/****************************************************** The wait array used in synchronization primitives (c) 1995 Innobase Oy Created 9/5/1995 Heikki Tuuri *******************************************************/ #include "sync0arr.h" #ifdef UNIV_NONINL #include "sync0arr.ic" #endif #include "sync0sync.h" #include "sync0rw.h" #include "os0sync.h" #include "os0file.h" #include "srv0srv.h" /* WAIT ARRAY ========== The wait array consists of cells each of which has an an operating system event object created for it. The threads waiting for a mutex, for example, can reserve a cell in the array and suspend themselves to wait for the event to become signaled. When using the wait array, remember to make sure that some thread holding the synchronization object will eventually know that there is a waiter in the array and signal the object, to prevent infinite wait. Why we chose to implement a wait array? First, to make mutexes fast, we had to code our own implementation of them, which only in usually uncommon cases resorts to using slow operating system primitives. Then we had the choice of assigning a unique OS event for each mutex, which would be simpler, or using a global wait array. In some operating systems, the global wait array solution is more efficient and flexible, because we can do with a very small number of OS events, say 200. In NT 3.51, allocating events seems to be a quadratic algorithm, because 10 000 events are created fast, but 100 000 events takes a couple of minutes to create. */ /* A cell where an individual thread may wait suspended until a resource is released. The suspending is implemented using an operating system event semaphore. */ struct sync_cell_struct { /* State of the cell. SC_WAKING_UP means sync_array_struct->n_reserved has been decremented, but the thread in this cell has not waken up yet. When it does, it will set the state to SC_FREE. Note that this is done without the protection of any mutex. */ enum { SC_FREE, SC_RESERVED, SC_WAKING_UP } state; void* wait_object; /* pointer to the object the thread is waiting for; this is not reseted to NULL when a cell is freed. */ mutex_t* old_wait_mutex; /* the latest wait mutex in cell */ rw_lock_t* old_wait_rw_lock;/* the latest wait rw-lock in cell */ ulint request_type; /* lock type requested on the object */ const char* file; /* in debug version file where requested */ ulint line; /* in debug version line where requested */ os_thread_id_t thread; /* thread id of this waiting thread */ ibool waiting; /* TRUE if the thread has already called sync_array_event_wait on this cell */ ibool event_set; /* TRUE if the event is set */ os_event_t event; /* operating system event semaphore handle */ time_t reservation_time;/* time when the thread reserved the wait cell */ }; struct sync_array_struct { ulint n_reserved; /* number of currently reserved cells in the wait array */ ulint n_cells; /* number of cells in the wait array */ sync_cell_t* array; /* pointer to wait array */ ulint protection; /* this flag tells which mutex protects the data */ mutex_t mutex; /* possible database mutex protecting this data structure */ os_mutex_t os_mutex; /* Possible operating system mutex protecting the data structure. As this data structure is used in constructing the database mutex, to prevent infinite recursion in implementation, we fall back to an OS mutex. */ ulint sg_count; /* count of how many times an object has been signalled */ ulint res_count; /* count of cell reservations since creation of the array */ }; #ifdef UNIV_SYNC_DEBUG /********************************************************************** This function is called only in the debug version. Detects a deadlock of one or more threads because of waits of semaphores. */ static ibool sync_array_detect_deadlock( /*=======================*/ /* out: TRUE if deadlock detected */ sync_array_t* arr, /* in: wait array; NOTE! the caller must own the mutex to array */ sync_cell_t* start, /* in: cell where recursive search started */ sync_cell_t* cell, /* in: cell to search */ ulint depth); /* in: recursion depth */ #endif /* UNIV_SYNC_DEBUG */ /********************************************************************* Gets the nth cell in array. */ static sync_cell_t* sync_array_get_nth_cell( /*====================*/ /* out: cell */ sync_array_t* arr, /* in: sync array */ ulint n) /* in: index */ { ut_a(arr); ut_a(n < arr->n_cells); return(arr->array + n); } /********************************************************************** Reserves the mutex semaphore protecting a sync array. */ static void sync_array_enter( /*=============*/ sync_array_t* arr) /* in: sync wait array */ { ulint protection; protection = arr->protection; if (protection == SYNC_ARRAY_OS_MUTEX) { os_mutex_enter(arr->os_mutex); } else if (protection == SYNC_ARRAY_MUTEX) { mutex_enter(&(arr->mutex)); } else { ut_error; } } /********************************************************************** Releases the mutex semaphore protecting a sync array. */ static void sync_array_exit( /*============*/ sync_array_t* arr) /* in: sync wait array */ { ulint protection; protection = arr->protection; if (protection == SYNC_ARRAY_OS_MUTEX) { os_mutex_exit(arr->os_mutex); } else if (protection == SYNC_ARRAY_MUTEX) { mutex_exit(&(arr->mutex)); } else { ut_error; } } /*********************************************************************** Creates a synchronization wait array. It is protected by a mutex which is automatically reserved when the functions operating on it are called. */ sync_array_t* sync_array_create( /*==============*/ /* out, own: created wait array */ ulint n_cells, /* in: number of cells in the array to create */ ulint protection) /* in: either SYNC_ARRAY_OS_MUTEX or SYNC_ARRAY_MUTEX: determines the type of mutex protecting the data structure */ { sync_array_t* arr; sync_cell_t* cell_array; sync_cell_t* cell; ulint i; ut_a(n_cells > 0); /* Allocate memory for the data structures */ arr = ut_malloc(sizeof(sync_array_t)); cell_array = ut_malloc(sizeof(sync_cell_t) * n_cells); arr->n_cells = n_cells; arr->n_reserved = 0; arr->array = cell_array; arr->protection = protection; arr->sg_count = 0; arr->res_count = 0; /* Then create the mutex to protect the wait array complex */ if (protection == SYNC_ARRAY_OS_MUTEX) { arr->os_mutex = os_mutex_create(NULL); } else if (protection == SYNC_ARRAY_MUTEX) { mutex_create(&arr->mutex, SYNC_NO_ORDER_CHECK); } else { ut_error; } for (i = 0; i < n_cells; i++) { cell = sync_array_get_nth_cell(arr, i); cell->state = SC_FREE; cell->wait_object = NULL; /* Create an operating system event semaphore with no name */ cell->event = os_event_create(NULL); cell->event_set = FALSE; /* it is created in reset state */ } return(arr); } /********************************************************************** Frees the resources in a wait array. */ void sync_array_free( /*============*/ sync_array_t* arr) /* in, own: sync wait array */ { ulint i; sync_cell_t* cell; ulint protection; ut_a(arr->n_reserved == 0); sync_array_validate(arr); for (i = 0; i < arr->n_cells; i++) { cell = sync_array_get_nth_cell(arr, i); os_event_free(cell->event); } protection = arr->protection; /* Release the mutex protecting the wait array complex */ if (protection == SYNC_ARRAY_OS_MUTEX) { os_mutex_free(arr->os_mutex); } else if (protection == SYNC_ARRAY_MUTEX) { mutex_free(&(arr->mutex)); } else { ut_error; } ut_free(arr->array); ut_free(arr); } /************************************************************************ Validates the integrity of the wait array. Checks that the number of reserved cells equals the count variable. */ void sync_array_validate( /*================*/ sync_array_t* arr) /* in: sync wait array */ { ulint i; sync_cell_t* cell; ulint count = 0; sync_array_enter(arr); for (i = 0; i < arr->n_cells; i++) { cell = sync_array_get_nth_cell(arr, i); if (cell->state == SC_RESERVED) { count++; } } ut_a(count == arr->n_reserved); sync_array_exit(arr); } /********************************************************************** Reserves a wait array cell for waiting for an object. The event of the cell is reset to nonsignalled state. */ void sync_array_reserve_cell( /*====================*/ sync_array_t* arr, /* in: wait array */ void* object, /* in: pointer to the object to wait for */ ulint type, /* in: lock request type */ const char* file, /* in: file where requested */ ulint line, /* in: line where requested */ ulint* index) /* out: index of the reserved cell */ { sync_cell_t* cell; ulint i; ut_a(object); ut_a(index); sync_array_enter(arr); arr->res_count++; /* Reserve a new cell. */ for (i = 0; i < arr->n_cells; i++) { cell = sync_array_get_nth_cell(arr, i); if (cell->state == SC_FREE) { /* We do not check cell->event_set because it is set outside the protection of the sync array mutex and we had a bug regarding it, and since resetting an event when it is not needed does no harm it is safer always to do it. */ cell->event_set = FALSE; os_event_reset(cell->event); cell->state = SC_RESERVED; cell->reservation_time = time(NULL); cell->thread = os_thread_get_curr_id(); cell->wait_object = object; if (type == SYNC_MUTEX) { cell->old_wait_mutex = object; } else { cell->old_wait_rw_lock = object; } cell->request_type = type; cell->waiting = FALSE; cell->file = file; cell->line = line; arr->n_reserved++; *index = i; sync_array_exit(arr); return; } } ut_error; /* No free cell found */ return; } /********************************************************************** Frees the cell. Note that we don't have any mutex reserved when calling this. */ static void sync_array_free_cell( /*=================*/ sync_array_t* arr, /* in: wait array */ ulint index) /* in: index of the cell in array */ { sync_cell_t* cell; cell = sync_array_get_nth_cell(arr, index); ut_a(cell->state == SC_WAKING_UP); ut_a(cell->wait_object != NULL); cell->state = SC_FREE; } /********************************************************************** Frees the cell safely by reserving the sync array mutex and decrementing n_reserved if necessary. Should only be called from mutex_spin_wait. */ void sync_array_free_cell_protected( /*===========================*/ sync_array_t* arr, /* in: wait array */ ulint index) /* in: index of the cell in array */ { sync_cell_t* cell; sync_array_enter(arr); cell = sync_array_get_nth_cell(arr, index); ut_a(cell->state != SC_FREE); ut_a(cell->wait_object != NULL); /* We only need to decrement n_reserved if it has not already been done by sync_array_signal_object. */ if (cell->state == SC_RESERVED) { ut_a(arr->n_reserved > 0); arr->n_reserved--; } else if (cell->state == SC_WAKING_UP) { /* This is tricky; if we don't wait for the event to be signaled, signal_object can set the state of a cell to SC_WAKING_UP, mutex_spin_wait can call this and set the state to SC_FREE, and then signal_object gets around to calling os_set_event for the cell but since it's already been freed things break horribly. */ sync_array_exit(arr); os_event_wait(cell->event); sync_array_enter(arr); } cell->state = SC_FREE; sync_array_exit(arr); } /********************************************************************** This function should be called when a thread starts to wait on a wait array cell. In the debug version this function checks if the wait for a semaphore will result in a deadlock, in which case prints info and asserts. */ void sync_array_wait_event( /*==================*/ sync_array_t* arr, /* in: wait array */ ulint index) /* in: index of the reserved cell */ { sync_cell_t* cell; os_event_t event; ut_a(arr); cell = sync_array_get_nth_cell(arr, index); ut_a((cell->state == SC_RESERVED) || (cell->state == SC_WAKING_UP)); ut_a(cell->wait_object); ut_a(!cell->waiting); ut_ad(os_thread_get_curr_id() == cell->thread); event = cell->event; cell->waiting = TRUE; #ifdef UNIV_SYNC_DEBUG /* We use simple enter to the mutex below, because if we cannot acquire it at once, mutex_enter would call recursively sync_array routines, leading to trouble. rw_lock_debug_mutex freezes the debug lists. */ sync_array_enter(arr); rw_lock_debug_mutex_enter(); if (TRUE == sync_array_detect_deadlock(arr, cell, cell, 0)) { fputs("########################################\n", stderr); ut_error; } rw_lock_debug_mutex_exit(); sync_array_exit(arr); #endif os_event_wait(event); sync_array_free_cell(arr, index); } /********************************************************************** Reports info of a wait array cell. Note: sync_array_print_long_waits() calls this without mutex protection. */ static void sync_array_cell_print( /*==================*/ FILE* file, /* in: file where to print */ sync_cell_t* cell) /* in: sync cell */ { mutex_t* mutex; rw_lock_t* rwlock; ulint type; type = cell->request_type; fprintf(file, "--Thread %lu has waited at %s line %lu" " for %.2f seconds the semaphore:\n", (ulong) os_thread_pf(cell->thread), cell->file, (ulong) cell->line, difftime(time(NULL), cell->reservation_time)); fprintf(file, "Wait array cell state %lu\n", (ulong)cell->state); /* If the memory area pointed to by old_wait_mutex / old_wait_rw_lock has been freed, this can crash. */ if (cell->state != SC_RESERVED) { /* If cell has this state, then even if we are holding the sync array mutex, the wait object may get freed meanwhile. Do not print the wait object then. */ } else if (type == SYNC_MUTEX) { /* We use old_wait_mutex in case the cell has already been freed meanwhile */ mutex = cell->old_wait_mutex; fprintf(file, "Mutex at %p created file %s line %lu, lock var %lu\n" #ifdef UNIV_SYNC_DEBUG "Last time reserved in file %s line %lu, " #endif /* UNIV_SYNC_DEBUG */ "waiters flag %lu\n", (void*) mutex, mutex->cfile_name, (ulong) mutex->cline, (ulong) mutex->lock_word, #ifdef UNIV_SYNC_DEBUG mutex->file_name, (ulong) mutex->line, #endif /* UNIV_SYNC_DEBUG */ (ulong) mutex->waiters); } else if (type == RW_LOCK_EX || type == RW_LOCK_SHARED) { fputs(type == RW_LOCK_EX ? "X-lock on" : "S-lock on", file); rwlock = cell->old_wait_rw_lock; fprintf(file, " RW-latch at %p created in file %s line %lu\n", (void*) rwlock, rwlock->cfile_name, (ulong) rwlock->cline); if (rwlock->writer != RW_LOCK_NOT_LOCKED) { fprintf(file, "a writer (thread id %lu) has" " reserved it in mode %s", (ulong) os_thread_pf(rwlock->writer_thread), rwlock->writer == RW_LOCK_EX ? " exclusive\n" : " wait exclusive\n"); } fprintf(file, "number of readers %lu, waiters flag %lu\n" "Last time read locked in file %s line %lu\n" "Last time write locked in file %s line %lu\n", (ulong) rwlock->reader_count, (ulong) rwlock->waiters, rwlock->last_s_file_name, (ulong) rwlock->last_s_line, rwlock->last_x_file_name, (ulong) rwlock->last_x_line); } else { ut_error; } if (cell->event_set) { fputs("wait is ending\n", file); } } #ifdef UNIV_SYNC_DEBUG /********************************************************************** Looks for a cell with the given thread id. */ static sync_cell_t* sync_array_find_thread( /*===================*/ /* out: pointer to cell or NULL if not found */ sync_array_t* arr, /* in: wait array */ os_thread_id_t thread) /* in: thread id */ { ulint i; sync_cell_t* cell; for (i = 0; i < arr->n_cells; i++) { cell = sync_array_get_nth_cell(arr, i); if ((cell->state == SC_RESERVED) && os_thread_eq(cell->thread, thread)) { return(cell); /* Found */ } } return(NULL); /* Not found */ } /********************************************************************** Recursion step for deadlock detection. */ static ibool sync_array_deadlock_step( /*=====================*/ /* out: TRUE if deadlock detected */ sync_array_t* arr, /* in: wait array; NOTE! the caller must own the mutex to array */ sync_cell_t* start, /* in: cell where recursive search started */ os_thread_id_t thread, /* in: thread to look at */ ulint pass, /* in: pass value */ ulint depth) /* in: recursion depth */ { sync_cell_t* new; ibool ret; depth++; if (pass != 0) { /* If pass != 0, then we do not know which threads are responsible of releasing the lock, and no deadlock can be detected. */ return(FALSE); } new = sync_array_find_thread(arr, thread); if (new == start) { /* Stop running of other threads */ ut_dbg_stop_threads = TRUE; /* Deadlock */ fputs("########################################\n" "DEADLOCK of threads detected!\n", stderr); return(TRUE); } else if (new) { ret = sync_array_detect_deadlock(arr, start, new, depth); if (ret) { return(TRUE); } } return(FALSE); } /********************************************************************** This function is called only in the debug version. Detects a deadlock of one or more threads because of waits of semaphores. */ static ibool sync_array_detect_deadlock( /*=======================*/ /* out: TRUE if deadlock detected */ sync_array_t* arr, /* in: wait array; NOTE! the caller must own the mutex to array */ sync_cell_t* start, /* in: cell where recursive search started */ sync_cell_t* cell, /* in: cell to search */ ulint depth) /* in: recursion depth */ { mutex_t* mutex; rw_lock_t* lock; os_thread_id_t thread; ibool ret; rw_lock_debug_t*debug; ut_a(arr && start && cell); ut_ad(cell->wait_object); ut_ad(os_thread_get_curr_id() == start->thread); ut_ad(depth < 100); depth++; if (cell->event_set || !cell->waiting) { return(FALSE); /* No deadlock here */ } if (cell->request_type == SYNC_MUTEX) { mutex = cell->wait_object; if (mutex_get_lock_word(mutex) != 0) { thread = mutex->thread_id; /* Note that mutex->thread_id above may be also OS_THREAD_ID_UNDEFINED, because the thread which held the mutex maybe has not yet updated the value, or it has already released the mutex: in this case no deadlock can occur, as the wait array cannot contain a thread with ID_UNDEFINED value. */ ret = sync_array_deadlock_step(arr, start, thread, 0, depth); if (ret) { fprintf(stderr, "Mutex %p owned by thread %lu" " file %s line %lu\n", (void*) mutex, (ulong) os_thread_pf(mutex->thread_id), mutex->file_name, (ulong) mutex->line); sync_array_cell_print(stderr, cell); return(TRUE); } } return(FALSE); /* No deadlock */ } else if (cell->request_type == RW_LOCK_EX) { lock = cell->wait_object; debug = UT_LIST_GET_FIRST(lock->debug_list); while (debug != NULL) { thread = debug->thread_id; if (((debug->lock_type == RW_LOCK_EX) && !os_thread_eq(thread, cell->thread)) || ((debug->lock_type == RW_LOCK_WAIT_EX) && !os_thread_eq(thread, cell->thread)) || (debug->lock_type == RW_LOCK_SHARED)) { /* The (wait) x-lock request can block infinitely only if someone (can be also cell thread) is holding s-lock, or someone (cannot be cell thread) (wait) x-lock, and he is blocked by start thread */ ret = sync_array_deadlock_step( arr, start, thread, debug->pass, depth); if (ret) { print: fprintf(stderr, "rw-lock %p ", (void*) lock); sync_array_cell_print(stderr, cell); rw_lock_debug_print(debug); return(TRUE); } } debug = UT_LIST_GET_NEXT(list, debug); } return(FALSE); } else if (cell->request_type == RW_LOCK_SHARED) { lock = cell->wait_object; debug = UT_LIST_GET_FIRST(lock->debug_list); while (debug != NULL) { thread = debug->thread_id; if ((debug->lock_type == RW_LOCK_EX) || (debug->lock_type == RW_LOCK_WAIT_EX)) { /* The s-lock request can block infinitely only if someone (can also be cell thread) is holding (wait) x-lock, and he is blocked by start thread */ ret = sync_array_deadlock_step( arr, start, thread, debug->pass, depth); if (ret) { goto print; } } debug = UT_LIST_GET_NEXT(list, debug); } return(FALSE); } else { ut_error; } return(TRUE); /* Execution never reaches this line: for compiler fooling only */ } #endif /* UNIV_SYNC_DEBUG */ /********************************************************************** Determines if we can wake up the thread waiting for a sempahore. */ static ibool sync_arr_cell_can_wake_up( /*======================*/ sync_cell_t* cell) /* in: cell to search */ { mutex_t* mutex; rw_lock_t* lock; if (cell->request_type == SYNC_MUTEX) { mutex = cell->wait_object; if (mutex_get_lock_word(mutex) == 0) { return(TRUE); } } else if (cell->request_type == RW_LOCK_EX) { lock = cell->wait_object; if (rw_lock_get_reader_count(lock) == 0 && rw_lock_get_writer(lock) == RW_LOCK_NOT_LOCKED) { return(TRUE); } if (rw_lock_get_reader_count(lock) == 0 && rw_lock_get_writer(lock) == RW_LOCK_WAIT_EX && os_thread_eq(lock->writer_thread, cell->thread)) { return(TRUE); } } else if (cell->request_type == RW_LOCK_SHARED) { lock = cell->wait_object; if (rw_lock_get_writer(lock) == RW_LOCK_NOT_LOCKED) { return(TRUE); } } return(FALSE); } /************************************************************************** Looks for the cells in the wait array which refer to the wait object specified, and sets their corresponding events to the signaled state. In this way releases the threads waiting for the object to contend for the object. It is possible that no such cell is found, in which case does nothing. */ void sync_array_signal_object( /*=====================*/ sync_array_t* arr, /* in: wait array */ void* object) /* in: wait object */ { sync_cell_t* cell; ulint count; ulint i; ulint res_count; /* We store the addresses of cells we need to signal and signal them only after we have released the sync array's mutex (for performance reasons). cell_count is the number of such cells, and cell_ptr points to the first one. If there are less than UT_ARR_SIZE(cells) of them, cell_ptr == &cells[0], otherwise cell_ptr points to malloc'd memory that we must free. */ sync_cell_t* cells[100]; sync_cell_t** cell_ptr = &cells[0]; ulint cell_count = 0; ulint cell_max_count = UT_ARR_SIZE(cells); ut_a(100 == cell_max_count); sync_array_enter(arr); arr->sg_count++; i = 0; count = 0; /* We need to store this to a local variable because it is modified inside the loop */ res_count = arr->n_reserved; while (count < res_count) { cell = sync_array_get_nth_cell(arr, i); if (cell->state == SC_RESERVED) { count++; if (cell->wait_object == object) { cell->state = SC_WAKING_UP; ut_a(arr->n_reserved > 0); arr->n_reserved--; if (cell_count == cell_max_count) { sync_cell_t** old_cell_ptr = cell_ptr; size_t old_size, new_size; old_size = cell_max_count * sizeof(sync_cell_t*); cell_max_count *= 2; new_size = cell_max_count * sizeof(sync_cell_t*); cell_ptr = malloc(new_size); ut_a(cell_ptr); memcpy(cell_ptr, old_cell_ptr, old_size); if (old_cell_ptr != &cells[0]) { free(old_cell_ptr); } } cell_ptr[cell_count] = cell; cell_count++; } } i++; } sync_array_exit(arr); for (i = 0; i < cell_count; i++) { cell = cell_ptr[i]; cell->event_set = TRUE; os_event_set(cell->event); } if (cell_ptr != &cells[0]) { free(cell_ptr); } } /************************************************************************** If the wakeup algorithm does not work perfectly at semaphore relases, this function will do the waking (see the comment in mutex_exit). This function should be called about every 1 second in the server. Note that there's a race condition between this thread and mutex_exit changing the lock_word and calling signal_object, so sometimes this finds threads to wake up even when nothing has gone wrong. */ void sync_arr_wake_threads_if_sema_free(void) /*====================================*/ { sync_array_t* arr = sync_primary_wait_array; sync_cell_t* cell; ulint count; ulint i; ulint res_count; sync_array_enter(arr); i = 0; count = 0; /* We need to store this to a local variable because it is modified inside the loop */ res_count = arr->n_reserved; while (count < res_count) { cell = sync_array_get_nth_cell(arr, i); if (cell->state == SC_RESERVED) { count++; if (sync_arr_cell_can_wake_up(cell)) { cell->state = SC_WAKING_UP; cell->event_set = TRUE; os_event_set(cell->event); ut_a(arr->n_reserved > 0); arr->n_reserved--; } } i++; } sync_array_exit(arr); } /************************************************************************** Prints warnings of long semaphore waits to stderr. */ ibool sync_array_print_long_waits(void) /*=============================*/ /* out: TRUE if fatal semaphore wait threshold was exceeded */ { sync_cell_t* cell; ibool old_val; ibool noticed = FALSE; ulint i; ulint fatal_timeout = srv_fatal_semaphore_wait_threshold; ibool fatal = FALSE; for (i = 0; i < sync_primary_wait_array->n_cells; i++) { cell = sync_array_get_nth_cell(sync_primary_wait_array, i); if ((cell->state != SC_FREE) && difftime(time(NULL), cell->reservation_time) > 240) { fputs("InnoDB: Warning: a long semaphore wait:\n", stderr); sync_array_cell_print(stderr, cell); noticed = TRUE; } if ((cell->state != SC_FREE) && difftime(time(NULL), cell->reservation_time) > fatal_timeout) { fatal = TRUE; } } if (noticed) { fprintf(stderr, "InnoDB: ###### Starts InnoDB Monitor" " for 30 secs to print diagnostic info:\n"); old_val = srv_print_innodb_monitor; /* If some crucial semaphore is reserved, then also the InnoDB Monitor can hang, and we do not get diagnostics. Since in many cases an InnoDB hang is caused by a pwrite() or a pread() call hanging inside the operating system, let us print right now the values of pending calls of these. */ fprintf(stderr, "InnoDB: Pending preads %lu, pwrites %lu\n", (ulong)os_file_n_pending_preads, (ulong)os_file_n_pending_pwrites); srv_print_innodb_monitor = TRUE; os_event_set(srv_lock_timeout_thread_event); os_thread_sleep(30000000); srv_print_innodb_monitor = old_val; fprintf(stderr, "InnoDB: ###### Diagnostic info printed" " to the standard error stream\n"); } return(fatal); } /************************************************************************** Prints info of the wait array. */ static void sync_array_output_info( /*===================*/ FILE* file, /* in: file where to print */ sync_array_t* arr) /* in: wait array; NOTE! caller must own the mutex */ { sync_cell_t* cell; ulint i; fprintf(file, "OS WAIT ARRAY INFO: reservation count %ld," " signal count %ld\n", (long) arr->res_count, (long) arr->sg_count); for (i = 0; i < arr->n_cells; i++) { cell = sync_array_get_nth_cell(arr, i); if (cell->state != SC_FREE) { sync_array_cell_print(file, cell); } } } /************************************************************************** Prints info of the wait array. */ void sync_array_print_info( /*==================*/ FILE* file, /* in: file where to print */ sync_array_t* arr) /* in: wait array */ { sync_array_enter(arr); sync_array_output_info(file, arr); sync_array_exit(arr); }