_queue_param_value->LOCK_loaded, MY_MUTEX_INIT_FAST); pthread_cond_init(&event_queue_param_value->COND_loaded, NULL); pthread_mutex_lock(&event_queue_param_value->LOCK_loaded); DBUG_PRINT("info", ("Forking new thread for scheduduler. THD=0x%lx", new_thd)); if (!(res= pthread_create(&th, &connection_attrib, event_queue_loader_thread, (void*)event_queue_param_value))) { do { pthread_cond_wait(&event_queue_param_value->COND_loaded, &event_queue_param_value->LOCK_loaded); } while (event_queue_param_value->loading_finished == FALSE); } pthread_mutex_unlock(&event_queue_param_value->LOCK_loaded); pthread_mutex_destroy(&event_queue_param_value->LOCK_loaded); pthread_cond_destroy(&event_queue_param_value->COND_loaded); my_free((char *)event_queue_param_value, MYF(0)); UNLOCK_QUEUE_DATA(); DBUG_RETURN(res); err: UNLOCK_QUEUE_DATA(); DBUG_RETURN(TRUE); } /* Deinits the queue. Remove all elements from it and destroys them too. SYNOPSIS Event_queue::deinit_queue() */ void Event_queue::deinit_queue() { DBUG_ENTER("Event_queue::deinit_queue"); LOCK_QUEUE_DATA(); empty_queue(); delete_queue(&queue); UNLOCK_QUEUE_DATA(); DBUG_VOID_RETURN; } /* Adds an event to the queue. SYNOPSIS Event_queue::create_event() dbname The schema of the new event name The name of the new event RETURN VALUE OP_OK OK or scheduler not working OP_LOAD_ERROR Error during loading from disk */ int Event_queue::create_event(THD *thd, LEX_STRING dbname, LEX_STRING name) { int res; Event_queue_element *new_element; DBUG_ENTER("Event_queue::create_event"); DBUG_PRINT("enter", ("thd=0x%lx et=%s.%s",thd, dbname.str, name.str)); new_element= new Event_queue_element(); res= db_repository->load_named_event(thd, dbname, name, new_element); if (res || new_element->status == Event_queue_element::DISABLED) delete new_element; else { new_element->compute_next_execution_time(); LOCK_QUEUE_DATA(); DBUG_PRINT("info", ("new event in the queue 0x%lx", new_element)); queue_insert_safe(&queue, (byte *) new_element); UNLOCK_QUEUE_DATA(); notify_observers(); } DBUG_RETURN(res); } /* Updates an event from the scheduler queue SYNOPSIS Event_queue::update_event() thd Thread dbname Schema of the event name Name of the event new_schema New schema, in case of RENAME TO, otherwise NULL new_name New name, in case of RENAME TO, otherwise NULL RETURN VALUE OP_OK OK or scheduler not working OP_LOAD_ERROR Error during loading from disk */ int Event_queue::update_event(THD *thd, LEX_STRING dbname, LEX_STRING name, LEX_STRING *new_schema, LEX_STRING *new_name) { int res; Event_queue_element *old_element= NULL, *new_element; DBUG_ENTER("Event_queue::update_event"); DBUG_PRINT("enter", ("thd=0x%lx et=[%s.%s]", thd, dbname.str, name.str)); new_element= new Event_queue_element(); res= db_repository->load_named_event(thd, new_schema? *new_schema:dbname, new_name? *new_name:name, new_element); if (res) { delete new_element; goto end; } else if (new_element->status == Event_queue_element::DISABLED) { DBUG_PRINT("info", ("The event is disabled.")); /* Destroy the object but don't skip to end: because we may have to remove object from the cache. */ delete new_element; new_element= NULL; } else new_element->compute_next_execution_time(); LOCK_QUEUE_DATA(); if (!(old_element= find_n_remove_event(dbname, name))) { DBUG_PRINT("info", ("%s.%s not cached, probably was DISABLED", dbname.str, name.str)); } /* If not disabled event */ if (new_element) { DBUG_PRINT("info", ("new event in the Q 0x%lx old 0x%lx", new_element, old_element)); queue_insert_safe(&queue, (byte *) new_element); } UNLOCK_QUEUE_DATA(); if (new_element) notify_observers(); if (old_element) delete old_element; end: DBUG_PRINT("info", ("res=%d", res)); DBUG_RETURN(res); } /* Drops an event from the queue SYNOPSIS Event_queue::drop_event() thd Thread dbname Schema of the event to drop name Name of the event to drop */ void Event_queue::drop_event(THD *thd, LEX_STRING dbname, LEX_STRING name) { int res; Event_queue_element *element; DBUG_ENTER("Event_queue::drop_event"); DBUG_PRINT("enter", ("thd=0x%lx name=0x%lx", thd, name)); LOCK_QUEUE_DATA(); element= find_n_remove_event(dbname, name); UNLOCK_QUEUE_DATA(); if (element) delete element; else DBUG_PRINT("info", ("No such event found, probably DISABLED")); /* We don't signal here because the scheduler will catch the change next time it wakes up. */ DBUG_VOID_RETURN; } /* Drops all events from the in-memory queue and disk that match certain pattern evaluated by a comparator function SYNOPSIS Event_queue::drop_matching_events() thd THD pattern A pattern string comparator The function to use for comparing RETURN VALUE >=0 Number of dropped events NOTE Expected is the caller to acquire lock on LOCK_event_queue */ void Event_queue::drop_matching_events(THD *thd, LEX_STRING pattern, bool (*comparator)(LEX_STRING, Event_basic *)) { DBUG_ENTER("Event_queue::drop_matching_events"); DBUG_PRINT("enter", ("pattern=%*s state=%d", pattern.length, pattern.str)); uint i= 0; while (i < queue.elements) { Event_queue_element *et= (Event_queue_element *) queue_element(&queue, i); DBUG_PRINT("info", ("[%s.%s]?", et->dbname.str, et->name.str)); if (comparator(pattern, et)) { /* The queue is ordered. If we remove an element, then all elements after it will shift one position to the left, if we imagine it as an array from left to the right. In this case we should not increment the counter and the (i < queue.elements) condition is ok. */ queue_remove(&queue, i); delete et; } else i++; } /* We don't call notify_observers() . If we remove the top event: 1. The queue is empty. The scheduler will wake up at some time and realize that the queue is empty. If create_event() comes inbetween it will signal the scheduler 2. The queue is not empty, but the next event after the previous top, won't be executed any time sooner than the element we removed. Hence, we may not notify the scheduler and it will realize the change when it wakes up from timedwait. */ DBUG_VOID_RETURN; } /* Drops all events from the in-memory queue and disk that are from certain schema. SYNOPSIS Event_queue::drop_schema_events() thd THD db The schema name RETURN VALUE >=0 Number of dropped events */ void Event_queue::drop_schema_events(THD *thd, LEX_STRING schema) { DBUG_ENTER("Event_queue::drop_schema_events"); LOCK_QUEUE_DATA(); drop_matching_events(thd, schema, event_basic_db_equal); UNLOCK_QUEUE_DATA(); DBUG_VOID_RETURN; } /* Signals the observers (the main scheduler thread) that the state of the queue has been changed. SYNOPSIS Event_queue::notify_observers() */ void Event_queue::notify_observers() { DBUG_ENTER("Event_queue::notify_observers"); DBUG_PRINT("info", ("Signalling change of the queue")); scheduler->queue_changed(); DBUG_VOID_RETURN; } /* Searches for an event in the queue SYNOPSIS Event_queue::find_n_remove_event() db The schema of the event to find name The event to find RETURN VALUE NULL Not found otherwise Address NOTE The caller should do the locking also the caller is responsible for actual signalling in case an event is removed from the queue. */ Event_queue_element * Event_queue::find_n_remove_event(LEX_STRING db, LEX_STRING name) { uint i; DBUG_ENTER("Event_queue::find_n_remove_event"); for (i= 0; i < queue.elements; ++i) { Event_queue_element *et= (Event_queue_element *) queue_element(&queue, i); DBUG_PRINT("info", ("[%s.%s]==[%s.%s]?", db.str, name.str, et->dbname.str, et->name.str)); if (event_basic_identifier_equal(db, name, et)) { queue_remove(&queue, i); DBUG_RETURN(et); } } DBUG_RETURN(NULL); } /* Loads all ENABLED events from mysql.event into the prioritized queue. Called during scheduler main thread initialization. Compiles the events. Creates Event_queue_element instances for every ENABLED event from mysql.event. SYNOPSIS Event_queue::load_events_from_db() thd - Thread context. Used for memory allocation in some cases. RETURN VALUE 0 OK !0 Error (EVEX_OPEN_TABLE_FAILED, EVEX_MICROSECOND_UNSUP, EVEX_COMPILE_ERROR) - in all these cases mysql.event was tampered. NOTES Reports the error to the console */ int Event_queue::load_events_from_db(THD *thd) { TABLE *table; READ_RECORD read_record_info; int ret= -1; uint count= 0; bool clean_the_queue= TRUE; /* Compile the events on this root but only for syntax check, then discard */ MEM_ROOT boot_root; DBUG_ENTER("Event_queue::load_events_from_db"); DBUG_PRINT("enter", ("thd=0x%lx", thd)); if ((ret= db_repository->open_event_table(thd, TL_READ, &table))) { sql_print_error("SCHEDULER: Table mysql.event is damaged. Can not open."); DBUG_RETURN(EVEX_OPEN_TABLE_FAILED); } init_read_record(&read_record_info, thd, table ,NULL,1,0); while (!(read_record_info.read_record(&read_record_info))) { Event_queue_element *et; if (!(et= new Event_queue_element)) { DBUG_PRINT("info", ("Out of memory")); break; } DBUG_PRINT("info", ("Loading event from row.")); if ((ret= et->load_from_row(table))) { sql_print_error("SCHEDULER: Error while loading from mysql.event. " "Table probably corrupted"); break; } if (et->status != Event_queue_element::ENABLED) { DBUG_PRINT("info",("%s is disabled",et->name.str)); delete et; continue; } /* let's find when to be executed */ if (et->compute_next_execution_time()) { sql_print_error("SCHEDULER: Error while computing execution time of %s.%s." " Skipping", et->dbname.str, et->name.str); continue; } { Event_job_data temp_job_data; DBUG_PRINT("info", ("Event %s loaded from row. ", et->name.str)); temp_job_data.load_from_row(table); /* We load only on scheduler root just to check whether the body compiles */ switch (ret= temp_job_data.compile(thd, thd->mem_root)) { case EVEX_MICROSECOND_UNSUP: sql_print_error("SCHEDULER: mysql.event is tampered. MICROSECOND is not " "supported but found in mysql.event"); break; case EVEX_COMPILE_ERROR: sql_print_error("SCHEDULER: Error while compiling %s.%s. Aborting load.", et->dbname.str, et->name.str); break; default: break; } thd->end_statement(); thd->cleanup_after_query(); } if (ret) { delete et; goto end; } DBUG_PRINT("load_events_from_db", ("Adding 0x%lx to the exec list.")); queue_insert_safe(&queue, (byte *) et); count++; } clean_the_queue= FALSE; end: end_read_record(&read_record_info); if (clean_the_queue) { empty_queue(); ret= -1; } else { ret= 0; sql_print_information("SCHEDULER: Loaded %d event%s", count, (count == 1)?"":"s"); } /* Force close to free memory */ thd->version--; close_thread_tables(thd); DBUG_PRINT("info", ("Status code %d. Loaded %d event(s)", ret, count)); DBUG_RETURN(ret); } /* Opens mysql.db and mysql.user and checks whether: 1. mysql.db has column Event_priv at column 20 (0 based); 2. mysql.user has column Event_priv at column 29 (0 based); SYNOPSIS Event_queue::check_system_tables() thd Thread RETURN VALUE FALSE OK TRUE Error */ void Event_queue::check_system_tables(THD *thd) { TABLE_LIST tables; bool not_used; Open_tables_state backup; bool ret; DBUG_ENTER("Event_queue::check_system_tables"); DBUG_PRINT("enter", ("thd=0x%lx", thd)); thd->reset_n_backup_open_tables_state(&backup); bzero((char*) &tables, sizeof(tables)); tables.db= (char*) "mysql"; tables.table_name= tables.alias= (char*) "db"; tables.lock_type= TL_READ; if ((ret= simple_open_n_lock_tables(thd, &tables))) { sql_print_error("Cannot open mysql.db"); goto end; } ret= table_check_intact(tables.table, MYSQL_DB_FIELD_COUNT, mysql_db_table_fields, &mysql_db_table_last_check, ER_CANNOT_LOAD_FROM_TABLE); close_thread_tables(thd); bzero((char*) &tables, sizeof(tables)); tables.db= (char*) "mysql"; tables.table_name= tables.alias= (char*) "user"; tables.lock_type= TL_READ; if (simple_open_n_lock_tables(thd, &tables)) sql_print_error("Cannot open mysql.db"); else { if (tables.table->s->fields < 29 || strncmp(tables.table->field[29]->field_name, STRING_WITH_LEN("Event_priv"))) sql_print_error("mysql.user has no `Event_priv` column at position 29"); close_thread_tables(thd); } end: thd->restore_backup_open_tables_state(&backup); DBUG_VOID_RETURN; } /* Recalculates activation times in the queue. There is one reason for that. Because the values (execute_at) by which the queue is ordered are changed by calls to compute_next_execution_time() on a request from the scheduler thread, if it is not running then the values won't be updated. Once the scheduler is started again the values has to be recalculated so they are right for the current time. SYNOPSIS Event_queue::recalculate_activation_times() thd Thread */ void Event_queue::recalculate_activation_times(THD *thd) { uint i; DBUG_ENTER("Event_queue::recalculate_activation_times"); LOCK_QUEUE_DATA(); DBUG_PRINT("info", ("%u loaded events to be recalculated", queue.elements)); for (i= 0; i < queue.elements; i++) { ((Event_queue_element*)queue_element(&queue, i))->compute_next_execution_time(); ((Event_queue_element*)queue_element(&queue, i))->update_timing_fields(thd); } queue_fix(&queue); UNLOCK_QUEUE_DATA(); DBUG_VOID_RETURN; } /* Empties the queue and destroys the Event_queue_element objects in the queue. SYNOPSIS Event_queue::empty_queue() NOTE Should be called with LOCK_event_queue locked */ void Event_queue::empty_queue() { uint i; DBUG_ENTER("Event_queue::empty_queue"); DBUG_PRINT("enter", ("Purging the queue. %d element(s)", queue.elements)); sql_print_information("SCHEDULER: Purging queue. %u events", queue.elements); /* empty the queue */ for (i= 0; i < queue.elements; ++i) { Event_queue_element *et= (Event_queue_element *) queue_element(&queue, i); delete et; } resize_queue(&queue, 0); DBUG_VOID_RETURN; } /* Dumps the queue to the trace log. SYNOPSIS Event_queue::dbug_dump_queue() now Current timestamp */ inline void Event_queue::dbug_dump_queue(time_t now) { #ifndef DBUG_OFF Event_queue_element *et; uint i; DBUG_PRINT("info", ("Dumping queue . Elements=%u", queue.elements)); for (i = 0; i < queue.elements; i++) { et= ((Event_queue_element*)queue_element(&queue, i)); DBUG_PRINT("info",("et=0x%lx db=%s name=%s",et, et->dbname.str, et->name.str)); DBUG_PRINT("info", ("exec_at=%llu starts=%llu ends=%llu " " expr=%lld et.exec_at=%d now=%d (et.exec_at - now)=%d if=%d", TIME_to_ulonglong_datetime(&et->execute_at), TIME_to_ulonglong_datetime(&et->starts), TIME_to_ulonglong_datetime(&et->ends), et->expression, sec_since_epoch_TIME(&et->execute_at), now, (int)(sec_since_epoch_TIME(&et->execute_at) - now), sec_since_epoch_TIME(&et->execute_at) <= now)); } #endif } /* Checks whether the top of the queue is elligible for execution and returns an Event_job_data instance in case it should be executed. `now` is compared against `execute_at` of the top element in the queue. SYNOPSIS Event_queue::dbug_dump_queue() thd [in] Thread now [in] Current timestamp job_data [out] The object to execute abstime [out] Time to sleep RETURN VALUE FALSE No error. If *job_data==NULL then top not elligible for execution. Could be that there is no top. If abstime->tv_sec is set to value greater than zero then use abstime with pthread_cond_timedwait(). If abstime->tv_sec is zero then sleep with pthread_cond_wait(). abstime->tv_nsec is always zero. TRUE Error */ bool Event_queue::get_top_for_execution_if_time(THD *thd, time_t now, Event_job_data **job_data, struct timespec *abstime) { bool ret= FALSE; struct timespec top_time; *job_data= NULL; DBUG_ENTER("Event_queue::get_top_for_execution_if_time"); DBUG_PRINT("enter", ("thd=0x%lx now=%d", thd, now)); abstime->tv_nsec= 0; LOCK_QUEUE_DATA(); do { int res; if (!queue.elements) { abstime->tv_sec= 0; break; } dbug_dump_queue(now); Event_queue_element *top= ((Event_queue_element*) queue_element(&queue, 0)); top_time.tv_sec= sec_since_epoch_TIME(&top->execute_at); if (top_time.tv_sec > now) { abstime->tv_sec= top_time.tv_sec; DBUG_PRINT("info", ("Have to wait %d till %d", abstime->tv_sec - now, abstime->tv_sec)); break; } DBUG_PRINT("info", ("Ready for execution")); abstime->tv_sec= 0; *job_data= new Event_job_data(); if ((res= db_repository->load_named_event(thd, top->dbname, top->name, *job_data))) { delete *job_data; *job_data= NULL; ret= TRUE; break; } top->mark_last_executed(thd); if (top->compute_next_execution_time()) top->status= Event_queue_element::DISABLED; DBUG_PRINT("info", ("event's status is %d", top->status)); top->update_timing_fields(thd); if (((top->execute_at.year && !top->expression) || top->execute_at_null) || (top->status == Event_queue_element::DISABLED)) { DBUG_PRINT("info", ("removing from the queue")); if (top->dropped) top->drop(thd); delete top; queue_remove(&queue, 0); } else queue_replaced(&queue); } while (0); UNLOCK_QUEUE_DATA(); DBUG_PRINT("info", ("returning %d. et_new=0x%lx abstime.tv_sec=%d ", ret, *job_data, abstime->tv_sec)); if (*job_data) DBUG_PRINT("info", ("db=%s name=%s definer=%s", (*job_data)->dbname.str, (*job_data)->name.str, (*job_data)->definer.str)); DBUG_RETURN(ret); } /* Auxiliary function for locking LOCK_event_queue. Used by the LOCK_QUEUE_DATA macro SYNOPSIS Event_queue::lock_data() func Which function is requesting mutex lock line On which line mutex lock is requested */ void Event_queue::lock_data(const char *func, uint line) { DBUG_ENTER("Event_queue::lock_data"); DBUG_PRINT("enter", ("func=%s line=%u", func, line)); mutex_last_attempted_lock_in_func= func; mutex_last_attempted_lock_at_line= line; mutex_queue_data_attempting_lock= TRUE; pthread_mutex_lock(&LOCK_event_queue); mutex_last_attempted_lock_in_func= ""; mutex_last_attempted_lock_at_line= 0; mutex_queue_data_attempting_lock= FALSE; mutex_last_locked_in_func= func; mutex_last_locked_at_line= line; mutex_queue_data_locked= TRUE; DBUG_VOID_RETURN; } /* Auxiliary function for unlocking LOCK_event_queue. Used by the UNLOCK_QUEUE_DATA macro SYNOPSIS Event_queue::unlock_data() func Which function is requesting mutex unlock line On which line mutex unlock is requested */ void Event_queue::unlock_data(const char *func, uint line) { DBUG_ENTER("Event_queue::unlock_data"); DBUG_PRINT("enter", ("func=%s line=%u", func, line)); mutex_last_unlocked_at_line= line; mutex_queue_data_locked= FALSE; mutex_last_unlocked_in_func= func; pthread_mutex_unlock(&LOCK_event_queue); DBUG_VOID_RETURN; } /* Dumps the internal status of the queue SYNOPSIS Event_queue::dump_internal_status() thd Thread RETURN VALUE FALSE OK TRUE Error */ bool Event_queue::dump_internal_status(THD *thd) { DBUG_ENTER("Event_queue::dump_internal_status"); #ifndef DBUG_OFF CHARSET_INFO *scs= system_charset_info; Protocol *protocol= thd->protocol; List field_list; int ret; char tmp_buff[5*STRING_BUFFER_USUAL_SIZE]; char int_buff[STRING_BUFFER_USUAL_SIZE]; String tmp_string(tmp_buff, sizeof(tmp_buff), scs); String int_string(int_buff, sizeof(int_buff), scs); tmp_string.length(0); int_string.length(0); /* workers_count */ protocol->prepare_for_resend(); protocol->store(STRING_WITH_LEN("queue element count"), scs); int_string.set((longlong) queue.elements, scs); protocol->store(&int_string); ret= protocol->write(); /* queue_data_locked */ protocol->prepare_for_resend(); protocol->store(STRING_WITH_LEN("queue data locked"), scs); int_string.set((longlong) mutex_queue_data_locked, scs); protocol->store(&int_string); ret= protocol->write(); /* queue_data_attempting_lock */ protocol->prepare_for_resend(); protocol->store(STRING_WITH_LEN("queue data attempting lock"), scs); int_string.set((longlong) mutex_queue_data_attempting_lock, scs); protocol->store(&int_string); ret= protocol->write(); /* last locked at*/ protocol->prepare_for_resend(); protocol->store(STRING_WITH_LEN("queue last locked at"), scs); tmp_string.length(scs->cset->snprintf(scs, (char*) tmp_string.ptr(), tmp_string.alloced_length(), "%s::%d", mutex_last_locked_in_func, mutex_last_locked_at_line)); protocol->store(&tmp_string); ret= protocol->write(); /* last unlocked at*/ protocol->prepare_for_resend(); protocol->store(STRING_WITH_LEN("queue last unlocked at"), scs); tmp_string.length(scs->cset->snprintf(scs, (char*) tmp_string.ptr(), tmp_string.alloced_length(), "%s::%d", mutex_last_unlocked_in_func, mutex_last_unlocked_at_line)); protocol->store(&tmp_string); ret= protocol->write(); /* last attempted lock at*/ protocol->prepare_for_resend(); protocol->store(STRING_WITH_LEN("queue last attempted lock at"), scs); tmp_string.length(scs->cset->snprintf(scs, (char*) tmp_string.ptr(), tmp_string.alloced_length(), "%s::%d", mutex_last_attempted_lock_in_func, mutex_last_attempted_lock_at_line)); protocol->store(&tmp_string); ret= protocol->write(); #endif DBUG_RETURN(FALSE); }