/****************************************************** Insert into a table (c) 1996 Innobase Oy Created 4/20/1996 Heikki Tuuri *******************************************************/ #include "row0ins.h" #ifdef UNIV_NONINL #include "row0ins.ic" #endif #include "dict0dict.h" #include "dict0boot.h" #include "trx0undo.h" #include "btr0btr.h" #include "btr0cur.h" #include "mach0data.h" #include "que0que.h" #include "row0upd.h" #include "row0sel.h" #include "row0row.h" #include "rem0cmp.h" #include "lock0lock.h" #include "log0log.h" #include "eval0eval.h" #include "data0data.h" #include "usr0sess.h" #define ROW_INS_PREV 1 #define ROW_INS_NEXT 2 /************************************************************************* Creates an insert node struct. */ ins_node_t* ins_node_create( /*============*/ /* out, own: insert node struct */ ulint ins_type, /* in: INS_VALUES, ... */ dict_table_t* table, /* in: table where to insert */ mem_heap_t* heap) /* in: mem heap where created */ { ins_node_t* node; node = mem_heap_alloc(heap, sizeof(ins_node_t)); node->common.type = QUE_NODE_INSERT; node->ins_type = ins_type; node->state = INS_NODE_SET_IX_LOCK; node->table = table; node->index = NULL; node->entry = NULL; node->select = NULL; node->trx_id = ut_dulint_zero; node->entry_sys_heap = mem_heap_create(128); node->magic_n = INS_NODE_MAGIC_N; return(node); } /*************************************************************** Creates an entry template for each index of a table. */ static void ins_node_create_entry_list( /*=======================*/ ins_node_t* node) /* in: row insert node */ { dict_index_t* index; dtuple_t* entry; ut_ad(node->entry_sys_heap); UT_LIST_INIT(node->entry_list); index = dict_table_get_first_index(node->table); while (index != NULL) { entry = row_build_index_entry(node->row, index, node->entry_sys_heap); UT_LIST_ADD_LAST(tuple_list, node->entry_list, entry); index = dict_table_get_next_index(index); } } /********************************************************************* Adds system field buffers to a row. */ static void row_ins_alloc_sys_fields( /*=====================*/ ins_node_t* node) /* in: insert node */ { dtuple_t* row; dict_table_t* table; mem_heap_t* heap; dict_col_t* col; dfield_t* dfield; ulint len; byte* ptr; row = node->row; table = node->table; heap = node->entry_sys_heap; ut_ad(row && table && heap); ut_ad(dtuple_get_n_fields(row) == dict_table_get_n_cols(table)); /* 1. Allocate buffer for row id */ col = dict_table_get_sys_col(table, DATA_ROW_ID); dfield = dtuple_get_nth_field(row, dict_col_get_no(col)); ptr = mem_heap_alloc(heap, DATA_ROW_ID_LEN); dfield_set_data(dfield, ptr, DATA_ROW_ID_LEN); node->row_id_buf = ptr; if (table->type == DICT_TABLE_CLUSTER_MEMBER) { /* 2. Fill in the dfield for mix id */ col = dict_table_get_sys_col(table, DATA_MIX_ID); dfield = dtuple_get_nth_field(row, dict_col_get_no(col)); len = mach_dulint_get_compressed_size(table->mix_id); ptr = mem_heap_alloc(heap, DATA_MIX_ID_LEN); mach_dulint_write_compressed(ptr, table->mix_id); dfield_set_data(dfield, ptr, len); } /* 3. Allocate buffer for trx id */ col = dict_table_get_sys_col(table, DATA_TRX_ID); dfield = dtuple_get_nth_field(row, dict_col_get_no(col)); ptr = mem_heap_alloc(heap, DATA_TRX_ID_LEN); dfield_set_data(dfield, ptr, DATA_TRX_ID_LEN); node->trx_id_buf = ptr; /* 4. Allocate buffer for roll ptr */ col = dict_table_get_sys_col(table, DATA_ROLL_PTR); dfield = dtuple_get_nth_field(row, dict_col_get_no(col)); ptr = mem_heap_alloc(heap, DATA_ROLL_PTR_LEN); dfield_set_data(dfield, ptr, DATA_ROLL_PTR_LEN); } /************************************************************************* Sets a new row to insert for an INS_DIRECT node. This function is only used if we have constructed the row separately, which is a rare case; this function is quite slow. */ void ins_node_set_new_row( /*=================*/ ins_node_t* node, /* in: insert node */ dtuple_t* row) /* in: new row (or first row) for the node */ { node->state = INS_NODE_SET_IX_LOCK; node->index = NULL; node->entry = NULL; node->row = row; mem_heap_empty(node->entry_sys_heap); /* Create templates for index entries */ ins_node_create_entry_list(node); /* Allocate from entry_sys_heap buffers for sys fields */ row_ins_alloc_sys_fields(node); /* As we allocated a new trx id buf, the trx id should be written there again: */ node->trx_id = ut_dulint_zero; } /*********************************************************************** Does an insert operation by updating a delete marked existing record in the index. This situation can occur if the delete marked record is kept in the index for consistent reads. */ static ulint row_ins_sec_index_entry_by_modify( /*==============================*/ /* out: DB_SUCCESS or error code */ btr_cur_t* cursor, /* in: B-tree cursor */ dtuple_t* entry, /* in: index entry to insert */ que_thr_t* thr, /* in: query thread */ mtr_t* mtr) /* in: mtr */ { mem_heap_t* heap; upd_t* update; rec_t* rec; ulint err; rec = btr_cur_get_rec(cursor); ut_ad((cursor->index->type & DICT_CLUSTERED) == 0); ut_ad(rec_get_deleted_flag(rec)); /* We know that in the ordering entry and rec are identified. But in their binary form there may be differences if there are char fields in them. Therefore we have to calculate the difference and do an update-in-place if necessary. */ heap = mem_heap_create(1024); update = row_upd_build_sec_rec_difference_binary(cursor->index, entry, rec, heap); err = btr_cur_update_sec_rec_in_place(cursor, update, thr, mtr); mem_heap_free(heap); return(err); } /*********************************************************************** Does an insert operation by delete unmarking and updating a delete marked existing record in the index. This situation can occur if the delete marked record is kept in the index for consistent reads. */ static ulint row_ins_clust_index_entry_by_modify( /*================================*/ /* out: DB_SUCCESS, DB_FAIL, or error code */ ulint mode, /* in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE, depending on whether mtr holds just a leaf latch or also a tree latch */ btr_cur_t* cursor, /* in: B-tree cursor */ big_rec_t** big_rec,/* out: possible big rec vector of fields which have to be stored externally by the caller */ dtuple_t* entry, /* in: index entry to insert */ ulint* ext_vec,/* in: array containing field numbers of externally stored fields in entry, or NULL */ ulint n_ext_vec,/* in: number of fields in ext_vec */ que_thr_t* thr, /* in: query thread */ mtr_t* mtr) /* in: mtr */ { mem_heap_t* heap; rec_t* rec; upd_t* update; ulint err; ut_ad(cursor->index->type & DICT_CLUSTERED); *big_rec = NULL; rec = btr_cur_get_rec(cursor); ut_ad(rec_get_deleted_flag(rec)); heap = mem_heap_create(1024); /* Build an update vector containing all the fields to be modified; NOTE that this vector may NOT contain system columns trx_id or roll_ptr */ update = row_upd_build_difference_binary(cursor->index, entry, ext_vec, n_ext_vec, rec, heap); if (mode == BTR_MODIFY_LEAF) { /* Try optimistic updating of the record, keeping changes within the page */ err = btr_cur_optimistic_update(0, cursor, update, 0, thr, mtr); if (err == DB_OVERFLOW || err == DB_UNDERFLOW) { err = DB_FAIL; } } else { ut_a(mode == BTR_MODIFY_TREE); err = btr_cur_pessimistic_update(0, cursor, big_rec, update, 0, thr, mtr); } mem_heap_free(heap); return(err); } /******************************************************************* Checks if a unique key violation to rec would occur at the index entry insert. */ static ibool row_ins_dupl_error_with_rec( /*========================*/ /* out: TRUE if error */ rec_t* rec, /* in: user record; NOTE that we assume that the caller already has a record lock on the record! */ dtuple_t* entry, /* in: entry to insert */ dict_index_t* index) /* in: index */ { ulint matched_fields; ulint matched_bytes; ulint n_unique; ulint i; n_unique = dict_index_get_n_unique(index); matched_fields = 0; matched_bytes = 0; cmp_dtuple_rec_with_match(entry, rec, &matched_fields, &matched_bytes); if (matched_fields < n_unique) { return(FALSE); } /* In a unique secondary index we allow equal key values if they contain SQL NULLs */ if (!(index->type & DICT_CLUSTERED)) { for (i = 0; i < n_unique; i++) { if (UNIV_SQL_NULL == dfield_get_len( dtuple_get_nth_field(entry, i))) { return(FALSE); } } } if (!rec_get_deleted_flag(rec)) { return(TRUE); } return(FALSE); } /************************************************************************* Sets a shared lock on a record. Used in locking possible duplicate key records. */ static ulint row_ins_set_shared_rec_lock( /*========================*/ /* out: DB_SUCCESS or error code */ rec_t* rec, /* in: record */ dict_index_t* index, /* in: index */ que_thr_t* thr) /* in: query thread */ { ulint err; if (index->type & DICT_CLUSTERED) { err = lock_clust_rec_read_check_and_lock(0, rec, index, LOCK_S, thr); } else { err = lock_sec_rec_read_check_and_lock(0, rec, index, LOCK_S, thr); } return(err); } /******************************************************************* Checks if foreign key constraint fails for an index entry. Sets shared locks which lock either the success or the failure of the constraint. NOTE that the caller must have a shared latch on dict_foreign_key_check_lock. */ ulint row_ins_check_foreign_constraint( /*=============================*/ /* out: DB_SUCCESS, DB_LOCK_WAIT, DB_NO_REFERENCED_ROW, or DB_ROW_IS_REFERENCED */ ibool check_ref,/* in: TRUE If we want to check that the referenced table is ok, FALSE if we want to to check the foreign key table */ dict_foreign_t* foreign,/* in: foreign constraint; NOTE that the tables mentioned in it must be in the dictionary cache if they exist at all */ dict_table_t* table, /* in: if check_ref is TRUE, then the foreign table, else the referenced table */ dict_index_t* index __attribute__((unused)),/* in: index in table */ dtuple_t* entry, /* in: index entry for index */ que_thr_t* thr) /* in: query thread */ { dict_table_t* check_table; dict_index_t* check_index; ulint n_fields_cmp; rec_t* rec; btr_pcur_t pcur; ibool moved; int cmp; ulint err; mtr_t mtr; ut_ad(rw_lock_own(&dict_foreign_key_check_lock, RW_LOCK_SHARED)); if (check_ref) { check_table = foreign->referenced_table; check_index = foreign->referenced_index; } else { check_table = foreign->foreign_table; check_index = foreign->foreign_index; } if (check_table == NULL) { if (check_ref) { return(DB_NO_REFERENCED_ROW); } return(DB_SUCCESS); } ut_a(check_table && check_index); if (check_table != table) { /* We already have a LOCK_IX on table, but not necessarily on check_table */ err = lock_table(0, check_table, LOCK_IS, thr); if (err != DB_SUCCESS) { return(err); } } mtr_start(&mtr); /* Store old value on n_fields_cmp */ n_fields_cmp = dtuple_get_n_fields_cmp(entry); dtuple_set_n_fields_cmp(entry, foreign->n_fields); btr_pcur_open(check_index, entry, PAGE_CUR_GE, BTR_SEARCH_LEAF, &pcur, &mtr); /* Scan index records and check if there is a matching record */ for (;;) { rec = btr_pcur_get_rec(&pcur); if (rec == page_get_infimum_rec(buf_frame_align(rec))) { goto next_rec; } /* Try to place a lock on the index record */ err = row_ins_set_shared_rec_lock(rec, check_index, thr); if (err != DB_SUCCESS) { break; } if (rec == page_get_supremum_rec(buf_frame_align(rec))) { goto next_rec; } cmp = cmp_dtuple_rec(entry, rec); if (cmp == 0) { if (!rec_get_deleted_flag(rec)) { /* Found a matching record */ if (check_ref) { err = DB_SUCCESS; } else { err = DB_ROW_IS_REFERENCED; } break; } } if (cmp < 0) { if (check_ref) { err = DB_NO_REFERENCED_ROW; } else { err = DB_SUCCESS; } break; } ut_a(cmp == 0); next_rec: moved = btr_pcur_move_to_next(&pcur, &mtr); if (!moved) { if (check_ref) { err = DB_NO_REFERENCED_ROW; } else { err = DB_SUCCESS; } break; } } mtr_commit(&mtr); /* Restore old value */ dtuple_set_n_fields_cmp(entry, n_fields_cmp); return(err); } /******************************************************************* Checks if foreign key constraints fail for an index entry. If index is not mentioned in any constraint, this function does nothing, Otherwise does searches to the indexes of referenced tables and sets shared locks which lock either the success or the failure of a constraint. */ static ulint row_ins_check_foreign_constraints( /*==============================*/ /* out: DB_SUCCESS, DB_LOCK_WAIT, or error code */ dict_table_t* table, /* in: table */ dict_index_t* index, /* in: index */ dtuple_t* entry, /* in: index entry for index */ que_thr_t* thr) /* in: query thread */ { dict_foreign_t* foreign; ulint err; foreign = UT_LIST_GET_FIRST(table->foreign_list); while (foreign) { if (foreign->foreign_index == index) { if (foreign->referenced_table == NULL) { dict_table_get(foreign->referenced_table_name, thr_get_trx(thr)); } rw_lock_s_lock(&dict_foreign_key_check_lock); err = row_ins_check_foreign_constraint(TRUE, foreign, table, index, entry, thr); rw_lock_s_unlock(&dict_foreign_key_check_lock); if (err != DB_SUCCESS) { return(err); } } foreign = UT_LIST_GET_NEXT(foreign_list, foreign); } return(DB_SUCCESS); } /******************************************************************* Scans a unique non-clustered index at a given index entry to determine whether a uniqueness violation has occurred for the key value of the entry. Set shared locks on possible duplicate records. */ static ulint row_ins_scan_sec_index_for_duplicate( /*=================================*/ /* out: DB_SUCCESS, DB_DUPLICATE_KEY, or DB_LOCK_WAIT */ dict_index_t* index, /* in: non-clustered unique index */ dtuple_t* entry, /* in: index entry */ que_thr_t* thr) /* in: query thread */ { int cmp; ulint n_fields_cmp; rec_t* rec; btr_pcur_t pcur; ulint err = DB_SUCCESS; ibool moved; mtr_t mtr; mtr_start(&mtr); /* Store old value on n_fields_cmp */ n_fields_cmp = dtuple_get_n_fields_cmp(entry); dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique(index)); btr_pcur_open(index, entry, PAGE_CUR_GE, BTR_SEARCH_LEAF, &pcur, &mtr); /* Scan index records and check if there is a duplicate */ for (;;) { rec = btr_pcur_get_rec(&pcur); if (rec == page_get_infimum_rec(buf_frame_align(rec))) { goto next_rec; } /* Try to place a lock on the index record */ err = row_ins_set_shared_rec_lock(rec, index, thr); if (err != DB_SUCCESS) { break; } if (rec == page_get_supremum_rec(buf_frame_align(rec))) { goto next_rec; } cmp = cmp_dtuple_rec(entry, rec); if (cmp == 0) { if (row_ins_dupl_error_with_rec(rec, entry, index)) { /* printf("Duplicate key in index %s\n", index->name); dtuple_print(entry); */ err = DB_DUPLICATE_KEY; thr_get_trx(thr)->error_info = index; break; } } if (cmp < 0) { break; } ut_a(cmp == 0); next_rec: moved = btr_pcur_move_to_next(&pcur, &mtr); if (!moved) { break; } } mtr_commit(&mtr); /* Restore old value */ dtuple_set_n_fields_cmp(entry, n_fields_cmp); return(err); } /******************************************************************* Checks if a unique key violation error would occur at an index entry insert. Sets shared locks on possible duplicate records. Works only for a clustered index! */ static ulint row_ins_duplicate_error_in_clust( /*=============================*/ /* out: DB_SUCCESS if no error, DB_DUPLICATE_KEY if error, DB_LOCK_WAIT if we have to wait for a lock on a possible duplicate record */ btr_cur_t* cursor, /* in: B-tree cursor */ dtuple_t* entry, /* in: entry to insert */ que_thr_t* thr, /* in: query thread */ mtr_t* mtr) /* in: mtr */ { ulint err; rec_t* rec; page_t* page; ulint n_unique; trx_t* trx = thr_get_trx(thr); UT_NOT_USED(mtr); ut_a(cursor->index->type & DICT_CLUSTERED); ut_ad(cursor->index->type & DICT_UNIQUE); /* NOTE: For unique non-clustered indexes there may be any number of delete marked records with the same value for the non-clustered index key (remember multiversioning), and which differ only in the row refererence part of the index record, containing the clustered index key fields. For such a secondary index record, to avoid race condition, we must FIRST do the insertion and after that check that the uniqueness condition is not breached! */ /* NOTE: A problem is that in the B-tree node pointers on an upper level may match more to the entry than the actual existing user records on the leaf level. So, even if low_match would suggest that a duplicate key violation may occur, this may not be the case. */ n_unique = dict_index_get_n_unique(cursor->index); if (cursor->low_match >= n_unique) { rec = btr_cur_get_rec(cursor); page = buf_frame_align(rec); if (rec != page_get_infimum_rec(page)) { /* We set a lock on the possible duplicate: this is needed in logical logging of MySQL to make sure that in roll-forward we get the same duplicate errors as in original execution */ err = row_ins_set_shared_rec_lock(rec, cursor->index, thr); if (err != DB_SUCCESS) { return(err); } if (row_ins_dupl_error_with_rec(rec, entry, cursor->index)) { trx->error_info = cursor->index; return(DB_DUPLICATE_KEY); } } } if (cursor->up_match >= n_unique) { rec = page_rec_get_next(btr_cur_get_rec(cursor)); page = buf_frame_align(rec); if (rec != page_get_supremum_rec(page)) { err = row_ins_set_shared_rec_lock(rec, cursor->index, thr); if (err != DB_SUCCESS) { return(err); } if (row_ins_dupl_error_with_rec(rec, entry, cursor->index)) { trx->error_info = cursor->index; return(DB_DUPLICATE_KEY); } } ut_a(!(cursor->index->type & DICT_CLUSTERED)); /* This should never happen */ } return(DB_SUCCESS); } /******************************************************************* Checks if an index entry has long enough common prefix with an existing record so that the intended insert of the entry must be changed to a modify of the existing record. In the case of a clustered index, the prefix must be n_unique fields long, and in the case of a secondary index, all fields must be equal. */ UNIV_INLINE ulint row_ins_must_modify( /*================*/ /* out: 0 if no update, ROW_INS_PREV if previous should be updated; currently we do the search so that only the low_match record can match enough to the search tuple, not the next record */ btr_cur_t* cursor) /* in: B-tree cursor */ { ulint enough_match; rec_t* rec; page_t* page; /* NOTE: (compare to the note in row_ins_duplicate_error) Because node pointers on upper levels of the B-tree may match more to entry than to actual user records on the leaf level, we have to check if the candidate record is actually a user record. In a clustered index node pointers contain index->n_unique first fields, and in the case of a secondary index, all fields of the index. */ enough_match = dict_index_get_n_unique_in_tree(cursor->index); if (cursor->low_match >= enough_match) { rec = btr_cur_get_rec(cursor); page = buf_frame_align(rec); if (rec != page_get_infimum_rec(page)) { return(ROW_INS_PREV); } } return(0); } /******************************************************************* Tries to insert an index entry to an index. If the index is clustered and a record with the same unique key is found, the other record is necessarily marked deleted by a committed transaction, or a unique key violation error occurs. The delete marked record is then updated to an existing record, and we must write an undo log record on the delete marked record. If the index is secondary, and a record with exactly the same fields is found, the other record is necessarily marked deleted. It is then unmarked. Otherwise, the entry is just inserted to the index. */ ulint row_ins_index_entry_low( /*====================*/ /* out: DB_SUCCESS, DB_LOCK_WAIT, DB_FAIL if pessimistic retry needed, or error code */ ulint mode, /* in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE, depending on whether we wish optimistic or pessimistic descent down the index tree */ dict_index_t* index, /* in: index */ dtuple_t* entry, /* in: index entry to insert */ ulint* ext_vec,/* in: array containing field numbers of externally stored fields in entry, or NULL */ ulint n_ext_vec,/* in: number of fields in ext_vec */ que_thr_t* thr) /* in: query thread */ { btr_cur_t cursor; ulint modify = 0; /* remove warning */ rec_t* insert_rec; rec_t* rec; ulint err; ulint n_unique; big_rec_t* big_rec = NULL; mtr_t mtr; log_free_check(); mtr_start(&mtr); cursor.thr = thr; /* Note that we use PAGE_CUR_LE as the search mode, because then the function will return in both low_match and up_match of the cursor sensible values */ btr_cur_search_to_nth_level(index, 0, entry, PAGE_CUR_LE, mode | BTR_INSERT, &cursor, 0, &mtr); if (cursor.flag == BTR_CUR_INSERT_TO_IBUF) { /* The insertion was made to the insert buffer already during the search: we are done */ err = DB_SUCCESS; goto function_exit; } n_unique = dict_index_get_n_unique(index); if (index->type & DICT_UNIQUE && (cursor.up_match >= n_unique || cursor.low_match >= n_unique)) { if (index->type & DICT_CLUSTERED) { /* Note that the following may return also DB_LOCK_WAIT */ err = row_ins_duplicate_error_in_clust(&cursor, entry, thr, &mtr); if (err != DB_SUCCESS) { goto function_exit; } } else { mtr_commit(&mtr); err = row_ins_scan_sec_index_for_duplicate(index, entry, thr); mtr_start(&mtr); if (err != DB_SUCCESS) { goto function_exit; } /* We did not find a duplicate and we have now locked with s-locks the necessary records to prevent any insertion of a duplicate by another transaction. Let us now reposition the cursor and continue the insertion. */ btr_cur_search_to_nth_level(index, 0, entry, PAGE_CUR_LE, mode | BTR_INSERT, &cursor, 0, &mtr); } } modify = row_ins_must_modify(&cursor); if (modify != 0) { /* There is already an index entry with a long enough common prefix, we must convert the insert into a modify of an existing record */ if (modify == ROW_INS_NEXT) { rec = page_rec_get_next(btr_cur_get_rec(&cursor)); btr_cur_position(index, rec, &cursor); } if (index->type & DICT_CLUSTERED) { err = row_ins_clust_index_entry_by_modify(mode, &cursor, &big_rec, entry, ext_vec, n_ext_vec, thr, &mtr); } else { err = row_ins_sec_index_entry_by_modify(&cursor, entry, thr, &mtr); } } else { if (mode == BTR_MODIFY_LEAF) { err = btr_cur_optimistic_insert(0, &cursor, entry, &insert_rec, &big_rec, thr, &mtr); } else { ut_a(mode == BTR_MODIFY_TREE); err = btr_cur_pessimistic_insert(0, &cursor, entry, &insert_rec, &big_rec, thr, &mtr); } if (err == DB_SUCCESS) { if (ext_vec) { rec_set_field_extern_bits(insert_rec, ext_vec, n_ext_vec, &mtr); } } } function_exit: mtr_commit(&mtr); if (big_rec) { mtr_start(&mtr); btr_cur_search_to_nth_level(index, 0, entry, PAGE_CUR_LE, BTR_MODIFY_TREE, &cursor, 0, &mtr); err = btr_store_big_rec_extern_fields(index, btr_cur_get_rec(&cursor), big_rec, &mtr); if (modify) { dtuple_big_rec_free(big_rec); } else { dtuple_convert_back_big_rec(index, entry, big_rec); } mtr_commit(&mtr); } return(err); } /******************************************************************* Inserts an index entry to index. Tries first optimistic, then pessimistic descent down the tree. If the entry matches enough to a delete marked record, performs the insert by updating or delete unmarking the delete marked record. */ ulint row_ins_index_entry( /*================*/ /* out: DB_SUCCESS, DB_LOCK_WAIT, DB_DUPLICATE_KEY, or some other error code */ dict_index_t* index, /* in: index */ dtuple_t* entry, /* in: index entry to insert */ ulint* ext_vec,/* in: array containing field numbers of externally stored fields in entry, or NULL */ ulint n_ext_vec,/* in: number of fields in ext_vec */ que_thr_t* thr) /* in: query thread */ { ulint err; if (UT_LIST_GET_FIRST(index->table->foreign_list)) { err = row_ins_check_foreign_constraints(index->table, index, entry, thr); if (err != DB_SUCCESS) { return(err); } } /* Try first optimistic descent to the B-tree */ err = row_ins_index_entry_low(BTR_MODIFY_LEAF, index, entry, ext_vec, n_ext_vec, thr); if (err != DB_FAIL) { return(err); } /* Try then pessimistic descent to the B-tree */ err = row_ins_index_entry_low(BTR_MODIFY_TREE, index, entry, ext_vec, n_ext_vec, thr); return(err); } /*************************************************************** Sets the values of the dtuple fields in entry from the values of appropriate columns in row. */ UNIV_INLINE void row_ins_index_entry_set_vals( /*=========================*/ dtuple_t* entry, /* in: index entry to make */ dtuple_t* row) /* in: row */ { dfield_t* field; dfield_t* row_field; ulint n_fields; ulint i; ut_ad(entry && row); n_fields = dtuple_get_n_fields(entry); for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(entry, i); row_field = dtuple_get_nth_field(row, field->col_no); field->data = row_field->data; field->len = row_field->len; } } /*************************************************************** Inserts a single index entry to the table. */ static ulint row_ins_index_entry_step( /*=====================*/ /* out: DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ ins_node_t* node, /* in: row insert node */ que_thr_t* thr) /* in: query thread */ { ulint err; ut_ad(dtuple_check_typed(node->row)); row_ins_index_entry_set_vals(node->entry, node->row); ut_ad(dtuple_check_typed(node->entry)); err = row_ins_index_entry(node->index, node->entry, NULL, 0, thr); return(err); } /*************************************************************** Allocates a row id for row and inits the node->index field. */ UNIV_INLINE void row_ins_alloc_row_id_step( /*======================*/ ins_node_t* node) /* in: row insert node */ { dulint row_id; ut_ad(node->state == INS_NODE_ALLOC_ROW_ID); if (dict_table_get_first_index(node->table)->type & DICT_UNIQUE) { /* No row id is stored if the clustered index is unique */ return; } /* Fill in row id value to row */ row_id = dict_sys_get_new_row_id(); dict_sys_write_row_id(node->row_id_buf, row_id); } /*************************************************************** Gets a row to insert from the values list. */ UNIV_INLINE void row_ins_get_row_from_values( /*========================*/ ins_node_t* node) /* in: row insert node */ { que_node_t* list_node; dfield_t* dfield; dtuple_t* row; ulint i; /* The field values are copied in the buffers of the select node and it is safe to use them until we fetch from select again: therefore we can just copy the pointers */ row = node->row; i = 0; list_node = node->values_list; while (list_node) { eval_exp(list_node); dfield = dtuple_get_nth_field(row, i); dfield_copy_data(dfield, que_node_get_val(list_node)); i++; list_node = que_node_get_next(list_node); } } /*************************************************************** Gets a row to insert from the select list. */ UNIV_INLINE void row_ins_get_row_from_select( /*========================*/ ins_node_t* node) /* in: row insert node */ { que_node_t* list_node; dfield_t* dfield; dtuple_t* row; ulint i; /* The field values are copied in the buffers of the select node and it is safe to use them until we fetch from select again: therefore we can just copy the pointers */ row = node->row; i = 0; list_node = node->select->select_list; while (list_node) { dfield = dtuple_get_nth_field(row, i); dfield_copy_data(dfield, que_node_get_val(list_node)); i++; list_node = que_node_get_next(list_node); } } /*************************************************************** Inserts a row to a table. */ ulint row_ins( /*====*/ /* out: DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ ins_node_t* node, /* in: row insert node */ que_thr_t* thr) /* in: query thread */ { ulint err; ut_ad(node && thr); if (node->state == INS_NODE_ALLOC_ROW_ID) { row_ins_alloc_row_id_step(node); node->index = dict_table_get_first_index(node->table); node->entry = UT_LIST_GET_FIRST(node->entry_list); if (node->ins_type == INS_SEARCHED) { row_ins_get_row_from_select(node); } else if (node->ins_type == INS_VALUES) { row_ins_get_row_from_values(node); } node->state = INS_NODE_INSERT_ENTRIES; } ut_ad(node->state == INS_NODE_INSERT_ENTRIES); while (node->index != NULL) { err = row_ins_index_entry_step(node, thr); if (err != DB_SUCCESS) { return(err); } node->index = dict_table_get_next_index(node->index); node->entry = UT_LIST_GET_NEXT(tuple_list, node->entry); } ut_ad(node->entry == NULL); node->state = INS_NODE_ALLOC_ROW_ID; return(DB_SUCCESS); } /*************************************************************** Inserts a row to a table. This is a high-level function used in SQL execution graphs. */ que_thr_t* row_ins_step( /*=========*/ /* out: query thread to run next or NULL */ que_thr_t* thr) /* in: query thread */ { ins_node_t* node; que_node_t* parent; sel_node_t* sel_node; trx_t* trx; ulint err; ut_ad(thr); trx = thr_get_trx(thr); trx_start_if_not_started(trx); node = thr->run_node; ut_ad(que_node_get_type(node) == QUE_NODE_INSERT); parent = que_node_get_parent(node); sel_node = node->select; if (thr->prev_node == parent) { node->state = INS_NODE_SET_IX_LOCK; } /* If this is the first time this node is executed (or when execution resumes after wait for the table IX lock), set an IX lock on the table and reset the possible select node. */ if (node->state == INS_NODE_SET_IX_LOCK) { /* It may be that the current session has not yet started its transaction, or it has been committed: */ if (UT_DULINT_EQ(trx->id, node->trx_id)) { /* No need to do IX-locking or write trx id to buf */ goto same_trx; } trx_write_trx_id(node->trx_id_buf, trx->id); err = lock_table(0, node->table, LOCK_IX, thr); if (err != DB_SUCCESS) { goto error_handling; } node->trx_id = trx->id; same_trx: node->state = INS_NODE_ALLOC_ROW_ID; if (node->ins_type == INS_SEARCHED) { /* Reset the cursor */ sel_node->state = SEL_NODE_OPEN; /* Fetch a row to insert */ thr->run_node = sel_node; return(thr); } } if ((node->ins_type == INS_SEARCHED) && (sel_node->state != SEL_NODE_FETCH)) { ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS); /* No more rows to insert */ thr->run_node = parent; return(thr); } /* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */ err = row_ins(node, thr); error_handling: trx->error_state = err; if (err == DB_SUCCESS) { /* Ok: do nothing */ } else if (err == DB_LOCK_WAIT) { return(NULL); } else { /* SQL error detected */ return(NULL); } /* DO THE TRIGGER ACTIONS HERE */ if (node->ins_type == INS_SEARCHED) { /* Fetch a row to insert */ thr->run_node = sel_node; } else { thr->run_node = que_node_get_parent(node); } return(thr); }