/****************************************************** Hash storage. Provides a data structure that stores chunks of data in its own storage, avoiding duplicates. (c) 2007 Innobase Oy Created September 22, 2007 Vasil Dimov *******************************************************/ #include "univ.i" #include "ha0storage.h" #include "hash0hash.h" #include "mem0mem.h" #include "ut0rnd.h" #ifdef UNIV_NONINL #include "ha0storage.ic" #endif /*********************************************************************** Retrieves a data from a storage. If it is present, a pointer to the stored copy of data is returned, otherwise NULL is returned. */ static const void* ha_storage_get( /*===========*/ ha_storage_t* storage, /* in: hash storage */ const void* data, /* in: data to check for */ ulint data_len) /* in: data length */ { ha_storage_node_t* node; ulint fold; /* avoid repetitive calls to ut_fold_binary() in the HASH_SEARCH macro */ fold = ut_fold_binary(data, data_len); #define IS_FOUND \ node->data_len == data_len && memcmp(node->data, data, data_len) == 0 HASH_SEARCH( next, /* node->"next" */ storage->hash, /* the hash table */ fold, /* key */ ha_storage_node_t*, /* type of node->next */ node, /* auxiliary variable */ IS_FOUND); /* search criteria */ if (node == NULL) { return(NULL); } /* else */ return(node->data); } /*********************************************************************** Copies data into the storage and returns a pointer to the copy. If the same data chunk is already present, then pointer to it is returned. Data chunks are considered to be equal if len1 == len2 and memcmp(data1, data2, len1) == 0. If "data" is not present (and thus data_len bytes need to be allocated) and the size of storage is going to become more than "memlim" then "data" is not added and NULL is returned. To disable this behavior "memlim" can be set to 0, which stands for "no limit". */ UNIV_INTERN const void* ha_storage_put_memlim( /*==================*/ ha_storage_t* storage, /* in/out: hash storage */ const void* data, /* in: data to store */ ulint data_len, /* in: data length */ ulint memlim) /* in: memory limit to obey */ { void* raw; ha_storage_node_t* node; const void* data_copy; ulint fold; /* check if data chunk is already present */ data_copy = ha_storage_get(storage, data, data_len); if (data_copy != NULL) { return(data_copy); } /* not present */ /* check if we are allowed to allocate data_len bytes */ if (memlim > 0 && ha_storage_get_size(storage) + data_len > memlim) { return(NULL); } /* we put the auxiliary node struct and the data itself in one continuous block */ raw = mem_heap_alloc(storage->heap, sizeof(ha_storage_node_t) + data_len); node = (ha_storage_node_t*) raw; data_copy = (byte*) raw + sizeof(*node); memcpy((byte*) raw + sizeof(*node), data, data_len); node->data_len = data_len; node->data = data_copy; /* avoid repetitive calls to ut_fold_binary() in the HASH_INSERT macro */ fold = ut_fold_binary(data, data_len); HASH_INSERT( ha_storage_node_t, /* type used in the hash chain */ next, /* node->"next" */ storage->hash, /* the hash table */ fold, /* key */ node); /* add this data to the hash */ /* the output should not be changed because it will spoil the hash table */ return(data_copy); } #ifdef UNIV_COMPILE_TEST_FUNCS void test_ha_storage() { ha_storage_t* storage; char buf[1024]; int i; const void* stored[256]; const void* p; storage = ha_storage_create(0, 0); for (i = 0; i < 256; i++) { memset(buf, i, sizeof(buf)); stored[i] = ha_storage_put(storage, buf, sizeof(buf)); } //ha_storage_empty(&storage); for (i = 255; i >= 0; i--) { memset(buf, i, sizeof(buf)); p = ha_storage_put(storage, buf, sizeof(buf)); if (p != stored[i]) { fprintf(stderr, "ha_storage_put() returned %p " "instead of %p, i=%d\n", p, stored[i], i); return; } } fprintf(stderr, "all ok\n"); ha_storage_free(storage); } #endif /* UNIV_COMPILE_TEST_FUNCS */