/***************************************************************************** Copyright (c) 2010, 2013, Oracle and/or its affiliates. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0ftsort.cc Create Full Text Index with (parallel) merge sort Created 10/13/2010 Jimmy Yang *******************************************************/ #include "dict0dict.h" /* dict_table_stats_lock() */ #include "row0merge.h" #include "pars0pars.h" #include "row0ftsort.h" #include "row0merge.h" #include "row0row.h" #include "btr0cur.h" #include "btr0sea.h" /** Read the next record to buffer N. @param N index into array of merge info structure */ #define ROW_MERGE_READ_GET_NEXT(N) \ do { \ b[N] = row_merge_read_rec( \ block[N], buf[N], b[N], index, \ fd[N], &foffs[N], &mrec[N], offsets[N]); \ if (UNIV_UNLIKELY(!b[N])) { \ if (mrec[N]) { \ goto exit; \ } \ } \ } while (0) /** Parallel sort degree */ UNIV_INTERN ulong fts_sort_pll_degree = 2; /*********************************************************************//** Create a temporary "fts sort index" used to merge sort the tokenized doc string. The index has three "fields": 1) Tokenized word, 2) Doc ID (depend on number of records to sort, it can be a 4 bytes or 8 bytes integer value) 3) Word's position in original doc. @return dict_index_t structure for the fts sort index */ UNIV_INTERN dict_index_t* row_merge_create_fts_sort_index( /*============================*/ dict_index_t* index, /*!< in: Original FTS index based on which this sort index is created */ const dict_table_t* table, /*!< in: table that FTS index is being created on */ ibool* opt_doc_id_size) /*!< out: whether to use 4 bytes instead of 8 bytes integer to store Doc ID during sort */ { dict_index_t* new_index; dict_field_t* field; dict_field_t* idx_field; CHARSET_INFO* charset; // FIXME: This name shouldn't be hard coded here. new_index = dict_mem_index_create( index->table->name, "tmp_fts_idx", 0, DICT_FTS, 3); new_index->id = index->id; new_index->table = (dict_table_t*) table; new_index->n_uniq = FTS_NUM_FIELDS_SORT; new_index->n_def = FTS_NUM_FIELDS_SORT; new_index->cached = TRUE; btr_search_index_init(new_index); idx_field = dict_index_get_nth_field(index, 0); charset = fts_index_get_charset(index); /* The first field is on the Tokenized Word */ field = dict_index_get_nth_field(new_index, 0); field->name = NULL; field->prefix_len = 0; field->col = static_cast( mem_heap_alloc(new_index->heap, sizeof(dict_col_t))); field->col->len = FTS_MAX_WORD_LEN; if (strcmp(charset->name, "latin1_swedish_ci") == 0) { field->col->mtype = DATA_VARCHAR; } else { field->col->mtype = DATA_VARMYSQL; } field->col->prtype = idx_field->col->prtype | DATA_NOT_NULL; field->col->mbminmaxlen = idx_field->col->mbminmaxlen; field->fixed_len = 0; /* Doc ID */ field = dict_index_get_nth_field(new_index, 1); field->name = NULL; field->prefix_len = 0; field->col = static_cast( mem_heap_alloc(new_index->heap, sizeof(dict_col_t))); field->col->mtype = DATA_INT; *opt_doc_id_size = FALSE; /* Check whether we can use 4 bytes instead of 8 bytes integer field to hold the Doc ID, thus reduce the overall sort size */ if (DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_ADD_DOC_ID)) { /* If Doc ID column is being added by this create index, then just check the number of rows in the table */ if (dict_table_get_n_rows(table) < MAX_DOC_ID_OPT_VAL) { *opt_doc_id_size = TRUE; } } else { doc_id_t max_doc_id; /* If the Doc ID column is supplied by user, then check the maximum Doc ID in the table */ max_doc_id = fts_get_max_doc_id((dict_table_t*) table); if (max_doc_id && max_doc_id < MAX_DOC_ID_OPT_VAL) { *opt_doc_id_size = TRUE; } } if (*opt_doc_id_size) { field->col->len = sizeof(ib_uint32_t); field->fixed_len = sizeof(ib_uint32_t); } else { field->col->len = FTS_DOC_ID_LEN; field->fixed_len = FTS_DOC_ID_LEN; } field->col->prtype = DATA_NOT_NULL | DATA_BINARY_TYPE; field->col->mbminmaxlen = 0; /* The third field is on the word's position in the original doc */ field = dict_index_get_nth_field(new_index, 2); field->name = NULL; field->prefix_len = 0; field->col = static_cast( mem_heap_alloc(new_index->heap, sizeof(dict_col_t))); field->col->mtype = DATA_INT; field->col->len = 4 ; field->fixed_len = 4; field->col->prtype = DATA_NOT_NULL; field->col->mbminmaxlen = 0; return(new_index); } /*********************************************************************//** Initialize FTS parallel sort structures. @return TRUE if all successful */ UNIV_INTERN ibool row_fts_psort_info_init( /*====================*/ trx_t* trx, /*!< in: transaction */ row_merge_dup_t* dup, /*!< in,own: descriptor of FTS index being created */ const dict_table_t* new_table,/*!< in: table on which indexes are created */ ibool opt_doc_id_size, /*!< in: whether to use 4 bytes instead of 8 bytes integer to store Doc ID during sort */ fts_psort_t** psort, /*!< out: parallel sort info to be instantiated */ fts_psort_t** merge) /*!< out: parallel merge info to be instantiated */ { ulint i; ulint j; fts_psort_common_t* common_info = NULL; fts_psort_t* psort_info = NULL; fts_psort_t* merge_info = NULL; ulint block_size; ibool ret = TRUE; block_size = 3 * srv_sort_buf_size; *psort = psort_info = static_cast(mem_zalloc( fts_sort_pll_degree * sizeof *psort_info)); if (!psort_info) { ut_free(dup); return(FALSE); } /* Common Info for all sort threads */ common_info = static_cast( mem_alloc(sizeof *common_info)); if (!common_info) { ut_free(dup); mem_free(psort_info); return(FALSE); } common_info->dup = dup; common_info->new_table = (dict_table_t*) new_table; common_info->trx = trx; common_info->all_info = psort_info; common_info->sort_event = os_event_create(); common_info->merge_event = os_event_create(); common_info->opt_doc_id_size = opt_doc_id_size; /* There will be FTS_NUM_AUX_INDEX number of "sort buckets" for each parallel sort thread. Each "sort bucket" holds records for a particular "FTS index partition" */ for (j = 0; j < fts_sort_pll_degree; j++) { UT_LIST_INIT(psort_info[j].fts_doc_list); for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { psort_info[j].merge_file[i] = static_cast( mem_zalloc(sizeof(merge_file_t))); if (!psort_info[j].merge_file[i]) { ret = FALSE; goto func_exit; } psort_info[j].merge_buf[i] = row_merge_buf_create( dup->index); if (row_merge_file_create(psort_info[j].merge_file[i]) < 0) { goto func_exit; } /* Need to align memory for O_DIRECT write */ psort_info[j].block_alloc[i] = static_cast(ut_malloc( block_size + 1024)); psort_info[j].merge_block[i] = static_cast( ut_align( psort_info[j].block_alloc[i], 1024)); if (!psort_info[j].merge_block[i]) { ret = FALSE; goto func_exit; } } psort_info[j].child_status = 0; psort_info[j].state = 0; psort_info[j].psort_common = common_info; psort_info[j].error = DB_SUCCESS; psort_info[j].memory_used = 0; mutex_create(fts_pll_tokenize_mutex_key, &psort_info[j].mutex, SYNC_FTS_TOKENIZE); } /* Initialize merge_info structures parallel merge and insert into auxiliary FTS tables (FTS_INDEX_TABLE) */ *merge = merge_info = static_cast( mem_alloc(FTS_NUM_AUX_INDEX * sizeof *merge_info)); for (j = 0; j < FTS_NUM_AUX_INDEX; j++) { merge_info[j].child_status = 0; merge_info[j].state = 0; merge_info[j].psort_common = common_info; } func_exit: if (!ret) { row_fts_psort_info_destroy(psort_info, merge_info); } return(ret); } /*********************************************************************//** Clean up and deallocate FTS parallel sort structures, and close the merge sort files */ UNIV_INTERN void row_fts_psort_info_destroy( /*=======================*/ fts_psort_t* psort_info, /*!< parallel sort info */ fts_psort_t* merge_info) /*!< parallel merge info */ { ulint i; ulint j; if (psort_info) { for (j = 0; j < fts_sort_pll_degree; j++) { for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { if (psort_info[j].merge_file[i]) { row_merge_file_destroy( psort_info[j].merge_file[i]); } if (psort_info[j].block_alloc[i]) { ut_free(psort_info[j].block_alloc[i]); } mem_free(psort_info[j].merge_file[i]); } mutex_free(&psort_info[j].mutex); } os_event_free(merge_info[0].psort_common->sort_event); os_event_free(merge_info[0].psort_common->merge_event); ut_free(merge_info[0].psort_common->dup); mem_free(merge_info[0].psort_common); mem_free(psort_info); } if (merge_info) { mem_free(merge_info); } } /*********************************************************************//** Free up merge buffers when merge sort is done */ UNIV_INTERN void row_fts_free_pll_merge_buf( /*=======================*/ fts_psort_t* psort_info) /*!< in: parallel sort info */ { ulint j; ulint i; if (!psort_info) { return; } for (j = 0; j < fts_sort_pll_degree; j++) { for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { row_merge_buf_free(psort_info[j].merge_buf[i]); } } return; } /*********************************************************************//** Tokenize incoming text data and add to the sort buffer. @return TRUE if the record passed, FALSE if out of space */ static ibool row_merge_fts_doc_tokenize( /*=======================*/ row_merge_buf_t** sort_buf, /*!< in/out: sort buffer */ doc_id_t doc_id, /*!< in: Doc ID */ fts_doc_t* doc, /*!< in: Doc to be tokenized */ dtype_t* word_dtype, /*!< in: data structure for word col */ merge_file_t** merge_file, /*!< in/out: merge file */ ibool opt_doc_id_size,/*!< in: whether to use 4 bytes instead of 8 bytes integer to store Doc ID during sort*/ fts_tokenize_ctx_t* t_ctx) /*!< in/out: tokenize context */ { ulint i; ulint inc; fts_string_t str; ulint len; row_merge_buf_t* buf; dfield_t* field; fts_string_t t_str; ibool buf_full = FALSE; byte str_buf[FTS_MAX_WORD_LEN + 1]; ulint data_size[FTS_NUM_AUX_INDEX]; ulint n_tuple[FTS_NUM_AUX_INDEX]; t_str.f_n_char = 0; t_ctx->buf_used = 0; memset(n_tuple, 0, FTS_NUM_AUX_INDEX * sizeof(ulint)); memset(data_size, 0, FTS_NUM_AUX_INDEX * sizeof(ulint)); /* Tokenize the data and add each word string, its corresponding doc id and position to sort buffer */ for (i = t_ctx->processed_len; i < doc->text.f_len; i += inc) { ib_rbt_bound_t parent; ulint idx = 0; ib_uint32_t position; ulint offset = 0; ulint cur_len = 0; doc_id_t write_doc_id; inc = innobase_mysql_fts_get_token( doc->charset, doc->text.f_str + i, doc->text.f_str + doc->text.f_len, &str, &offset); ut_a(inc > 0); /* Ignore string whose character number is less than "fts_min_token_size" or more than "fts_max_token_size" */ if (str.f_n_char < fts_min_token_size || str.f_n_char > fts_max_token_size) { t_ctx->processed_len += inc; continue; } t_str.f_len = innobase_fts_casedn_str( doc->charset, (char*) str.f_str, str.f_len, (char*) &str_buf, FTS_MAX_WORD_LEN + 1); t_str.f_str = (byte*) &str_buf; /* if "cached_stopword" is defined, ingore words in the stopword list */ if (t_ctx->cached_stopword && rbt_search(t_ctx->cached_stopword, &parent, &t_str) == 0) { t_ctx->processed_len += inc; continue; } /* There are FTS_NUM_AUX_INDEX auxiliary tables, find out which sort buffer to put this word record in */ t_ctx->buf_used = fts_select_index( doc->charset, t_str.f_str, t_str.f_len); buf = sort_buf[t_ctx->buf_used]; ut_a(t_ctx->buf_used < FTS_NUM_AUX_INDEX); idx = t_ctx->buf_used; mtuple_t* mtuple = &buf->tuples[buf->n_tuples + n_tuple[idx]]; field = mtuple->fields = static_cast( mem_heap_alloc(buf->heap, FTS_NUM_FIELDS_SORT * sizeof *field)); /* The first field is the tokenized word */ dfield_set_data(field, t_str.f_str, t_str.f_len); len = dfield_get_len(field); field->type.mtype = word_dtype->mtype; field->type.prtype = word_dtype->prtype | DATA_NOT_NULL; /* Variable length field, set to max size. */ field->type.len = FTS_MAX_WORD_LEN; field->type.mbminmaxlen = word_dtype->mbminmaxlen; cur_len += len; dfield_dup(field, buf->heap); field++; /* The second field is the Doc ID */ ib_uint32_t doc_id_32_bit; if (!opt_doc_id_size) { fts_write_doc_id((byte*) &write_doc_id, doc_id); dfield_set_data( field, &write_doc_id, sizeof(write_doc_id)); } else { mach_write_to_4( (byte*) &doc_id_32_bit, (ib_uint32_t) doc_id); dfield_set_data( field, &doc_id_32_bit, sizeof(doc_id_32_bit)); } len = field->len; ut_ad(len == FTS_DOC_ID_LEN || len == sizeof(ib_uint32_t)); field->type.mtype = DATA_INT; field->type.prtype = DATA_NOT_NULL | DATA_BINARY_TYPE; field->type.len = len; field->type.mbminmaxlen = 0; cur_len += len; dfield_dup(field, buf->heap); ++field; /* The third field is the position */ mach_write_to_4( (byte*) &position, (i + offset + inc - str.f_len + t_ctx->init_pos)); dfield_set_data(field, &position, sizeof(position)); len = dfield_get_len(field); ut_ad(len == sizeof(ib_uint32_t)); field->type.mtype = DATA_INT; field->type.prtype = DATA_NOT_NULL; field->type.len = len; field->type.mbminmaxlen = 0; cur_len += len; dfield_dup(field, buf->heap); /* One variable length column, word with its lenght less than fts_max_token_size, add one extra size and one extra byte */ cur_len += 2; /* Reserve one byte for the end marker of row_merge_block_t. */ if (buf->total_size + data_size[idx] + cur_len >= srv_sort_buf_size - 1) { buf_full = TRUE; break; } /* Increment the number of tuples */ n_tuple[idx]++; t_ctx->processed_len += inc; data_size[idx] += cur_len; } /* Update the data length and the number of new word tuples added in this round of tokenization */ for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { /* The computation of total_size below assumes that no delete-mark flags will be stored and that all fields are NOT NULL and fixed-length. */ sort_buf[i]->total_size += data_size[i]; sort_buf[i]->n_tuples += n_tuple[i]; merge_file[i]->n_rec += n_tuple[i]; t_ctx->rows_added[i] += n_tuple[i]; } if (!buf_full) { /* we pad one byte between text accross two fields */ t_ctx->init_pos += doc->text.f_len + 1; } return(!buf_full); } /*********************************************************************//** Get next doc item from fts_doc_list */ UNIV_INLINE void row_merge_fts_get_next_doc_item( /*============================*/ fts_psort_t* psort_info, /*!< in: psort_info */ fts_doc_item_t** doc_item) /*!< in/out: doc item */ { if (*doc_item != NULL) { ut_free(*doc_item); } mutex_enter(&psort_info->mutex); *doc_item = UT_LIST_GET_FIRST(psort_info->fts_doc_list); if (*doc_item != NULL) { UT_LIST_REMOVE(doc_list, psort_info->fts_doc_list, *doc_item); ut_ad(psort_info->memory_used >= sizeof(fts_doc_item_t) + (*doc_item)->field->len); psort_info->memory_used -= sizeof(fts_doc_item_t) + (*doc_item)->field->len; } mutex_exit(&psort_info->mutex); } /*********************************************************************//** Function performs parallel tokenization of the incoming doc strings. It also performs the initial in memory sort of the parsed records. @return OS_THREAD_DUMMY_RETURN */ UNIV_INTERN os_thread_ret_t fts_parallel_tokenization( /*======================*/ void* arg) /*!< in: psort_info for the thread */ { fts_psort_t* psort_info = (fts_psort_t*) arg; ulint i; fts_doc_item_t* doc_item = NULL; row_merge_buf_t** buf; ibool processed = FALSE; merge_file_t** merge_file; row_merge_block_t** block; int tmpfd[FTS_NUM_AUX_INDEX]; ulint mycount[FTS_NUM_AUX_INDEX]; ib_uint64_t total_rec = 0; ulint num_doc_processed = 0; doc_id_t last_doc_id = 0; ulint zip_size; mem_heap_t* blob_heap = NULL; fts_doc_t doc; dict_table_t* table = psort_info->psort_common->new_table; dtype_t word_dtype; dict_field_t* idx_field; fts_tokenize_ctx_t t_ctx; ulint retried = 0; dberr_t error = DB_SUCCESS; ut_ad(psort_info); buf = psort_info->merge_buf; merge_file = psort_info->merge_file; blob_heap = mem_heap_create(512); memset(&doc, 0, sizeof(doc)); memset(&t_ctx, 0, sizeof(t_ctx)); memset(mycount, 0, FTS_NUM_AUX_INDEX * sizeof(int)); doc.charset = fts_index_get_charset( psort_info->psort_common->dup->index); idx_field = dict_index_get_nth_field( psort_info->psort_common->dup->index, 0); word_dtype.prtype = idx_field->col->prtype; word_dtype.mbminmaxlen = idx_field->col->mbminmaxlen; word_dtype.mtype = (strcmp(doc.charset->name, "latin1_swedish_ci") == 0) ? DATA_VARCHAR : DATA_VARMYSQL; block = psort_info->merge_block; zip_size = dict_table_zip_size(table); row_merge_fts_get_next_doc_item(psort_info, &doc_item); t_ctx.cached_stopword = table->fts->cache->stopword_info.cached_stopword; processed = TRUE; loop: while (doc_item) { dfield_t* dfield = doc_item->field; last_doc_id = doc_item->doc_id; ut_ad (dfield->data != NULL && dfield_get_len(dfield) != UNIV_SQL_NULL); /* If finish processing the last item, update "doc" with strings in the doc_item, otherwise continue processing last item */ if (processed) { byte* data; ulint data_len; dfield = doc_item->field; data = static_cast(dfield_get_data(dfield)); data_len = dfield_get_len(dfield); if (dfield_is_ext(dfield)) { doc.text.f_str = btr_copy_externally_stored_field( &doc.text.f_len, data, zip_size, data_len, blob_heap, NULL); } else { doc.text.f_str = data; doc.text.f_len = data_len; } doc.tokens = 0; t_ctx.processed_len = 0; } else { /* Not yet finish processing the "doc" on hand, continue processing it */ ut_ad(doc.text.f_str); ut_ad(t_ctx.processed_len < doc.text.f_len); } processed = row_merge_fts_doc_tokenize( buf, doc_item->doc_id, &doc, &word_dtype, merge_file, psort_info->psort_common->opt_doc_id_size, &t_ctx); /* Current sort buffer full, need to recycle */ if (!processed) { ut_ad(t_ctx.processed_len < doc.text.f_len); ut_ad(t_ctx.rows_added[t_ctx.buf_used]); break; } num_doc_processed++; if (fts_enable_diag_print && num_doc_processed % 10000 == 1) { ib_logf(IB_LOG_LEVEL_INFO, "number of doc processed %d\n", (int) num_doc_processed); #ifdef FTS_INTERNAL_DIAG_PRINT for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { ib_logf(IB_LOG_LEVEL_INFO, "ID %d, partition %d, word " "%d\n",(int) psort_info->psort_id, (int) i, (int) mycount[i]); } #endif } mem_heap_empty(blob_heap); row_merge_fts_get_next_doc_item(psort_info, &doc_item); if (doc_item && last_doc_id != doc_item->doc_id) { t_ctx.init_pos = 0; } } /* If we run out of current sort buffer, need to sort and flush the sort buffer to disk */ if (t_ctx.rows_added[t_ctx.buf_used] && !processed) { row_merge_buf_sort(buf[t_ctx.buf_used], NULL); row_merge_buf_write(buf[t_ctx.buf_used], merge_file[t_ctx.buf_used], block[t_ctx.buf_used]); if (!row_merge_write(merge_file[t_ctx.buf_used]->fd, merge_file[t_ctx.buf_used]->offset++, block[t_ctx.buf_used])) { error = DB_TEMP_FILE_WRITE_FAILURE; goto func_exit; } UNIV_MEM_INVALID(block[t_ctx.buf_used][0], srv_sort_buf_size); buf[t_ctx.buf_used] = row_merge_buf_empty(buf[t_ctx.buf_used]); mycount[t_ctx.buf_used] += t_ctx.rows_added[t_ctx.buf_used]; t_ctx.rows_added[t_ctx.buf_used] = 0; ut_a(doc_item); goto loop; } /* Parent done scanning, and if finish processing all the docs, exit */ if (psort_info->state == FTS_PARENT_COMPLETE) { if (UT_LIST_GET_LEN(psort_info->fts_doc_list) == 0) { goto exit; } else if (retried > 10000) { ut_ad(!doc_item); /* retied too many times and cannot get new record */ ib_logf(IB_LOG_LEVEL_ERROR, "InnoDB: FTS parallel sort processed " "%lu records, the sort queue has " "%lu records. But sort cannot get " "the next records", num_doc_processed, UT_LIST_GET_LEN( psort_info->fts_doc_list)); goto exit; } } else if (psort_info->state == FTS_PARENT_EXITING) { /* Parent abort */ goto func_exit; } if (doc_item == NULL) { os_thread_yield(); } row_merge_fts_get_next_doc_item(psort_info, &doc_item); if (doc_item != NULL) { if (last_doc_id != doc_item->doc_id) { t_ctx.init_pos = 0; } retried = 0; } else if (psort_info->state == FTS_PARENT_COMPLETE) { retried++; } goto loop; exit: /* Do a final sort of the last (or latest) batch of records in block memory. Flush them to temp file if records cannot be hold in one block memory */ for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { if (t_ctx.rows_added[i]) { row_merge_buf_sort(buf[i], NULL); row_merge_buf_write( buf[i], merge_file[i], block[i]); /* Write to temp file, only if records have been flushed to temp file before (offset > 0): The pseudo code for sort is following: while (there are rows) { tokenize rows, put result in block[] if (block[] runs out) { sort rows; write to temp file with row_merge_write(); offset++; } } # write out the last batch if (offset > 0) { row_merge_write(); offset++; } else { # no need to write anything offset stay as 0 } so if merge_file[i]->offset is 0 when we come to here as the last batch, this means rows have never flush to temp file, it can be held all in memory */ if (merge_file[i]->offset != 0) { if (!row_merge_write(merge_file[i]->fd, merge_file[i]->offset++, block[i])) { error = DB_TEMP_FILE_WRITE_FAILURE; goto func_exit; } UNIV_MEM_INVALID(block[i][0], srv_sort_buf_size); } buf[i] = row_merge_buf_empty(buf[i]); t_ctx.rows_added[i] = 0; } } if (fts_enable_diag_print) { DEBUG_FTS_SORT_PRINT(" InnoDB_FTS: start merge sort\n"); } for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { if (!merge_file[i]->offset) { continue; } tmpfd[i] = row_merge_file_create_low(); if (tmpfd[i] < 0) { error = DB_OUT_OF_MEMORY; goto func_exit; } error = row_merge_sort(psort_info->psort_common->trx, psort_info->psort_common->dup, merge_file[i], block[i], &tmpfd[i]); if (error != DB_SUCCESS) { close(tmpfd[i]); goto func_exit; } total_rec += merge_file[i]->n_rec; close(tmpfd[i]); } func_exit: if (fts_enable_diag_print) { DEBUG_FTS_SORT_PRINT(" InnoDB_FTS: complete merge sort\n"); } mem_heap_free(blob_heap); mutex_enter(&psort_info->mutex); psort_info->error = error; mutex_exit(&psort_info->mutex); if (UT_LIST_GET_LEN(psort_info->fts_doc_list) > 0) { /* child can exit either with error or told by parent. */ ut_ad(error != DB_SUCCESS || psort_info->state == FTS_PARENT_EXITING); } /* Free fts doc list in case of error. */ do { row_merge_fts_get_next_doc_item(psort_info, &doc_item); } while (doc_item != NULL); psort_info->child_status = FTS_CHILD_COMPLETE; os_event_set(psort_info->psort_common->sort_event); psort_info->child_status = FTS_CHILD_EXITING; #ifdef __WIN__ CloseHandle(psort_info->thread_hdl); #endif /*__WIN__ */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } /*********************************************************************//** Start the parallel tokenization and parallel merge sort */ UNIV_INTERN void row_fts_start_psort( /*================*/ fts_psort_t* psort_info) /*!< parallel sort structure */ { ulint i = 0; os_thread_id_t thd_id; for (i = 0; i < fts_sort_pll_degree; i++) { psort_info[i].psort_id = i; psort_info[i].thread_hdl = os_thread_create( fts_parallel_tokenization, (void*) &psort_info[i], &thd_id); } } /*********************************************************************//** Function performs the merge and insertion of the sorted records. @return OS_THREAD_DUMMY_RETURN */ UNIV_INTERN os_thread_ret_t fts_parallel_merge( /*===============*/ void* arg) /*!< in: parallel merge info */ { fts_psort_t* psort_info = (fts_psort_t*) arg; ulint id; ut_ad(psort_info); id = psort_info->psort_id; row_fts_merge_insert(psort_info->psort_common->dup->index, psort_info->psort_common->new_table, psort_info->psort_common->all_info, id); psort_info->child_status = FTS_CHILD_COMPLETE; os_event_set(psort_info->psort_common->merge_event); psort_info->child_status = FTS_CHILD_EXITING; #ifdef __WIN__ CloseHandle(psort_info->thread_hdl); #endif /*__WIN__ */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } /*********************************************************************//** Kick off the parallel merge and insert thread */ UNIV_INTERN void row_fts_start_parallel_merge( /*=========================*/ fts_psort_t* merge_info) /*!< in: parallel sort info */ { int i = 0; os_thread_id_t thd_id; /* Kick off merge/insert threads */ for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { merge_info[i].psort_id = i; merge_info[i].child_status = 0; merge_info[i].thread_hdl = os_thread_create( fts_parallel_merge, (void*) &merge_info[i], &thd_id); } } /********************************************************************//** Insert processed FTS data to auxillary index tables. @return DB_SUCCESS if insertion runs fine */ static __attribute__((nonnull)) dberr_t row_merge_write_fts_word( /*=====================*/ trx_t* trx, /*!< in: transaction */ que_t** ins_graph, /*!< in: Insert query graphs */ fts_tokenizer_word_t* word, /*!< in: sorted and tokenized word */ fts_table_t* fts_table, /*!< in: fts aux table instance */ CHARSET_INFO* charset) /*!< in: charset */ { ulint selected; dberr_t ret = DB_SUCCESS; selected = fts_select_index( charset, word->text.f_str, word->text.f_len); fts_table->suffix = fts_get_suffix(selected); /* Pop out each fts_node in word->nodes write them to auxiliary table */ while (ib_vector_size(word->nodes) > 0) { dberr_t error; fts_node_t* fts_node; fts_node = static_cast(ib_vector_pop(word->nodes)); error = fts_write_node( trx, &ins_graph[selected], fts_table, &word->text, fts_node); if (error != DB_SUCCESS) { fprintf(stderr, "InnoDB: failed to write" " word %s to FTS auxiliary index" " table, error (%s) \n", word->text.f_str, ut_strerr(error)); ret = error; } ut_free(fts_node->ilist); fts_node->ilist = NULL; } return(ret); } /*********************************************************************//** Read sorted FTS data files and insert data tuples to auxillary tables. @return DB_SUCCESS or error number */ UNIV_INTERN void row_fts_insert_tuple( /*=================*/ fts_psort_insert_t* ins_ctx, /*!< in: insert context */ fts_tokenizer_word_t* word, /*!< in: last processed tokenized word */ ib_vector_t* positions, /*!< in: word position */ doc_id_t* in_doc_id, /*!< in: last item doc id */ dtuple_t* dtuple) /*!< in: entry to insert */ { fts_node_t* fts_node = NULL; dfield_t* dfield; doc_id_t doc_id; ulint position; fts_string_t token_word; ulint i; /* Get fts_node for the FTS auxillary INDEX table */ if (ib_vector_size(word->nodes) > 0) { fts_node = static_cast( ib_vector_last(word->nodes)); } if (fts_node == NULL || fts_node->ilist_size > FTS_ILIST_MAX_SIZE) { fts_node = static_cast( ib_vector_push(word->nodes, NULL)); memset(fts_node, 0x0, sizeof(*fts_node)); } /* If dtuple == NULL, this is the last word to be processed */ if (!dtuple) { if (fts_node && ib_vector_size(positions) > 0) { fts_cache_node_add_positions( NULL, fts_node, *in_doc_id, positions); /* Write out the current word */ row_merge_write_fts_word(ins_ctx->trx, ins_ctx->ins_graph, word, &ins_ctx->fts_table, ins_ctx->charset); } return; } /* Get the first field for the tokenized word */ dfield = dtuple_get_nth_field(dtuple, 0); token_word.f_n_char = 0; token_word.f_len = dfield->len; token_word.f_str = static_cast(dfield_get_data(dfield)); if (!word->text.f_str) { fts_utf8_string_dup(&word->text, &token_word, ins_ctx->heap); } /* compare to the last word, to see if they are the same word */ if (innobase_fts_text_cmp(ins_ctx->charset, &word->text, &token_word) != 0) { ulint num_item; /* Getting a new word, flush the last position info for the currnt word in fts_node */ if (ib_vector_size(positions) > 0) { fts_cache_node_add_positions( NULL, fts_node, *in_doc_id, positions); } /* Write out the current word */ row_merge_write_fts_word(ins_ctx->trx, ins_ctx->ins_graph, word, &ins_ctx->fts_table, ins_ctx->charset); /* Copy the new word */ fts_utf8_string_dup(&word->text, &token_word, ins_ctx->heap); num_item = ib_vector_size(positions); /* Clean up position queue */ for (i = 0; i < num_item; i++) { ib_vector_pop(positions); } /* Reset Doc ID */ *in_doc_id = 0; memset(fts_node, 0x0, sizeof(*fts_node)); } /* Get the word's Doc ID */ dfield = dtuple_get_nth_field(dtuple, 1); if (!ins_ctx->opt_doc_id_size) { doc_id = fts_read_doc_id( static_cast(dfield_get_data(dfield))); } else { doc_id = (doc_id_t) mach_read_from_4( static_cast(dfield_get_data(dfield))); } /* Get the word's position info */ dfield = dtuple_get_nth_field(dtuple, 2); position = mach_read_from_4(static_cast(dfield_get_data(dfield))); /* If this is the same word as the last word, and they have the same Doc ID, we just need to add its position info. Otherwise, we will flush position info to the fts_node and initiate a new position vector */ if (!(*in_doc_id) || *in_doc_id == doc_id) { ib_vector_push(positions, &position); } else { ulint num_pos = ib_vector_size(positions); fts_cache_node_add_positions(NULL, fts_node, *in_doc_id, positions); for (i = 0; i < num_pos; i++) { ib_vector_pop(positions); } ib_vector_push(positions, &position); } /* record the current Doc ID */ *in_doc_id = doc_id; } /*********************************************************************//** Propagate a newly added record up one level in the selection tree @return parent where this value propagated to */ static int row_fts_sel_tree_propagate( /*=======================*/ int propogated, /*(parent)); } /*********************************************************************//** Readjust selection tree after popping the root and read a new value @return the new root */ static int row_fts_sel_tree_update( /*====================*/ int* sel_tree, /*(row_fts_sel_tree_propagate( static_cast(propagated), sel_tree, mrec, offsets, index)); } return(sel_tree[0]); } /*********************************************************************//** Build selection tree at a specified level */ static void row_fts_build_sel_tree_level( /*=========================*/ int* sel_tree, /*((1 << level) - 1); num_item = static_cast(1 << level); for (i = 0; i < num_item; i++) { child_left = sel_tree[(start + i) * 2 + 1]; child_right = sel_tree[(start + i) * 2 + 2]; if (child_left == -1) { if (child_right == -1) { sel_tree[start + i] = -1; } else { sel_tree[start + i] = child_right; } continue; } else if (child_right == -1) { sel_tree[start + i] = child_left; continue; } /* Deal with NULL child conditions */ if (!mrec[child_left]) { if (!mrec[child_right]) { sel_tree[start + i] = -1; } else { sel_tree[start + i] = child_right; } continue; } else if (!mrec[child_right]) { sel_tree[start + i] = child_left; continue; } /* Select the smaller one to set parent pointer */ int cmp = cmp_rec_rec_simple( mrec[child_left], mrec[child_right], offsets[child_left], offsets[child_right], index, NULL); sel_tree[start + i] = cmp < 0 ? child_left : child_right; } } /*********************************************************************//** Build a selection tree for merge. The selection tree is a binary tree and should have fts_sort_pll_degree / 2 levels. With root as level 0 @return number of tree levels */ static ulint row_fts_build_sel_tree( /*===================*/ int* sel_tree, /*(treelevel) - 1; i >= 0; i--) { row_fts_build_sel_tree_level( sel_tree, static_cast(i), mrec, offsets, index); } return(treelevel); } /*********************************************************************//** Read sorted file containing index data tuples and insert these data tuples to the index @return DB_SUCCESS or error number */ UNIV_INTERN dberr_t row_fts_merge_insert( /*=================*/ dict_index_t* index, /*!< in: index */ dict_table_t* table, /*!< in: new table */ fts_psort_t* psort_info, /*!< parallel sort info */ ulint id) /* !< in: which auxiliary table's data to insert to */ { const byte** b; mem_heap_t* tuple_heap; mem_heap_t* heap; dberr_t error = DB_SUCCESS; ulint* foffs; ulint** offsets; fts_tokenizer_word_t new_word; ib_vector_t* positions; doc_id_t last_doc_id; ib_alloc_t* heap_alloc; ulint n_bytes; ulint i; mrec_buf_t** buf; int* fd; byte** block; const mrec_t** mrec; ulint count = 0; int* sel_tree; ulint height; ulint start; fts_psort_insert_t ins_ctx; ulint count_diag = 0; ut_ad(index); ut_ad(table); /* We use the insert query graph as the dummy graph needed in the row module call */ ins_ctx.trx = trx_allocate_for_background(); ins_ctx.trx->op_info = "inserting index entries"; ins_ctx.opt_doc_id_size = psort_info[0].psort_common->opt_doc_id_size; heap = mem_heap_create(500 + sizeof(mrec_buf_t)); b = (const byte**) mem_heap_alloc( heap, sizeof (*b) * fts_sort_pll_degree); foffs = (ulint*) mem_heap_alloc( heap, sizeof(*foffs) * fts_sort_pll_degree); offsets = (ulint**) mem_heap_alloc( heap, sizeof(*offsets) * fts_sort_pll_degree); buf = (mrec_buf_t**) mem_heap_alloc( heap, sizeof(*buf) * fts_sort_pll_degree); fd = (int*) mem_heap_alloc(heap, sizeof(*fd) * fts_sort_pll_degree); block = (byte**) mem_heap_alloc( heap, sizeof(*block) * fts_sort_pll_degree); mrec = (const mrec_t**) mem_heap_alloc( heap, sizeof(*mrec) * fts_sort_pll_degree); sel_tree = (int*) mem_heap_alloc( heap, sizeof(*sel_tree) * (fts_sort_pll_degree * 2)); tuple_heap = mem_heap_create(1000); ins_ctx.charset = fts_index_get_charset(index); ins_ctx.heap = heap; for (i = 0; i < fts_sort_pll_degree; i++) { ulint num; num = 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index); offsets[i] = static_cast(mem_heap_zalloc( heap, num * sizeof *offsets[i])); offsets[i][0] = num; offsets[i][1] = dict_index_get_n_fields(index); block[i] = psort_info[i].merge_block[id]; b[i] = psort_info[i].merge_block[id]; fd[i] = psort_info[i].merge_file[id]->fd; foffs[i] = 0; buf[i] = static_cast( mem_heap_alloc(heap, sizeof *buf[i])); count_diag += (int) psort_info[i].merge_file[id]->n_rec; } if (fts_enable_diag_print) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB_FTS: to inserted %lu records\n", (ulong) count_diag); } /* Initialize related variables if creating FTS indexes */ heap_alloc = ib_heap_allocator_create(heap); memset(&new_word, 0, sizeof(new_word)); new_word.nodes = ib_vector_create(heap_alloc, sizeof(fts_node_t), 4); positions = ib_vector_create(heap_alloc, sizeof(ulint), 32); last_doc_id = 0; /* Allocate insert query graphs for FTS auxillary Index Table, note we have FTS_NUM_AUX_INDEX such index tables */ n_bytes = sizeof(que_t*) * (FTS_NUM_AUX_INDEX + 1); ins_ctx.ins_graph = static_cast(mem_heap_alloc(heap, n_bytes)); memset(ins_ctx.ins_graph, 0x0, n_bytes); /* We should set the flags2 with aux_table_name here, in order to get the correct aux table names. */ index->table->flags2 |= DICT_TF2_FTS_AUX_HEX_NAME; DBUG_EXECUTE_IF("innodb_test_wrong_fts_aux_table_name", index->table->flags2 &= ~DICT_TF2_FTS_AUX_HEX_NAME;); ins_ctx.fts_table.type = FTS_INDEX_TABLE; ins_ctx.fts_table.index_id = index->id; ins_ctx.fts_table.table_id = table->id; ins_ctx.fts_table.parent = index->table->name; ins_ctx.fts_table.table = index->table; for (i = 0; i < fts_sort_pll_degree; i++) { if (psort_info[i].merge_file[id]->n_rec == 0) { /* No Rows to read */ mrec[i] = b[i] = NULL; } else { /* Read from temp file only if it has been written to. Otherwise, block memory holds all the sorted records */ if (psort_info[i].merge_file[id]->offset > 0 && (!row_merge_read( fd[i], foffs[i], (row_merge_block_t*) block[i]))) { error = DB_CORRUPTION; goto exit; } ROW_MERGE_READ_GET_NEXT(i); } } height = row_fts_build_sel_tree(sel_tree, (const mrec_t **) mrec, offsets, index); start = (1 << height) - 1; /* Fetch sorted records from sort buffer and insert them into corresponding FTS index auxiliary tables */ for (;;) { dtuple_t* dtuple; ulint n_ext; int min_rec = 0; if (fts_sort_pll_degree <= 2) { while (!mrec[min_rec]) { min_rec++; if (min_rec >= (int) fts_sort_pll_degree) { row_fts_insert_tuple( &ins_ctx, &new_word, positions, &last_doc_id, NULL); goto exit; } } for (i = min_rec + 1; i < fts_sort_pll_degree; i++) { if (!mrec[i]) { continue; } if (cmp_rec_rec_simple( mrec[i], mrec[min_rec], offsets[i], offsets[min_rec], index, NULL) < 0) { min_rec = static_cast(i); } } } else { min_rec = sel_tree[0]; if (min_rec == -1) { row_fts_insert_tuple( &ins_ctx, &new_word, positions, &last_doc_id, NULL); goto exit; } } dtuple = row_rec_to_index_entry_low( mrec[min_rec], index, offsets[min_rec], &n_ext, tuple_heap); row_fts_insert_tuple( &ins_ctx, &new_word, positions, &last_doc_id, dtuple); ROW_MERGE_READ_GET_NEXT(min_rec); if (fts_sort_pll_degree > 2) { if (!mrec[min_rec]) { sel_tree[start + min_rec] = -1; } row_fts_sel_tree_update(sel_tree, start + min_rec, height, mrec, offsets, index); } count++; mem_heap_empty(tuple_heap); } exit: fts_sql_commit(ins_ctx.trx); ins_ctx.trx->op_info = ""; mem_heap_free(tuple_heap); for (i = 0; i < FTS_NUM_AUX_INDEX; i++) { if (ins_ctx.ins_graph[i]) { fts_que_graph_free(ins_ctx.ins_graph[i]); } } trx_free_for_background(ins_ctx.trx); mem_heap_free(heap); if (fts_enable_diag_print) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB_FTS: inserted %lu records\n", (ulong) count); } return(error); }