/* -*- mode: C; c-basic-offset: 4 -*- */ #ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved." #include "includes.h" #if 0 static u_int64_t ntohll(u_int64_t v) { union u { u_int32_t l[2]; u_int64_t ll; } uv; uv.ll = v; return (((u_int64_t)uv.l[0])<<32) + uv.l[1]; } #endif static u_int64_t umin64(u_int64_t a, u_int64_t b) { if (a= 0); if ((size_t)sbuf.st_size < size) { const int N = umin64(size, 16<<20); // Double the size of the file, or add 16MB, whichever is less. char *MALLOC_N(N, wbuf); memset(wbuf, 0, N); toku_off_t start_write = alignup(sbuf.st_size, 4096); assert(start_write >= sbuf.st_size); ssize_t r = pwrite(fd, wbuf, N, start_write); assert(r==N); toku_free(wbuf); } } // This mutex protects pwrite from running in parallel, and also protects modifications to the block allocator. static toku_pthread_mutex_t pwrite_mutex = TOKU_PTHREAD_MUTEX_INITIALIZER; static int pwrite_is_locked=0; void toku_pwrite_lock_init(void) { int r = toku_pthread_mutex_init(&pwrite_mutex, NULL); assert(r == 0); } void toku_pwrite_lock_destroy(void) { int r = toku_pthread_mutex_destroy(&pwrite_mutex); assert(r == 0); } static inline void lock_for_pwrite (void) { // Locks the pwrite_mutex. int r = toku_pthread_mutex_lock(&pwrite_mutex); assert(r==0); pwrite_is_locked = 1; } static inline void unlock_for_pwrite (void) { pwrite_is_locked = 0; int r = toku_pthread_mutex_unlock(&pwrite_mutex); assert(r==0); } static ssize_t toku_pwrite (int fd, const void *buf, size_t count, toku_off_t offset) // requires that the pwrite has been locked { assert(pwrite_is_locked); maybe_preallocate_in_file(fd, offset+count); return pwrite(fd, buf, count, offset); } // Don't include the compressed data size or the uncompressed data size. static const int brtnode_header_overhead = (8+ // magic "tokunode" or "tokuleaf" 4+ // nodesize 8+ // checkpoint number 4+ // target node size 4+ // compressed data size 4+ // uncompressed data size 4+ // flags 4+ // height 4+ // random for fingerprint 4+ // localfingerprint 4); // crc32 at the end static int deserialize_fifo_at (int fd, toku_off_t at, FIFO *fifo); static int addupsize (OMTVALUE lev, u_int32_t UU(idx), void *vp) { LEAFENTRY le=lev; unsigned int *ip=vp; (*ip) += OMT_ITEM_OVERHEAD + leafentry_disksize(le); return 0; } static unsigned int toku_serialize_brtnode_size_slow (BRTNODE node) { unsigned int size=brtnode_header_overhead; if (node->height>0) { unsigned int hsize=0; unsigned int csize=0; int i; size+=4; /* n_children */ size+=4; /* subtree fingerprint. */ size+=4*(node->u.n.n_children-1); /* key lengths*/ if (node->flags & TOKU_DB_DUPSORT) size += 4*(node->u.n.n_children-1); for (i=0; iu.n.n_children-1; i++) { csize+=toku_brtnode_pivot_key_len(node, node->u.n.childkeys[i]); } size+=(8+4+4+8)*(node->u.n.n_children); /* For each child, a child offset, a count for the number of hash table entries, the subtree fingerprint, and the leafentry_estimate. */ int n_buffers = node->u.n.n_children; assert(0 <= n_buffers && n_buffers < TREE_FANOUT+1); for (i=0; i< n_buffers; i++) { FIFO_ITERATE(BNC_BUFFER(node,i), key __attribute__((__unused__)), keylen, data __attribute__((__unused__)), datalen, type __attribute__((__unused__)), xid __attribute__((__unused__)), (hsize+=BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+keylen+datalen)); } assert(hsize==node->u.n.n_bytes_in_buffers); assert(csize==node->u.n.totalchildkeylens); return size+hsize+csize; } else { unsigned int hsize=0; toku_omt_iterate(node->u.l.buffer, addupsize, &hsize); assert(hsize<=node->u.l.n_bytes_in_buffer); hsize+=4; /* add n entries in buffer table. */ return size+hsize; } } // This is the size of the uncompressed data, including the uncompressed header, and including the 4 bytes for the information about how big is the compressed version, and how big is the uncompressed version. unsigned int toku_serialize_brtnode_size (BRTNODE node) { unsigned int result =brtnode_header_overhead; assert(sizeof(toku_off_t)==8); if (node->height>0) { result+=4; /* subtree fingerpirnt */ result+=4; /* n_children */ result+=4*(node->u.n.n_children-1); /* key lengths*/ if (node->flags & TOKU_DB_DUPSORT) result += 4*(node->u.n.n_children-1); /* data lengths */ assert(node->u.n.totalchildkeylens < (1<<30)); result+=node->u.n.totalchildkeylens; /* the lengths of the pivot keys, without their key lengths. */ result+=(8+4+4+8)*(node->u.n.n_children); /* For each child, a child offset, a count for the number of hash table entries, the subtree fingerprint, and the leafentry_estimate. */ result+=node->u.n.n_bytes_in_buffers; } else { result+=4; /* n_entries in buffer table. */ result+=node->u.l.n_bytes_in_buffer; if (toku_memory_check) { unsigned int slowresult = toku_serialize_brtnode_size_slow(node); if (result!=slowresult) printf("%s:%d result=%u slowresult=%u\n", __FILE__, __LINE__, result, slowresult); assert(result==slowresult); } } return result; } static int wbufwriteleafentry (OMTVALUE lev, u_int32_t UU(idx), void *v) { LEAFENTRY le=lev; struct wbuf *thisw=v; wbuf_LEAFENTRY(thisw, le); return 0; } enum { uncompressed_magic_len = (8 // tokuleaf or tokunode +4 // version +8 // lsn ) }; enum { compression_header_len = (4 // compressed_len +4 // uncompressed_len ) }; void toku_serialize_brtnode_to (int fd, BLOCKNUM blocknum, BRTNODE node, struct brt_header *h) { struct wbuf w; int i; unsigned int calculated_size = toku_serialize_brtnode_size(node) - 8; // don't include the compressed or uncompressed sizes //printf("%s:%d serializing %" PRIu64 " size=%d\n", __FILE__, __LINE__, blocknum.b, calculated_size); //assert(calculated_size<=size); //char buf[size]; char *MALLOC_N(calculated_size, buf); //toku_verify_counts(node); //assert(size>0); //printf("%s:%d serializing %lld w height=%d p0=%p\n", __FILE__, __LINE__, off, node->height, node->mdicts[0]); wbuf_init(&w, buf, calculated_size); wbuf_literal_bytes(&w, "toku", 4); if (node->height==0) wbuf_literal_bytes(&w, "leaf", 4); else wbuf_literal_bytes(&w, "node", 4); wbuf_int(&w, BRT_LAYOUT_VERSION); wbuf_ulonglong(&w, node->log_lsn.lsn); //printf("%s:%d %lld.calculated_size=%d\n", __FILE__, __LINE__, off, calculated_size); wbuf_uint(&w, node->nodesize); wbuf_uint(&w, node->flags); wbuf_int(&w, node->height); //printf("%s:%d %lld rand=%08x sum=%08x height=%d\n", __FILE__, __LINE__, node->thisnodename, node->rand4fingerprint, node->subtree_fingerprint, node->height); wbuf_uint(&w, node->rand4fingerprint); wbuf_uint(&w, node->local_fingerprint); // printf("%s:%d wrote %08x for node %lld\n", __FILE__, __LINE__, node->local_fingerprint, (long long)node->thisnodename); //printf("%s:%d local_fingerprint=%8x\n", __FILE__, __LINE__, node->local_fingerprint); //printf("%s:%d w.ndone=%d n_children=%d\n", __FILE__, __LINE__, w.ndone, node->n_children); if (node->height>0) { assert(node->u.n.n_children>0); // Local fingerprint is not actually stored while in main memory. Must calculate it. // Subtract the child fingerprints from the subtree fingerprint to get the local fingerprint. { u_int32_t subtree_fingerprint = node->local_fingerprint; for (i=0; iu.n.n_children; i++) { subtree_fingerprint += BNC_SUBTREE_FINGERPRINT(node, i); } wbuf_uint(&w, subtree_fingerprint); } wbuf_int(&w, node->u.n.n_children); for (i=0; iu.n.n_children; i++) { wbuf_uint(&w, BNC_SUBTREE_FINGERPRINT(node, i)); wbuf_ulonglong(&w, BNC_SUBTREE_LEAFENTRY_ESTIMATE(node, i)); } //printf("%s:%d w.ndone=%d\n", __FILE__, __LINE__, w.ndone); for (i=0; iu.n.n_children-1; i++) { if (node->flags & TOKU_DB_DUPSORT) { wbuf_bytes(&w, kv_pair_key(node->u.n.childkeys[i]), kv_pair_keylen(node->u.n.childkeys[i])); wbuf_bytes(&w, kv_pair_val(node->u.n.childkeys[i]), kv_pair_vallen(node->u.n.childkeys[i])); } else { wbuf_bytes(&w, kv_pair_key(node->u.n.childkeys[i]), toku_brtnode_pivot_key_len(node, node->u.n.childkeys[i])); } //printf("%s:%d w.ndone=%d (childkeylen[%d]=%d\n", __FILE__, __LINE__, w.ndone, i, node->childkeylens[i]); } for (i=0; iu.n.n_children; i++) { wbuf_BLOCKNUM(&w, BNC_BLOCKNUM(node,i)); //printf("%s:%d w.ndone=%d\n", __FILE__, __LINE__, w.ndone); } { int n_buffers = node->u.n.n_children; u_int32_t check_local_fingerprint = 0; for (i=0; i< n_buffers; i++) { //printf("%s:%d p%d=%p n_entries=%d\n", __FILE__, __LINE__, i, node->mdicts[i], mdict_n_entries(node->mdicts[i])); wbuf_int(&w, toku_fifo_n_entries(BNC_BUFFER(node,i))); FIFO_ITERATE(BNC_BUFFER(node,i), key, keylen, data, datalen, type, xid, { assert(type>=0 && type<256); wbuf_char(&w, (unsigned char)type); wbuf_TXNID(&w, xid); wbuf_bytes(&w, key, keylen); wbuf_bytes(&w, data, datalen); check_local_fingerprint+=node->rand4fingerprint*toku_calc_fingerprint_cmd(type, xid, key, keylen, data, datalen); }); } //printf("%s:%d check_local_fingerprint=%8x\n", __FILE__, __LINE__, check_local_fingerprint); if (check_local_fingerprint!=node->local_fingerprint) printf("%s:%d node=%" PRId64 " fingerprint expected=%08x actual=%08x\n", __FILE__, __LINE__, node->thisnodename.b, check_local_fingerprint, node->local_fingerprint); assert(check_local_fingerprint==node->local_fingerprint); } } else { //printf("%s:%d writing node %lld n_entries=%d\n", __FILE__, __LINE__, node->thisnodename, toku_gpma_n_entries(node->u.l.buffer)); wbuf_uint(&w, toku_omt_size(node->u.l.buffer)); toku_omt_iterate(node->u.l.buffer, wbufwriteleafentry, &w); } assert(w.ndone<=w.size); #ifdef CRC_ATEND wbuf_int(&w, crc32(toku_null_crc, w.buf, w.ndone)); #endif #ifdef CRC_INCR { u_int32_t checksum = x1764_finish(&w.checksum); wbuf_uint(&w, checksum); } #endif if (calculated_size!=w.ndone) printf("%s:%d w.done=%u calculated_size=%u\n", __FILE__, __LINE__, w.ndone, calculated_size); assert(calculated_size==w.ndone); // The uncompressed part of the block header is // tokuleaf(8), // version(4), // lsn(8), // compressed_len(4),[which includes only the compressed data] // uncompressed_len(4)[which includes only the compressed data, not the header] // The first part of the data is uncompressed uLongf uncompressed_len = calculated_size-uncompressed_magic_len; uLongf compressed_len= compressBound(uncompressed_len); char *MALLOC_N(compressed_len+uncompressed_magic_len+compression_header_len, compressed_buf); memcpy(compressed_buf, buf, uncompressed_magic_len); if (0) printf("First 4 bytes before compressing data are %02x%02x%02x%02x\n", buf[uncompressed_magic_len], buf[uncompressed_magic_len+1], buf[uncompressed_magic_len+2], buf[uncompressed_magic_len+3]); { int r = compress2(((Bytef*)compressed_buf)+uncompressed_magic_len + compression_header_len, &compressed_len, ((Bytef*)buf)+uncompressed_magic_len, calculated_size-uncompressed_magic_len, 1); assert(r==Z_OK); } if (0) printf("Block %" PRId64 " Size before compressing %u, after compression %lu\n", blocknum.b, calculated_size-uncompressed_magic_len, compressed_len); ((int32_t*)(compressed_buf+uncompressed_magic_len))[0] = toku_htonl(compressed_len); ((int32_t*)(compressed_buf+uncompressed_magic_len))[1] = toku_htonl(uncompressed_len); //write_now: printf("%s:%d Writing %d bytes\n", __FILE__, __LINE__, w.ndone); { lock_for_pwrite(); // If the node has never been written, then write the whole buffer, including the zeros assert(blocknum.b>=0); //printf("%s:%d h=%p\n", __FILE__, __LINE__, h); //printf("%s:%d translated_blocknum_limit=%lu blocknum.b=%lu\n", __FILE__, __LINE__, h->translated_blocknum_limit, blocknum.b); //printf("%s:%d allocator=%p\n", __FILE__, __LINE__, h->block_allocator); //printf("%s:%d bt=%p\n", __FILE__, __LINE__, h->block_translation); extend_block_translation(blocknum, h); if (h->block_translation[blocknum.b].size > 0) { block_allocator_free_block(h->block_allocator, h->block_translation[blocknum.b].diskoff); h->block_translation[blocknum.b].diskoff = 0; h->block_translation[blocknum.b].size = 0; } h->dirty = 1; // Allocating a block dirties the header. size_t n_to_write = uncompressed_magic_len + compression_header_len + compressed_len; u_int64_t offset; block_allocator_alloc_block(h->block_allocator, n_to_write, &offset); h->block_translation[blocknum.b].diskoff = offset; h->block_translation[blocknum.b].size = n_to_write; ssize_t r=toku_pwrite(fd, compressed_buf, n_to_write, offset); if (r<0) printf("r=%ld errno=%d\n", (long)r, errno); assert(r==(ssize_t)n_to_write); unlock_for_pwrite(); } //printf("%s:%d wrote %d bytes for %lld size=%lld\n", __FILE__, __LINE__, w.ndone, off, size); assert(w.ndone==calculated_size); toku_free(buf); toku_free(compressed_buf); } int toku_deserialize_brtnode_from (int fd, BLOCKNUM blocknum, u_int32_t fullhash, BRTNODE *brtnode, struct brt_header *h) { if (0) printf("Deserializing Block %" PRId64 "\n", blocknum.b); assert(0 <= blocknum.b && (u_int64_t)blocknum.b < h->translated_blocknum_limit); DISKOFF offset = h->block_translation[blocknum.b].diskoff; TAGMALLOC(BRTNODE, result); struct rbuf rc; int i; int r; if (result==0) { r=errno; if (0) { died0: toku_free(result); } return r; } result->ever_been_written = 1; char uncompressed_header[uncompressed_magic_len + compression_header_len]; u_int32_t compressed_size; u_int32_t uncompressed_size; { // get the compressed size lock_for_pwrite(); r = pread(fd, uncompressed_header, sizeof(uncompressed_header), offset); unlock_for_pwrite(); //printf("%s:%d r=%d the datasize=%d\n", __FILE__, __LINE__, r, toku_ntohl(datasize_n)); if (r!=(int)sizeof(uncompressed_header)) { if (r==-1) r=errno; else r = DB_BADFORMAT; goto died0; } compressed_size = toku_ntohl(*(u_int32_t*)(&uncompressed_header[uncompressed_magic_len])); if (compressed_size<=0 || compressed_size>(1<<30)) { r = DB_BADFORMAT; goto died0; } uncompressed_size = toku_ntohl(*(u_int32_t*)(&uncompressed_header[uncompressed_magic_len+4])); if (0) printf("Block %" PRId64 " Compressed size = %u, uncompressed size=%u\n", blocknum.b, compressed_size, uncompressed_size); if (uncompressed_size<=0 || uncompressed_size>(1<<30)) { r = DB_BADFORMAT; goto died0; } } //printf("%s:%d serializing %" PRIu64 " size=%d\n", __FILE__, __LINE__, blocknum.b, uncompressed_size); unsigned char *MALLOC_N(compressed_size, compressed_data); assert(compressed_data); { lock_for_pwrite(); ssize_t rlen=pread(fd, compressed_data, compressed_size, offset+uncompressed_magic_len + compression_header_len); unlock_for_pwrite(); //printf("%s:%d pread->%d offset=%ld datasize=%d\n", __FILE__, __LINE__, r, offset, compressed_size + uncompressed_magic_len + compression_header_len); assert((size_t)rlen==compressed_size); //printf("Got %d %d %d %d\n", rc.buf[0], rc.buf[1], rc.buf[2], rc.buf[3]); } rc.size= uncompressed_size + uncompressed_magic_len; assert(rc.size>0); rc.buf=toku_malloc(rc.size); assert(rc.buf); memcpy(rc.buf, uncompressed_header, uncompressed_magic_len); { uLongf destlen = uncompressed_size; r = uncompress(rc.buf+uncompressed_magic_len, &destlen, compressed_data, compressed_size); assert(destlen==uncompressed_size); assert(r==Z_OK); } if (0) printf("First 4 bytes of uncompressed data are %02x%02x%02x%02x\n", rc.buf[uncompressed_magic_len], rc.buf[uncompressed_magic_len+1], rc.buf[uncompressed_magic_len+2], rc.buf[uncompressed_magic_len+3]); toku_free(compressed_data); rc.ndone=0; //printf("Deserializing %lld datasize=%d\n", off, datasize); { bytevec tmp; rbuf_literal_bytes(&rc, &tmp, 8); if (memcmp(tmp, "tokuleaf", 8)!=0 && memcmp(tmp, "tokunode", 8)!=0) { r = DB_BADFORMAT; return r; } } result->layout_version = rbuf_int(&rc); { switch (result->layout_version) { case BRT_LAYOUT_VERSION_9: goto ok_layout_version; // Don't support older versions. } r=DB_BADFORMAT; return r; ok_layout_version: ; } result->disk_lsn.lsn = rbuf_ulonglong(&rc); result->nodesize = rbuf_int(&rc); result->log_lsn = result->disk_lsn; result->thisnodename = blocknum; result->flags = rbuf_int(&rc); result->height = rbuf_int(&rc); result->rand4fingerprint = rbuf_int(&rc); result->local_fingerprint = rbuf_int(&rc); // printf("%s:%d read %08x\n", __FILE__, __LINE__, result->local_fingerprint); result->dirty = 0; result->fullhash = fullhash; //printf("height==%d\n", result->height); if (result->height>0) { result->u.n.totalchildkeylens=0; u_int32_t subtree_fingerprint = rbuf_int(&rc); u_int32_t check_subtree_fingerprint = 0; result->u.n.n_children = rbuf_int(&rc); MALLOC_N(result->u.n.n_children+1, result->u.n.childinfos); MALLOC_N(result->u.n.n_children, result->u.n.childkeys); //printf("n_children=%d\n", result->n_children); assert(result->u.n.n_children>=0); for (i=0; iu.n.n_children; i++) { u_int32_t childfp = rbuf_int(&rc); BNC_SUBTREE_FINGERPRINT(result, i)= childfp; check_subtree_fingerprint += childfp; BNC_SUBTREE_LEAFENTRY_ESTIMATE(result, i)=rbuf_ulonglong(&rc); } for (i=0; iu.n.n_children-1; i++) { if (result->flags & TOKU_DB_DUPSORT) { bytevec keyptr, dataptr; unsigned int keylen, datalen; rbuf_bytes(&rc, &keyptr, &keylen); rbuf_bytes(&rc, &dataptr, &datalen); result->u.n.childkeys[i] = kv_pair_malloc(keyptr, keylen, dataptr, datalen); } else { bytevec childkeyptr; unsigned int cklen; rbuf_bytes(&rc, &childkeyptr, &cklen); /* Returns a pointer into the rbuf. */ result->u.n.childkeys[i] = kv_pair_malloc((void*)childkeyptr, cklen, 0, 0); } //printf(" key %d length=%d data=%s\n", i, result->childkeylens[i], result->childkeys[i]); result->u.n.totalchildkeylens+=toku_brtnode_pivot_key_len(result, result->u.n.childkeys[i]); } for (i=0; iu.n.n_children; i++) { BNC_BLOCKNUM(result,i) = rbuf_blocknum(&rc); BNC_HAVE_FULLHASH(result, i) = FALSE; BNC_NBYTESINBUF(result,i) = 0; //printf("Child %d at %lld\n", i, result->children[i]); } result->u.n.n_bytes_in_buffers = 0; for (i=0; iu.n.n_children; i++) { r=toku_fifo_create(&BNC_BUFFER(result,i)); if (r!=0) { int j; if (0) { died_12: j=result->u.n.n_bytes_in_buffers; } for (j=0; ju.n.n_children; cnum++) { int n_in_this_hash = rbuf_int(&rc); //printf("%d in hash\n", n_in_hash); for (i=0; irand4fingerprint * toku_calc_fingerprint_cmd(type, xid, key, keylen, val, vallen); //printf("Found %s,%s\n", (char*)key, (char*)val); { r=toku_fifo_enq(BNC_BUFFER(result, cnum), key, keylen, val, vallen, type, xid); /* Copies the data into the hash table. */ if (r!=0) { goto died_12; } } diff = keylen + vallen + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD; result->u.n.n_bytes_in_buffers += diff; BNC_NBYTESINBUF(result,cnum) += diff; //printf("Inserted\n"); } } if (check_local_fingerprint != result->local_fingerprint) { fprintf(stderr, "%s:%d local fingerprint is wrong (found %8x calcualted %8x\n", __FILE__, __LINE__, result->local_fingerprint, check_local_fingerprint); return DB_BADFORMAT; } if (check_subtree_fingerprint+check_local_fingerprint != subtree_fingerprint) { fprintf(stderr, "%s:%d subtree fingerprint is wrong\n", __FILE__, __LINE__); return DB_BADFORMAT; } } } else { int n_in_buf = rbuf_int(&rc); result->u.l.n_bytes_in_buffer = 0; result->u.l.seqinsert = 0; //printf("%s:%d r PMA= %p\n", __FILE__, __LINE__, result->u.l.buffer); toku_mempool_init(&result->u.l.buffer_mempool, rc.buf, uncompressed_size + uncompressed_magic_len); u_int32_t actual_sum = 0; u_int32_t start_of_data = rc.ndone; OMTVALUE *MALLOC_N(n_in_buf, array); for (i=0; iu.l.n_bytes_in_buffer += end_of_data-start_of_data + n_in_buf*OMT_ITEM_OVERHEAD; actual_sum *= result->rand4fingerprint; r = toku_omt_create_from_sorted_array(&result->u.l.buffer, array, n_in_buf); toku_free(array); if (r!=0) { if (0) { died_21: toku_omt_destroy(&result->u.l.buffer); } return DB_BADFORMAT; } result->u.l.buffer_mempool.frag_size = start_of_data; result->u.l.buffer_mempool.free_offset = end_of_data; if (r!=0) goto died_21; if (actual_sum!=result->local_fingerprint) { //fprintf(stderr, "%s:%d Corrupted checksum stored=%08x rand=%08x actual=%08x height=%d n_keys=%d\n", __FILE__, __LINE__, result->rand4fingerprint, result->local_fingerprint, actual_sum, result->height, n_in_buf); return DB_BADFORMAT; // goto died_21; } else { //fprintf(stderr, "%s:%d Good checksum=%08x height=%d\n", __FILE__, __LINE__, actual_sum, result->height); } //toku_verify_counts(result); } { unsigned int n_read_so_far = rc.ndone; if (n_read_so_far+4!=rc.size) { r = DB_BADFORMAT; goto died_21; } uint32_t crc = x1764_memory(rc.buf, n_read_so_far); uint32_t storedcrc = rbuf_int(&rc); if (crc!=storedcrc) { printf("Bad CRC\n"); printf("%s:%d crc=%08x stored=%08x\n", __FILE__, __LINE__, crc, storedcrc); assert(0);//this is wrong!!! r = DB_BADFORMAT; goto died_21; } } //printf("%s:%d Ok got %lld n_children=%d\n", __FILE__, __LINE__, result->thisnodename, result->n_children); if (result->height>0) { // For height==0 we used the buf inside the OMT toku_free(rc.buf); } *brtnode = result; //toku_verify_counts(result); return 0; } struct sum_info { unsigned int dsum; unsigned int msum; unsigned int count; u_int32_t fp; }; static int sum_item (OMTVALUE lev, u_int32_t UU(idx), void *vsi) { LEAFENTRY le=lev; struct sum_info *si = vsi; si->count++; si->dsum += OMT_ITEM_OVERHEAD + leafentry_disksize(le); si->msum += leafentry_memsize(le); si->fp += toku_le_crc(le); return 0; } void toku_verify_counts (BRTNODE node) { /*foo*/ if (node->height==0) { assert(node->u.l.buffer); struct sum_info sum_info = {0,0,0,0}; toku_omt_iterate(node->u.l.buffer, sum_item, &sum_info); assert(sum_info.count==toku_omt_size(node->u.l.buffer)); assert(sum_info.dsum==node->u.l.n_bytes_in_buffer); assert(sum_info.msum == node->u.l.buffer_mempool.free_offset - node->u.l.buffer_mempool.frag_size); u_int32_t fps = node->rand4fingerprint * sum_info.fp; assert(fps==node->local_fingerprint); } else { unsigned int sum = 0; int i; for (i=0; iu.n.n_children; i++) sum += BNC_NBYTESINBUF(node,i); // We don't rally care of the later buffers have garbage in them. Valgrind would do a better job noticing if we leave it uninitialized. // But for now the code always initializes the later tables so they are 0. assert(sum==node->u.n.n_bytes_in_buffers); } } int toku_serialize_brt_header_size (struct brt_header *h) { unsigned int size = (+8 // "tokudata" +4 // size +4 // version +4 // tree's nodesize +8 // free blocks +8 // unused blocks +4 // n_named_roots +8 // max_blocknum_translated +8 // block_translation_address_on_disk ); if (h->n_named_roots<0) { size+=(+8 // diskoff +4 // flags ); } else { int i; for (i=0; in_named_roots; i++) { size+=(+8 // root diskoff +4 // flags +4 // length of null terminated string (including null) +1 + strlen(h->names[i]) // null-terminated string ); } } return size; } int toku_serialize_brt_header_to_wbuf (struct wbuf *wbuf, struct brt_header *h) { unsigned int size = toku_serialize_brt_header_size (h); // !!! seems silly to recompute the size when the caller knew it. Do we really need the size? wbuf_literal_bytes(wbuf, "tokudata", 8); wbuf_int (wbuf, size); wbuf_int (wbuf, BRT_LAYOUT_VERSION); wbuf_int (wbuf, h->nodesize); wbuf_BLOCKNUM(wbuf, h->free_blocks); wbuf_BLOCKNUM(wbuf, h->unused_blocks); wbuf_int (wbuf, h->n_named_roots); if (h->block_translation_address_on_disk != 0) { block_allocator_free_block(h->block_allocator, h->block_translation_address_on_disk); } block_allocator_alloc_block(h->block_allocator, 4 + 16*h->translated_blocknum_limit, &h->block_translation_address_on_disk); //printf("%s:%d bta=%lu size=%lu\n", __FILE__, __LINE__, h->block_translation_address_on_disk, 4 + 16*h->translated_blocknum_limit); wbuf_ulonglong(wbuf, h->translated_blocknum_limit); wbuf_DISKOFF(wbuf, h->block_translation_address_on_disk); if (h->n_named_roots>=0) { int i; for (i=0; in_named_roots; i++) { char *s = h->names[i]; unsigned int l = 1+strlen(s); wbuf_BLOCKNUM(wbuf, h->roots[i]); wbuf_int (wbuf, h->flags_array[i]); wbuf_bytes (wbuf, s, l); assert(l>0 && s[l-1]==0); } } else { wbuf_BLOCKNUM(wbuf, h->roots[0]); wbuf_int (wbuf, h->flags_array[0]); } assert(wbuf->ndone<=wbuf->size); return 0; } int toku_serialize_brt_header_to (int fd, struct brt_header *h) { lock_for_pwrite(); { struct wbuf w; unsigned int size = toku_serialize_brt_header_size (h); wbuf_init(&w, toku_malloc(size), size); int r=toku_serialize_brt_header_to_wbuf(&w, h); assert(r==0); assert(w.ndone==size); ssize_t nwrote = toku_pwrite(fd, w.buf, w.ndone, 0); if (nwrote<0) perror("pwrite"); assert((size_t)nwrote==w.ndone); toku_free(w.buf); } { struct wbuf w; u_int64_t size = 4 + h->translated_blocknum_limit * 16; // 4 for the checksum //printf("%s:%d writing translation table of size %ld at %ld\n", __FILE__, __LINE__, size, h->block_translation_address_on_disk); wbuf_init(&w, toku_malloc(size), size); u_int64_t i; for (i=0; itranslated_blocknum_limit; i++) { //printf("%s:%d %ld,%ld\n", __FILE__, __LINE__, h->block_translation[i].diskoff, h->block_translation[i].size); wbuf_ulonglong(&w, h->block_translation[i].diskoff); wbuf_ulonglong(&w, h->block_translation[i].size); } u_int32_t checksum = x1764_finish(&w.checksum); wbuf_int(&w, checksum); ssize_t nwrote = toku_pwrite(fd, w.buf, size, h->block_translation_address_on_disk); assert(nwrote==(ssize_t)size); toku_free(w.buf); }; unlock_for_pwrite(); return 0; } // We only deserialize brt header once and then share everything with all the brts. static int deserialize_brtheader (u_int32_t size, int fd, DISKOFF off, struct brt_header **brth) { // We already know the first 8 bytes are "tokudata", and we read in the size. struct brt_header *MALLOC(h); if (h==0) return errno; int ret=-1; if (0) { died0: toku_free(h); return ret; } struct rbuf rc; rc.buf = toku_malloc(size-12); // we can skip the first 12 bytes. if (rc.buf == NULL) { ret=errno; if (0) { died1: toku_free(rc.buf); } goto died0; } rc.size = size-12; if (rc.size<=0) { ret = EINVAL; goto died1; } rc.ndone = 0; { lock_for_pwrite(); ssize_t r = pread(fd, rc.buf, size-12, off+12); unlock_for_pwrite(); if (r!=(ssize_t)size-12) { ret = EINVAL; goto died1; } } h->dirty=0; h->layout_version = rbuf_int(&rc); h->nodesize = rbuf_int(&rc); assert(h->layout_version==BRT_LAYOUT_VERSION_9); h->free_blocks = rbuf_blocknum(&rc); h->unused_blocks = rbuf_blocknum(&rc); h->n_named_roots = rbuf_int(&rc); h->translated_blocknum_limit = rbuf_diskoff(&rc); h->block_translation_size_on_disk = 4 + 16 * h->translated_blocknum_limit; h->block_translation_address_on_disk = rbuf_diskoff(&rc); // Set up the the block translation buffer. create_block_allocator(&h->block_allocator, BLOCK_ALLOCATOR_HEADER_RESERVE, BLOCK_ALLOCATOR_ALIGNMENT); // printf("%s:%d translated_blocknum_limit=%ld, block_translation_address_on_disk=%ld\n", __FILE__, __LINE__, h->translated_blocknum_limit, h->block_translation_address_on_disk); if (h->block_translation_address_on_disk == 0) { h->block_translation = 0; } else { lock_for_pwrite(); block_allocator_alloc_block_at(h->block_allocator, h->block_translation_size_on_disk, h->block_translation_address_on_disk); XMALLOC_N(h->translated_blocknum_limit, h->block_translation); unsigned char *XMALLOC_N(h->block_translation_size_on_disk, tbuf); { ssize_t r = pread(fd, tbuf, h->block_translation_size_on_disk, h->block_translation_address_on_disk); assert(r==(ssize_t)h->block_translation_size_on_disk); } { // check the checksum u_int32_t x1764 = x1764_memory(tbuf, h->block_translation_size_on_disk - 4); u_int64_t offset = h->block_translation_size_on_disk - 4; //printf("%s:%d read from %ld (x1764 offset=%ld) size=%ld\n", __FILE__, __LINE__, h->block_translation_address_on_disk, offset, h->block_translation_size_on_disk); u_int32_t stored_x1764 = toku_ntohl(*(int*)(tbuf + offset)); assert(x1764 == stored_x1764); } // now read all that data. u_int64_t i; struct rbuf rt; rt.buf = tbuf; rt.ndone = 0; rt.size = h->block_translation_size_on_disk-4; assert(rt.size>0); for (i=0; itranslated_blocknum_limit; i++) { h->block_translation[i].diskoff = rbuf_diskoff(&rt); h->block_translation[i].size = rbuf_diskoff(&rt); if (h->block_translation[i].size > 0) block_allocator_alloc_block_at(h->block_allocator, h->block_translation[i].size, h->block_translation[i].diskoff); //printf("%s:%d %ld %ld\n", __FILE__, __LINE__, h->block_translation[i].diskoff, h->block_translation[i].size); } unlock_for_pwrite(); toku_free(tbuf); } if (h->n_named_roots>=0) { int i; int n_to_malloc = (h->n_named_roots == 0) ? 1 : h->n_named_roots; MALLOC_N(n_to_malloc, h->flags_array); if (h->flags_array==0) { ret=errno; if (0) { died2: free(h->flags_array); } goto died1; } MALLOC_N(n_to_malloc, h->roots); if (h->roots==0) { ret=errno; if (0) { died3: if (h->n_named_roots>=0) free(h->roots); } goto died2; } MALLOC_N(n_to_malloc, h->root_hashes); if (h->root_hashes==0) { ret=errno; if (0) { died4: if (h->n_named_roots>=0) free(h->root_hashes); } goto died3; } MALLOC_N(n_to_malloc, h->names); if (h->names==0) { ret=errno; if (0) { died5: if (h->n_named_roots>=0) free(h->names); } goto died4; } for (i=0; in_named_roots; i++) { h->root_hashes[i].valid = FALSE; h->roots[i] = rbuf_blocknum(&rc); h->flags_array[i] = rbuf_int(&rc); bytevec nameptr; unsigned int len; rbuf_bytes(&rc, &nameptr, &len); assert(strlen(nameptr)+1==len); h->names[i] = toku_memdup(nameptr, len); assert(len == 0 || h->names[i] != NULL); // make sure the malloc worked. Give up if this malloc failed... } } else { int n_to_malloc = 1; MALLOC_N(n_to_malloc, h->flags_array); if (h->flags_array==0) { ret=errno; goto died1; } MALLOC_N(n_to_malloc, h->roots); if (h->roots==0) { ret=errno; goto died2; } MALLOC_N(n_to_malloc, h->root_hashes); if (h->root_hashes==0) { ret=errno; goto died3; } h->names = 0; h->roots[0] = rbuf_blocknum(&rc); h->root_hashes[0].valid = FALSE; h->flags_array[0] = rbuf_int(&rc); } if (rc.ndone!=rc.size) {ret = EINVAL; goto died5;} toku_free(rc.buf); { int r; if ((r = deserialize_fifo_at(fd, block_allocator_allocated_limit(h->block_allocator), &h->fifo))) return r; } *brth = h; return 0; } int toku_deserialize_brtheader_from (int fd, BLOCKNUM blocknum, struct brt_header **brth) { //printf("%s:%d calling MALLOC\n", __FILE__, __LINE__); assert(blocknum.b==0); DISKOFF offset = 0; //printf("%s:%d malloced %p\n", __FILE__, __LINE__, h); char magic[12]; lock_for_pwrite(); ssize_t r = pread(fd, magic, 12, offset); unlock_for_pwrite(); if (r==0) return -1; if (r<0) return errno; if (r!=12) return EINVAL; assert(memcmp(magic,"tokudata",8)==0); // It's version 7 or later, and the magi clooks OK return deserialize_brtheader(toku_ntohl(*(int*)(&magic[8])), fd, offset, brth); } unsigned int toku_brt_pivot_key_len (BRT brt, struct kv_pair *pk) { if (brt->flags & TOKU_DB_DUPSORT) { return kv_pair_keylen(pk) + kv_pair_vallen(pk); } else { return kv_pair_keylen(pk); } } unsigned int toku_brtnode_pivot_key_len (BRTNODE node, struct kv_pair *pk) { if (node->flags & TOKU_DB_DUPSORT) { return kv_pair_keylen(pk) + kv_pair_vallen(pk); } else { return kv_pair_keylen(pk); } } // To serialize the fifo, we just write it all at the end of the file. // For now, just do all the writes as separate system calls. This function is hardly ever called, and // we might not be able to allocate a large enough buffer to hold everything, // and it would be more complex to batch up several writes. int toku_serialize_fifo_at (int fd, toku_off_t freeoff, FIFO fifo) { //printf("%s:%d Serializing fifo at %" PRId64 " (count=%d)\n", __FILE__, __LINE__, freeoff, toku_fifo_n_entries(fifo)); lock_for_pwrite(); { enum { size=4 }; char buf[size]; struct wbuf w; wbuf_init(&w, buf, size); wbuf_int(&w, toku_fifo_n_entries(fifo)); ssize_t r = toku_pwrite(fd, w.buf, size, freeoff); if (r!=size) return errno; freeoff+=size; } FIFO_ITERATE(fifo, key, keylen, val, vallen, type, xid, { size_t size=keylen+vallen+1+8+4+4; char *MALLOC_N(size, buf); assert(buf!=0); struct wbuf w; wbuf_init(&w, buf, size); assert(type>=0 && type<256); wbuf_char(&w, (unsigned char)type); wbuf_TXNID(&w, xid); wbuf_bytes(&w, key, keylen); //printf("%s:%d Writing %d bytes: %s\n", __FILE__, __LINE__, vallen, (char*)val); wbuf_bytes(&w, val, vallen); assert(w.ndone==size); ssize_t r = toku_pwrite(fd, w.buf, (size_t)size, freeoff); if (r<0) { unlock_for_pwrite(); return errno; } assert(r==(ssize_t)size); freeoff+=size; toku_free(buf); }); unlock_for_pwrite(); return 0; } static int read_int (int fd, toku_off_t *at, u_int32_t *result) { int v; lock_for_pwrite(); ssize_t r = pread(fd, &v, 4, *at); unlock_for_pwrite(); if (r<0) return errno; assert(r==4); *result = toku_ntohl(v); (*at) += 4; return 0; } static int read_char (int fd, toku_off_t *at, char *result) { lock_for_pwrite(); ssize_t r = pread(fd, result, 1, *at); unlock_for_pwrite(); if (r<0) return errno; assert(r==1); (*at)++; return 0; } static int read_u_int64_t (int fd, toku_off_t *at, u_int64_t *result) { u_int32_t v1=0,v2=0; int r; if ((r = read_int(fd, at, &v1))) return r; if ((r = read_int(fd, at, &v2))) return r; *result = (((u_int64_t)v1)<<32) + v2; return 0; } static int read_nbytes (int fd, toku_off_t *at, char **data, u_int32_t len) { char *result = toku_malloc(len); if (result==0) return errno; lock_for_pwrite(); ssize_t r = pread(fd, result, len, *at); unlock_for_pwrite(); //printf("%s:%d read %d bytes at %" PRId64 ", which are %s\n", __FILE__, __LINE__, len, *at, result); if (r<0) return errno; assert(r==(ssize_t)len); (*at)+=len; *data=result; return 0; } static int deserialize_fifo_at (int fd, toku_off_t at, FIFO *fifo) { FIFO result; int r = toku_fifo_create(&result); if (r) return r; u_int32_t count=0; if ((r=read_int(fd, &at, &count))) return r; u_int32_t i; for (i=0; i