/* -*- mode: C; c-basic-offset: 4; indent-tabs-mode: nil -*- */ // vim: expandtab:ts=8:sw=4:softtabstop=4: #ident "$Id$" #ident "Copyright (c) 2007-2011 Tokutek Inc. All rights reserved." // it used to be the case that we copied the left and right keys of a // range to be prelocked but never freed them, this test checks that they // are freed (as of this time, this happens in destroy_bfe_for_prefetch) #include "test.h" #include "includes.h" #include #include // Some constants to be used in calculations below static const int nodesize = 1024; // Target max node size static const int eltsize = 64; // Element size (for most elements) static const int bnsize = 256; // Target basement node size static const int eltsperbn = 256 / 64; // bnsize / eltsize static const int keylen = sizeof(long); // vallen is eltsize - keylen and leafentry overhead static const int vallen = 64 - sizeof(long) - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE +sizeof(((LEAFENTRY)NULL)->keylen) +sizeof(((LEAFENTRY)NULL)->u.clean.vallen)); #define dummy_msn_3884 ((MSN) { (u_int64_t) 3884 * MIN_MSN.msn }) static TOKUTXN const null_txn = 0; static DB * const null_db = 0; static const char fname[]= __SRCFILE__ ".ft_handle"; static int omt_long_cmp(OMTVALUE p, void *q) { LEAFENTRY a = p, b = q; void *ak, *bk; u_int32_t al, bl; ak = le_key_and_len(a, &al); bk = le_key_and_len(b, &bl); assert(al == sizeof(long) && bl == sizeof(long)); long *ai = (long *) ak; long *bi = (long *) bk; return (*ai > *bi) - (*ai < *bi); } static size_t calc_le_size(int key_size, int val_size) { size_t rval; LEAFENTRY le; rval = sizeof(le->type) + sizeof(le->keylen) + sizeof(le->u.clean.vallen) + key_size + val_size; return rval; } static LEAFENTRY le_fastmalloc(struct mempool * mp, char *key, int key_size, char *val, int val_size) { LEAFENTRY le; size_t le_size = calc_le_size(key_size, val_size); le = toku_mempool_malloc(mp, le_size, 1); resource_assert(le); le->type = LE_CLEAN; le->keylen = key_size; le->u.clean.vallen = val_size; memcpy(&le->u.clean.key_val[0], key, key_size); memcpy(&le->u.clean.key_val[keylen], val, val_size); return le; } static size_t insert_dummy_value(FTNODE node, int bn, long k) { char val[vallen]; memset(val, k, sizeof val); struct mempool *mp = &BLB(node, bn)->buffer_mempool; LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen); int r = toku_omt_insert(BLB_BUFFER(node, bn), le, omt_long_cmp, le, NULL); assert(r == 0); BLB_NBYTESINBUF(node, bn) += leafentry_disksize(le); return leafentry_disksize(le); } static void setup_ftnode_header(struct ftnode *node) { node->nodesize = nodesize; node->flags = 0x11223344; node->thisnodename.b = 20; node->layout_version = FT_LAYOUT_VERSION; node->layout_version_original = FT_LAYOUT_VERSION; node->height = 0; node->dirty = 1; node->totalchildkeylens = 0; } static void setup_ftnode_partitions(struct ftnode *node, int n_children, const MSN msn, size_t maxbnsize) { node->n_children = n_children; node->max_msn_applied_to_node_on_disk = msn; MALLOC_N(node->n_children, node->bp); MALLOC_N(node->n_children - 1, node->childkeys); for (int bn = 0; bn < node->n_children; ++bn) { BP_STATE(node, bn) = PT_AVAIL; set_BLB(node, bn, toku_create_empty_bn()); BASEMENTNODE basement = BLB(node, bn); struct mempool *mp = &basement->buffer_mempool; toku_mempool_construct(mp, maxbnsize); BLB_NBYTESINBUF(node, bn) = 0; BLB_MAX_MSN_APPLIED(node, bn) = msn; } } static void destroy_ftnode_and_internals(struct ftnode *node) { for (int i = 0; i < node->n_children - 1; ++i) { toku_free(node->childkeys[i].data); } for (int i = 0; i < node->n_children; ++i) { BASEMENTNODE bn = BLB(node, i); struct mempool * mp = &bn->buffer_mempool; toku_mempool_destroy(mp); destroy_basement_node(BLB(node, i)); } toku_free(node->bp); toku_free(node->childkeys); } static void verify_basement_node_msns(FTNODE node, MSN expected) { for(int i = 0; i < node->n_children; ++i) { assert(expected.msn == BLB_MAX_MSN_APPLIED(node, i).msn); } } // // Maximum node size according to the BRT: 1024 (expected node size after split) // Maximum basement node size: 256 // Actual node size before split: 2048 // Actual basement node size before split: 256 // Start by creating 8 basements, then split node, expected result of two nodes with 4 basements each. static void test_split_on_boundary(void) { struct ftnode sn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; setup_ftnode_header(&sn); const int nelts = 2 * nodesize / eltsize; setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize); for (int bn = 0; bn < sn.n_children; ++bn) { long k; for (int i = 0; i < eltsperbn; ++i) { k = bn * eltsperbn + i; insert_dummy_value(&sn, bn, k); } if (bn < sn.n_children - 1) { toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k); sn.totalchildkeylens += (sizeof k); } } unlink(fname); CACHETABLE ct; FT_HANDLE brt; r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0); r = toku_open_ft_handle(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0); FTNODE nodea, nodeb; DBT splitk; // if we haven't done it right, we should hit the assert in the top of move_leafentries ftleaf_split(brt->ft, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); verify_basement_node_msns(nodea, dummy_msn_3884); verify_basement_node_msns(nodeb, dummy_msn_3884); toku_unpin_ftnode(brt->ft, nodeb); r = toku_close_ft_handle_nolsn(brt, NULL); assert(r == 0); r = toku_cachetable_close(&ct); assert(r == 0); if (splitk.data) { toku_free(splitk.data); } destroy_ftnode_and_internals(&sn); } // // Maximum node size according to the BRT: 1024 (expected node size after split) // Maximum basement node size: 256 (except the last) // Actual node size before split: 4095 // Actual basement node size before split: 256 (except the last, of size 2K) // // Start by creating 9 basements, the first 8 being of 256 bytes each, // and the last with one row of size 2047 bytes. Then split node, // expected result is two nodes, one with 8 basement nodes and one // with 1 basement node. static void test_split_with_everything_on_the_left(void) { struct ftnode sn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; setup_ftnode_header(&sn); const int nelts = 2 * nodesize / eltsize; setup_ftnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, 2 * nodesize); size_t big_val_size = 0; for (int bn = 0; bn < sn.n_children; ++bn) { long k; if (bn < sn.n_children - 1) { for (int i = 0; i < eltsperbn; ++i) { k = bn * eltsperbn + i; big_val_size += insert_dummy_value(&sn, bn, k); } toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k); sn.totalchildkeylens += (sizeof k); } else { k = bn * eltsperbn; // we want this to be as big as the rest of our data and a // little bigger, so the halfway mark will land inside this // value and it will be split to the left big_val_size += 100; char * big_val = toku_xmalloc(big_val_size); memset(big_val, k, big_val_size); struct mempool *mp = &BLB(&sn, bn)->buffer_mempool; LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size); toku_free(big_val); r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0); BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(big_element); } } unlink(fname); CACHETABLE ct; FT_HANDLE brt; r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0); r = toku_open_ft_handle(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0); FTNODE nodea, nodeb; DBT splitk; // if we haven't done it right, we should hit the assert in the top of move_leafentries ftleaf_split(brt->ft, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); toku_unpin_ftnode(brt->ft, nodeb); r = toku_close_ft_handle_nolsn(brt, NULL); assert(r == 0); r = toku_cachetable_close(&ct); assert(r == 0); if (splitk.data) { toku_free(splitk.data); } destroy_ftnode_and_internals(&sn); } // // Maximum node size according to the BRT: 1024 (expected node size after split) // Maximum basement node size: 256 (except the last) // Actual node size before split: 4095 // Actual basement node size before split: 256 (except the last, of size 2K) // // Start by creating 9 basements, the first 8 being of 256 bytes each, // and the last with one row of size 2047 bytes. Then split node, // expected result is two nodes, one with 8 basement nodes and one // with 1 basement node. static void test_split_on_boundary_of_last_node(void) { struct ftnode sn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; setup_ftnode_header(&sn); const int nelts = 2 * nodesize / eltsize; const size_t maxbnsize = 2 * nodesize; setup_ftnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, maxbnsize); size_t big_val_size = 0; for (int bn = 0; bn < sn.n_children; ++bn) { long k; if (bn < sn.n_children - 1) { for (int i = 0; i < eltsperbn; ++i) { k = bn * eltsperbn + i; big_val_size += insert_dummy_value(&sn, bn, k); } toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k); sn.totalchildkeylens += (sizeof k); } else { k = bn * eltsperbn; // we want this to be slightly smaller than all the rest of // the data combined, so the halfway mark will be just to its // left and just this element will end up on the right of the split big_val_size -= 1 + (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE +sizeof(((LEAFENTRY)NULL)->keylen) +sizeof(((LEAFENTRY)NULL)->u.clean.vallen)); invariant(big_val_size <= maxbnsize); char * big_val = toku_xmalloc(big_val_size); memset(big_val, k, big_val_size); struct mempool *mp = &BLB(&sn, bn)->buffer_mempool; LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size); toku_free(big_val); r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0); BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(big_element); } } unlink(fname); CACHETABLE ct; FT_HANDLE brt; r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0); r = toku_open_ft_handle(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0); FTNODE nodea, nodeb; DBT splitk; // if we haven't done it right, we should hit the assert in the top of move_leafentries ftleaf_split(brt->ft, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); toku_unpin_ftnode(brt->ft, nodeb); r = toku_close_ft_handle_nolsn(brt, NULL); assert(r == 0); r = toku_cachetable_close(&ct); assert(r == 0); if (splitk.data) { toku_free(splitk.data); } destroy_ftnode_and_internals(&sn); } static void test_split_at_begin(void) { struct ftnode sn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; setup_ftnode_header(&sn); const int nelts = 2 * nodesize / eltsize; const size_t maxbnsize = 2 * nodesize; setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize); size_t totalbytes = 0; for (int bn = 0; bn < sn.n_children; ++bn) { long k; for (int i = 0; i < eltsperbn; ++i) { k = bn * eltsperbn + i; if (bn == 0 && i == 0) { // we'll add the first element later when we know how big // to make it continue; } totalbytes += insert_dummy_value(&sn, bn, k); } if (bn < sn.n_children - 1) { toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k); sn.totalchildkeylens += (sizeof k); } } { // now add the first element int bn = 0; long k = 0; BASEMENTNODE basement = BLB(&sn, bn); struct mempool * mp = &basement->buffer_mempool; // add a few bytes so the halfway mark is definitely inside this // val, which will make it go to the left and everything else to // the right char val[totalbytes + 3]; invariant(totalbytes + 3 <= maxbnsize); memset(val, k, sizeof val); LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, totalbytes + 3); r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0); BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le); totalbytes += leafentry_disksize(le); } unlink(fname); CACHETABLE ct; FT_HANDLE brt; r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0); r = toku_open_ft_handle(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0); FTNODE nodea, nodeb; DBT splitk; // if we haven't done it right, we should hit the assert in the top of move_leafentries ftleaf_split(brt->ft, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); toku_unpin_ftnode(brt->ft, nodeb); r = toku_close_ft_handle_nolsn(brt, NULL); assert(r == 0); r = toku_cachetable_close(&ct); assert(r == 0); if (splitk.data) { toku_free(splitk.data); } destroy_ftnode_and_internals(&sn); } static void test_split_at_end(void) { struct ftnode sn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; setup_ftnode_header(&sn); const int nelts = 2 * nodesize / eltsize; const size_t maxbnsize = 2 * nodesize; setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize); long totalbytes = 0; int bn, i; for (bn = 0; bn < sn.n_children; ++bn) { long k; for (i = 0; i < eltsperbn; ++i) { k = bn * eltsperbn + i; if (bn == sn.n_children - 1 && i == eltsperbn - 1) { BASEMENTNODE basement = BLB(&sn, bn); struct mempool * mp = &basement->buffer_mempool; // add a few bytes so the halfway mark is definitely inside this // val, which will make it go to the left and everything else to // the right, which is nothing, so we actually split at the very end char val[totalbytes + 3]; invariant(totalbytes + 3 <= (long) maxbnsize); memset(val, k, sizeof val); LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, totalbytes + 3); r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0); BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le); totalbytes += leafentry_disksize(le); } else { totalbytes += insert_dummy_value(&sn, bn, k); } } if (bn < sn.n_children - 1) { toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k); sn.totalchildkeylens += (sizeof k); } } unlink(fname); CACHETABLE ct; FT_HANDLE brt; r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0); r = toku_open_ft_handle(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0); FTNODE nodea, nodeb; DBT splitk; // if we haven't done it right, we should hit the assert in the top of move_leafentries ftleaf_split(brt->ft, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); toku_unpin_ftnode(brt->ft, nodeb); r = toku_close_ft_handle_nolsn(brt, NULL); assert(r == 0); r = toku_cachetable_close(&ct); assert(r == 0); if (splitk.data) { toku_free(splitk.data); } destroy_ftnode_and_internals(&sn); } // Maximum node size according to the BRT: 1024 (expected node size after split) // Maximum basement node size: 256 // Actual node size before split: 2048 // Actual basement node size before split: 256 // Start by creating 9 basements, then split node. // Expected result of two nodes with 5 basements each. static void test_split_odd_nodes(void) { struct ftnode sn; int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int r; setup_ftnode_header(&sn); // This will give us 9 children. const int nelts = 2 * (nodesize + 128) / eltsize; setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize); for (int bn = 0; bn < sn.n_children; ++bn) { long k; for (int i = 0; i < eltsperbn; ++i) { k = bn * eltsperbn + i; insert_dummy_value(&sn, bn, k); } if (bn < sn.n_children - 1) { toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k); sn.totalchildkeylens += (sizeof k); } } unlink(fname); CACHETABLE ct; FT_HANDLE brt; r = toku_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0); r = toku_open_ft_handle(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0); FTNODE nodea, nodeb; DBT splitk; // if we haven't done it right, we should hit the assert in the top of move_leafentries ftleaf_split(brt->ft, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); verify_basement_node_msns(nodea, dummy_msn_3884); verify_basement_node_msns(nodeb, dummy_msn_3884); toku_unpin_ftnode(brt->ft, nodeb); r = toku_close_ft_handle_nolsn(brt, NULL); assert(r == 0); r = toku_cachetable_close(&ct); assert(r == 0); if (splitk.data) { toku_free(splitk.data); } destroy_ftnode_and_internals(&sn); } int test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) { test_split_on_boundary(); test_split_with_everything_on_the_left(); test_split_on_boundary_of_last_node(); test_split_at_begin(); test_split_at_end(); test_split_odd_nodes(); return 0; }