/* Copyright (C) 2000-2007 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */ /* based on Wei Dai's algebra.h from CryptoPP */ #ifndef TAO_CRYPT_ALGEBRA_HPP #define TAO_CRYPT_ALGEBRA_HPP #include "integer.hpp" namespace TaoCrypt { // "const Element&" returned by member functions are references // to internal data members. Since each object may have only // one such data member for holding results, the following code // will produce incorrect results: // abcd = group.Add(group.Add(a,b), group.Add(c,d)); // But this should be fine: // abcd = group.Add(a, group.Add(b, group.Add(c,d)); // Abstract Group class TAOCRYPT_NO_VTABLE AbstractGroup : public virtual_base { public: typedef Integer Element; virtual ~AbstractGroup() {} virtual bool Equal(const Element &a, const Element &b) const =0; virtual const Element& Identity() const =0; virtual const Element& Add(const Element &a, const Element &b) const =0; virtual const Element& Inverse(const Element &a) const =0; virtual bool InversionIsFast() const {return false;} virtual const Element& Double(const Element &a) const; virtual const Element& Subtract(const Element &a, const Element &b) const; virtual Element& Accumulate(Element &a, const Element &b) const; virtual Element& Reduce(Element &a, const Element &b) const; virtual Element ScalarMultiply(const Element &a, const Integer &e) const; virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; }; // Abstract Ring class TAOCRYPT_NO_VTABLE AbstractRing : public AbstractGroup { public: typedef Integer Element; AbstractRing() : AbstractGroup() {m_mg.m_pRing = this;} AbstractRing(const AbstractRing &source) : AbstractGroup() {m_mg.m_pRing = this;} AbstractRing& operator=(const AbstractRing &source) {return *this;} virtual bool IsUnit(const Element &a) const =0; virtual const Element& MultiplicativeIdentity() const =0; virtual const Element& Multiply(const Element&, const Element&) const =0; virtual const Element& MultiplicativeInverse(const Element &a) const =0; virtual const Element& Square(const Element &a) const; virtual const Element& Divide(const Element &a, const Element &b) const; virtual Element Exponentiate(const Element &a, const Integer &e) const; virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; virtual void SimultaneousExponentiate(Element *results, const Element&, const Integer *exponents, unsigned int exponentsCount) const; virtual const AbstractGroup& MultiplicativeGroup() const {return m_mg;} private: class MultiplicativeGroupT : public AbstractGroup { public: const AbstractRing& GetRing() const {return *m_pRing;} bool Equal(const Element &a, const Element &b) const {return GetRing().Equal(a, b);} const Element& Identity() const {return GetRing().MultiplicativeIdentity();} const Element& Add(const Element &a, const Element &b) const {return GetRing().Multiply(a, b);} Element& Accumulate(Element &a, const Element &b) const {return a = GetRing().Multiply(a, b);} const Element& Inverse(const Element &a) const {return GetRing().MultiplicativeInverse(a);} const Element& Subtract(const Element &a, const Element &b) const {return GetRing().Divide(a, b);} Element& Reduce(Element &a, const Element &b) const {return a = GetRing().Divide(a, b);} const Element& Double(const Element &a) const {return GetRing().Square(a);} Element ScalarMultiply(const Element &a, const Integer &e) const {return GetRing().Exponentiate(a, e);} Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const {return GetRing().CascadeExponentiate(x, e1, y, e2);} void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);} const AbstractRing* m_pRing; }; MultiplicativeGroupT m_mg; }; // Abstract Euclidean Domain class TAOCRYPT_NO_VTABLE AbstractEuclideanDomain : public AbstractRing { public: typedef Integer Element; virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0; virtual const Element& Mod(const Element &a, const Element &b) const =0; virtual const Element& Gcd(const Element &a, const Element &b) const; protected: mutable Element result; }; // EuclideanDomainOf class EuclideanDomainOf : public AbstractEuclideanDomain { public: typedef Integer Element; EuclideanDomainOf() {} bool Equal(const Element &a, const Element &b) const {return a==b;} const Element& Identity() const {return Element::Zero();} const Element& Add(const Element &a, const Element &b) const {return result = a+b;} Element& Accumulate(Element &a, const Element &b) const {return a+=b;} const Element& Inverse(const Element &a) const {return result = -a;} const Element& Subtract(const Element &a, const Element &b) const {return result = a-b;} Element& Reduce(Element &a, const Element &b) const {return a-=b;} const Element& Double(const Element &a) const {return result = a.Doubled();} const Element& MultiplicativeIdentity() const {return Element::One();} const Element& Multiply(const Element &a, const Element &b) const {return result = a*b;} const Element& Square(const Element &a) const {return result = a.Squared();} bool IsUnit(const Element &a) const {return a.IsUnit();} const Element& MultiplicativeInverse(const Element &a) const {return result = a.MultiplicativeInverse();} const Element& Divide(const Element &a, const Element &b) const {return result = a/b;} const Element& Mod(const Element &a, const Element &b) const {return result = a%b;} void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const {Element::Divide(r, q, a, d);} private: mutable Element result; }; } // namespace #endif // TAO_CRYPT_ALGEBRA_HPP