/***************************************************************************** Copyright (c) 1995, 2010, Innobase Oy. All Rights Reserved. Copyright (c) 2008, Google Inc. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /**************************************************//** @file buf/buf0buf.c The database buffer buf_pool Created 11/5/1995 Heikki Tuuri *******************************************************/ #include "buf0buf.h" #ifdef UNIV_NONINL #include "buf0buf.ic" #endif #include "mem0mem.h" #include "btr0btr.h" #include "fil0fil.h" #ifndef UNIV_HOTBACKUP #include "buf0buddy.h" #include "lock0lock.h" #include "btr0sea.h" #include "ibuf0ibuf.h" #include "trx0undo.h" #include "log0log.h" #endif /* !UNIV_HOTBACKUP */ #include "srv0srv.h" #include "dict0dict.h" #include "log0recv.h" #include "page0zip.h" #include "trx0trx.h" #include "srv0start.h" /* prototypes for new functions added to ha_innodb.cc */ trx_t* innobase_get_trx(); inline void _increment_page_get_statistics(buf_block_t* block, trx_t* trx) { ulint block_hash; ulint block_hash_byte; byte block_hash_offset; ut_ad(block); if (!innobase_get_slow_log() || !trx || !trx->take_stats) return; if (!trx->distinct_page_access_hash) { trx->distinct_page_access_hash = mem_alloc(DPAH_SIZE); memset(trx->distinct_page_access_hash, 0, DPAH_SIZE); } block_hash = ut_hash_ulint((block->page.space << 20) + block->page.space + block->page.offset, DPAH_SIZE << 3); block_hash_byte = block_hash >> 3; block_hash_offset = (byte) block_hash & 0x07; if (block_hash_byte < 0 || block_hash_byte >= DPAH_SIZE) fprintf(stderr, "!!! block_hash_byte = %lu block_hash_offset = %lu !!!\n", block_hash_byte, block_hash_offset); if (block_hash_offset < 0 || block_hash_offset > 7) fprintf(stderr, "!!! block_hash_byte = %lu block_hash_offset = %lu !!!\n", block_hash_byte, block_hash_offset); if ((trx->distinct_page_access_hash[block_hash_byte] & ((byte) 0x01 << block_hash_offset)) == 0) trx->distinct_page_access++; trx->distinct_page_access_hash[block_hash_byte] |= (byte) 0x01 << block_hash_offset; return; } /* IMPLEMENTATION OF THE BUFFER POOL ================================= Performance improvement: ------------------------ Thread scheduling in NT may be so slow that the OS wait mechanism should not be used even in waiting for disk reads to complete. Rather, we should put waiting query threads to the queue of waiting jobs, and let the OS thread do something useful while the i/o is processed. In this way we could remove most OS thread switches in an i/o-intensive benchmark like TPC-C. A possibility is to put a user space thread library between the database and NT. User space thread libraries might be very fast. SQL Server 7.0 can be configured to use 'fibers' which are lightweight threads in NT. These should be studied. Buffer frames and blocks ------------------------ Following the terminology of Gray and Reuter, we call the memory blocks where file pages are loaded buffer frames. For each buffer frame there is a control block, or shortly, a block, in the buffer control array. The control info which does not need to be stored in the file along with the file page, resides in the control block. Buffer pool struct ------------------ The buffer buf_pool contains a single mutex which protects all the control data structures of the buf_pool. The content of a buffer frame is protected by a separate read-write lock in its control block, though. These locks can be locked and unlocked without owning the buf_pool mutex. The OS events in the buf_pool struct can be waited for without owning the buf_pool mutex. The buf_pool mutex is a hot-spot in main memory, causing a lot of memory bus traffic on multiprocessor systems when processors alternately access the mutex. On our Pentium, the mutex is accessed maybe every 10 microseconds. We gave up the solution to have mutexes for each control block, for instance, because it seemed to be complicated. A solution to reduce mutex contention of the buf_pool mutex is to create a separate mutex for the page hash table. On Pentium, accessing the hash table takes 2 microseconds, about half of the total buf_pool mutex hold time. Control blocks -------------- The control block contains, for instance, the bufferfix count which is incremented when a thread wants a file page to be fixed in a buffer frame. The bufferfix operation does not lock the contents of the frame, however. For this purpose, the control block contains a read-write lock. The buffer frames have to be aligned so that the start memory address of a frame is divisible by the universal page size, which is a power of two. We intend to make the buffer buf_pool size on-line reconfigurable, that is, the buf_pool size can be changed without closing the database. Then the database administarator may adjust it to be bigger at night, for example. The control block array must contain enough control blocks for the maximum buffer buf_pool size which is used in the particular database. If the buf_pool size is cut, we exploit the virtual memory mechanism of the OS, and just refrain from using frames at high addresses. Then the OS can swap them to disk. The control blocks containing file pages are put to a hash table according to the file address of the page. We could speed up the access to an individual page by using "pointer swizzling": we could replace the page references on non-leaf index pages by direct pointers to the page, if it exists in the buf_pool. We could make a separate hash table where we could chain all the page references in non-leaf pages residing in the buf_pool, using the page reference as the hash key, and at the time of reading of a page update the pointers accordingly. Drawbacks of this solution are added complexity and, possibly, extra space required on non-leaf pages for memory pointers. A simpler solution is just to speed up the hash table mechanism in the database, using tables whose size is a power of 2. Lists of blocks --------------- There are several lists of control blocks. The free list (buf_pool->free) contains blocks which are currently not used. The common LRU list contains all the blocks holding a file page except those for which the bufferfix count is non-zero. The pages are in the LRU list roughly in the order of the last access to the page, so that the oldest pages are at the end of the list. We also keep a pointer to near the end of the LRU list, which we can use when we want to artificially age a page in the buf_pool. This is used if we know that some page is not needed again for some time: we insert the block right after the pointer, causing it to be replaced sooner than would noramlly be the case. Currently this aging mechanism is used for read-ahead mechanism of pages, and it can also be used when there is a scan of a full table which cannot fit in the memory. Putting the pages near the of the LRU list, we make sure that most of the buf_pool stays in the main memory, undisturbed. The unzip_LRU list contains a subset of the common LRU list. The blocks on the unzip_LRU list hold a compressed file page and the corresponding uncompressed page frame. A block is in unzip_LRU if and only if the predicate buf_page_belongs_to_unzip_LRU(&block->page) holds. The blocks in unzip_LRU will be in same order as they are in the common LRU list. That is, each manipulation of the common LRU list will result in the same manipulation of the unzip_LRU list. The chain of modified blocks (buf_pool->flush_list) contains the blocks holding file pages that have been modified in the memory but not written to disk yet. The block with the oldest modification which has not yet been written to disk is at the end of the chain. The chain of unmodified compressed blocks (buf_pool->zip_clean) contains the control blocks (buf_page_t) of those compressed pages that are not in buf_pool->flush_list and for which no uncompressed page has been allocated in the buffer pool. The control blocks for uncompressed pages are accessible via buf_block_t objects that are reachable via buf_pool->chunks[]. The chains of free memory blocks (buf_pool->zip_free[]) are used by the buddy allocator (buf0buddy.c) to keep track of currently unused memory blocks of size sizeof(buf_page_t)..UNIV_PAGE_SIZE / 2. These blocks are inside the UNIV_PAGE_SIZE-sized memory blocks of type BUF_BLOCK_MEMORY that the buddy allocator requests from the buffer pool. The buddy allocator is solely used for allocating control blocks for compressed pages (buf_page_t) and compressed page frames. Loading a file page ------------------- First, a victim block for replacement has to be found in the buf_pool. It is taken from the free list or searched for from the end of the LRU-list. An exclusive lock is reserved for the frame, the io_fix field is set in the block fixing the block in buf_pool, and the io-operation for loading the page is queued. The io-handler thread releases the X-lock on the frame and resets the io_fix field when the io operation completes. A thread may request the above operation using the function buf_page_get(). It may then continue to request a lock on the frame. The lock is granted when the io-handler releases the x-lock. Read-ahead ---------- The read-ahead mechanism is intended to be intelligent and isolated from the semantically higher levels of the database index management. From the higher level we only need the information if a file page has a natural successor or predecessor page. On the leaf level of a B-tree index, these are the next and previous pages in the natural order of the pages. Let us first explain the read-ahead mechanism when the leafs of a B-tree are scanned in an ascending or descending order. When a read page is the first time referenced in the buf_pool, the buffer manager checks if it is at the border of a so-called linear read-ahead area. The tablespace is divided into these areas of size 64 blocks, for example. So if the page is at the border of such an area, the read-ahead mechanism checks if all the other blocks in the area have been accessed in an ascending or descending order. If this is the case, the system looks at the natural successor or predecessor of the page, checks if that is at the border of another area, and in this case issues read-requests for all the pages in that area. Maybe we could relax the condition that all the pages in the area have to be accessed: if data is deleted from a table, there may appear holes of unused pages in the area. A different read-ahead mechanism is used when there appears to be a random access pattern to a file. If a new page is referenced in the buf_pool, and several pages of its random access area (for instance, 32 consecutive pages in a tablespace) have recently been referenced, we may predict that the whole area may be needed in the near future, and issue the read requests for the whole area. */ #ifndef UNIV_HOTBACKUP /** Value in microseconds */ static const int WAIT_FOR_READ = 5000; /** Number of attemtps made to read in a page in the buffer pool */ static const ulint BUF_PAGE_READ_MAX_RETRIES = 100; /** The buffer buf_pool of the database */ UNIV_INTERN buf_pool_t* buf_pool = NULL; /** mutex protecting the buffer pool struct and control blocks, except the read-write lock in them */ UNIV_INTERN mutex_t buf_pool_mutex; UNIV_INTERN mutex_t LRU_list_mutex; UNIV_INTERN mutex_t flush_list_mutex; UNIV_INTERN rw_lock_t page_hash_latch; UNIV_INTERN mutex_t free_list_mutex; UNIV_INTERN mutex_t zip_free_mutex; UNIV_INTERN mutex_t zip_hash_mutex; /** mutex protecting the control blocks of compressed-only pages (of type buf_page_t, not buf_block_t) */ UNIV_INTERN mutex_t buf_pool_zip_mutex; #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG static ulint buf_dbg_counter = 0; /*!< This is used to insert validation operations in excution in the debug version */ /** Flag to forbid the release of the buffer pool mutex. Protected by buf_pool_mutex. */ UNIV_INTERN ulint buf_pool_mutex_exit_forbidden = 0; #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG /** If this is set TRUE, the program prints info whenever read-ahead or flush occurs */ UNIV_INTERN ibool buf_debug_prints = FALSE; #endif /* UNIV_DEBUG */ /** A chunk of buffers. The buffer pool is allocated in chunks. */ struct buf_chunk_struct{ ulint mem_size; /*!< allocated size of the chunk */ ulint size; /*!< size of frames[] and blocks[] */ void* mem; /*!< pointer to the memory area which was allocated for the frames */ buf_block_t* blocks; /*!< array of buffer control blocks */ }; #endif /* !UNIV_HOTBACKUP */ /********************************************************************//** Calculates a page checksum which is stored to the page when it is written to a file. Note that we must be careful to calculate the same value on 32-bit and 64-bit architectures. @return checksum */ UNIV_INTERN ulint buf_calc_page_new_checksum( /*=======================*/ const byte* page) /*!< in: buffer page */ { ulint checksum; /* Since the field FIL_PAGE_FILE_FLUSH_LSN, and in versions <= 4.1.x ..._ARCH_LOG_NO, are written outside the buffer pool to the first pages of data files, we have to skip them in the page checksum calculation. We must also skip the field FIL_PAGE_SPACE_OR_CHKSUM where the checksum is stored, and also the last 8 bytes of page because there we store the old formula checksum. */ checksum = ut_fold_binary(page + FIL_PAGE_OFFSET, FIL_PAGE_FILE_FLUSH_LSN - FIL_PAGE_OFFSET) + ut_fold_binary(page + FIL_PAGE_DATA, UNIV_PAGE_SIZE - FIL_PAGE_DATA - FIL_PAGE_END_LSN_OLD_CHKSUM); checksum = checksum & 0xFFFFFFFFUL; return(checksum); } UNIV_INTERN ulint buf_calc_page_new_checksum_32( /*==========================*/ const byte* page) /*!< in: buffer page */ { ulint checksum; checksum = ut_fold_binary(page + FIL_PAGE_OFFSET, FIL_PAGE_FILE_FLUSH_LSN - FIL_PAGE_OFFSET) + ut_fold_binary(page + FIL_PAGE_DATA, FIL_PAGE_DATA_ALIGN_32 - FIL_PAGE_DATA) + ut_fold_binary_32(page + FIL_PAGE_DATA_ALIGN_32, UNIV_PAGE_SIZE - FIL_PAGE_DATA_ALIGN_32 - FIL_PAGE_END_LSN_OLD_CHKSUM); checksum = checksum & 0xFFFFFFFFUL; return(checksum); } /********************************************************************//** In versions < 4.0.14 and < 4.1.1 there was a bug that the checksum only looked at the first few bytes of the page. This calculates that old checksum. NOTE: we must first store the new formula checksum to FIL_PAGE_SPACE_OR_CHKSUM before calculating and storing this old checksum because this takes that field as an input! @return checksum */ UNIV_INTERN ulint buf_calc_page_old_checksum( /*=======================*/ const byte* page) /*!< in: buffer page */ { ulint checksum; checksum = ut_fold_binary(page, FIL_PAGE_FILE_FLUSH_LSN); checksum = checksum & 0xFFFFFFFFUL; return(checksum); } /********************************************************************//** Checks if a page is corrupt. @return TRUE if corrupted */ UNIV_INTERN ibool buf_page_is_corrupted( /*==================*/ const byte* read_buf, /*!< in: a database page */ ulint zip_size) /*!< in: size of compressed page; 0 for uncompressed pages */ { ulint checksum_field; ulint old_checksum_field; if (UNIV_LIKELY(!zip_size) && memcmp(read_buf + FIL_PAGE_LSN + 4, read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4, 4)) { /* Stored log sequence numbers at the start and the end of page do not match */ return(TRUE); } #ifndef UNIV_HOTBACKUP if (recv_lsn_checks_on) { ib_uint64_t current_lsn; if (log_peek_lsn(¤t_lsn) && current_lsn < mach_read_ull(read_buf + FIL_PAGE_LSN)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: page %lu log sequence number" " %llu\n" "InnoDB: is in the future! Current system " "log sequence number %llu.\n" "InnoDB: Your database may be corrupt or " "you may have copied the InnoDB\n" "InnoDB: tablespace but not the InnoDB " "log files. See\n" "InnoDB: " REFMAN "forcing-recovery.html\n" "InnoDB: for more information.\n", (ulong) mach_read_from_4(read_buf + FIL_PAGE_OFFSET), mach_read_ull(read_buf + FIL_PAGE_LSN), current_lsn); } } #endif /* If we use checksums validation, make additional check before returning TRUE to ensure that the checksum is not equal to BUF_NO_CHECKSUM_MAGIC which might be stored by InnoDB with checksums disabled. Otherwise, skip checksum calculation and return FALSE */ if (UNIV_LIKELY(srv_use_checksums)) { checksum_field = mach_read_from_4(read_buf + FIL_PAGE_SPACE_OR_CHKSUM); if (UNIV_UNLIKELY(zip_size)) { return(checksum_field != BUF_NO_CHECKSUM_MAGIC && checksum_field != page_zip_calc_checksum(read_buf, zip_size)); } old_checksum_field = mach_read_from_4( read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM); /* There are 2 valid formulas for old_checksum_field: 1. Very old versions of InnoDB only stored 8 byte lsn to the start and the end of the page. 2. Newer InnoDB versions store the old formula checksum there. */ if (old_checksum_field != mach_read_from_4(read_buf + FIL_PAGE_LSN) && old_checksum_field != BUF_NO_CHECKSUM_MAGIC && old_checksum_field != buf_calc_page_old_checksum(read_buf)) { return(TRUE); } /* InnoDB versions < 4.0.14 and < 4.1.1 stored the space id (always equal to 0), to FIL_PAGE_SPACE_OR_CHKSUM */ if (!srv_fast_checksum && checksum_field != 0 && checksum_field != BUF_NO_CHECKSUM_MAGIC && checksum_field != buf_calc_page_new_checksum(read_buf)) { return(TRUE); } if (srv_fast_checksum && checksum_field != 0 && checksum_field != BUF_NO_CHECKSUM_MAGIC && checksum_field != buf_calc_page_new_checksum_32(read_buf) && checksum_field != buf_calc_page_new_checksum(read_buf)) { return(TRUE); } } return(FALSE); } /********************************************************************//** Prints a page to stderr. */ UNIV_INTERN void buf_page_print( /*===========*/ const byte* read_buf, /*!< in: a database page */ ulint zip_size) /*!< in: compressed page size, or 0 for uncompressed pages */ { #ifndef UNIV_HOTBACKUP dict_index_t* index; #endif /* !UNIV_HOTBACKUP */ ulint checksum; ulint checksum_32; ulint old_checksum; ulint size = zip_size; if (!size) { size = UNIV_PAGE_SIZE; } ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Page dump in ascii and hex (%lu bytes):\n", (ulong) size); ut_print_buf(stderr, read_buf, size); fputs("\nInnoDB: End of page dump\n", stderr); if (zip_size) { /* Print compressed page. */ switch (fil_page_get_type(read_buf)) { case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: checksum = srv_use_checksums ? page_zip_calc_checksum(read_buf, zip_size) : BUF_NO_CHECKSUM_MAGIC; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Compressed BLOB page" " checksum %lu, stored %lu\n" "InnoDB: Page lsn %lu %lu\n" "InnoDB: Page number (if stored" " to page already) %lu,\n" "InnoDB: space id (if stored" " to page already) %lu\n", (ulong) checksum, (ulong) mach_read_from_4( read_buf + FIL_PAGE_SPACE_OR_CHKSUM), (ulong) mach_read_from_4( read_buf + FIL_PAGE_LSN), (ulong) mach_read_from_4( read_buf + (FIL_PAGE_LSN + 4)), (ulong) mach_read_from_4( read_buf + FIL_PAGE_OFFSET), (ulong) mach_read_from_4( read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID)); return; default: ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: unknown page type %lu," " assuming FIL_PAGE_INDEX\n", fil_page_get_type(read_buf)); /* fall through */ case FIL_PAGE_INDEX: checksum = srv_use_checksums ? page_zip_calc_checksum(read_buf, zip_size) : BUF_NO_CHECKSUM_MAGIC; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Compressed page checksum %lu," " stored %lu\n" "InnoDB: Page lsn %lu %lu\n" "InnoDB: Page number (if stored" " to page already) %lu,\n" "InnoDB: space id (if stored" " to page already) %lu\n", (ulong) checksum, (ulong) mach_read_from_4( read_buf + FIL_PAGE_SPACE_OR_CHKSUM), (ulong) mach_read_from_4( read_buf + FIL_PAGE_LSN), (ulong) mach_read_from_4( read_buf + (FIL_PAGE_LSN + 4)), (ulong) mach_read_from_4( read_buf + FIL_PAGE_OFFSET), (ulong) mach_read_from_4( read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID)); return; case FIL_PAGE_TYPE_XDES: /* This is an uncompressed page. */ break; } } checksum = srv_use_checksums ? buf_calc_page_new_checksum(read_buf) : BUF_NO_CHECKSUM_MAGIC; checksum_32 = srv_use_checksums ? buf_calc_page_new_checksum_32(read_buf) : BUF_NO_CHECKSUM_MAGIC; old_checksum = srv_use_checksums ? buf_calc_page_old_checksum(read_buf) : BUF_NO_CHECKSUM_MAGIC; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Page checksum %lu (32bit_calc: %lu), prior-to-4.0.14-form" " checksum %lu\n" "InnoDB: stored checksum %lu, prior-to-4.0.14-form" " stored checksum %lu\n" "InnoDB: Page lsn %lu %lu, low 4 bytes of lsn" " at page end %lu\n" "InnoDB: Page number (if stored to page already) %lu,\n" "InnoDB: space id (if created with >= MySQL-4.1.1" " and stored already) %lu\n", (ulong) checksum, (ulong) checksum_32, (ulong) old_checksum, (ulong) mach_read_from_4(read_buf + FIL_PAGE_SPACE_OR_CHKSUM), (ulong) mach_read_from_4(read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM), (ulong) mach_read_from_4(read_buf + FIL_PAGE_LSN), (ulong) mach_read_from_4(read_buf + FIL_PAGE_LSN + 4), (ulong) mach_read_from_4(read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4), (ulong) mach_read_from_4(read_buf + FIL_PAGE_OFFSET), (ulong) mach_read_from_4(read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID)); #ifndef UNIV_HOTBACKUP if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_INSERT) { fprintf(stderr, "InnoDB: Page may be an insert undo log page\n"); } else if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_UPDATE) { fprintf(stderr, "InnoDB: Page may be an update undo log page\n"); } #endif /* !UNIV_HOTBACKUP */ switch (fil_page_get_type(read_buf)) { case FIL_PAGE_INDEX: fprintf(stderr, "InnoDB: Page may be an index page where" " index id is %lu %lu\n", (ulong) ut_dulint_get_high( btr_page_get_index_id(read_buf)), (ulong) ut_dulint_get_low( btr_page_get_index_id(read_buf))); #ifndef UNIV_HOTBACKUP index = dict_index_find_on_id_low( btr_page_get_index_id(read_buf)); if (index) { fputs("InnoDB: (", stderr); dict_index_name_print(stderr, NULL, index); fputs(")\n", stderr); } #endif /* !UNIV_HOTBACKUP */ break; case FIL_PAGE_INODE: fputs("InnoDB: Page may be an 'inode' page\n", stderr); break; case FIL_PAGE_IBUF_FREE_LIST: fputs("InnoDB: Page may be an insert buffer free list page\n", stderr); break; case FIL_PAGE_TYPE_ALLOCATED: fputs("InnoDB: Page may be a freshly allocated page\n", stderr); break; case FIL_PAGE_IBUF_BITMAP: fputs("InnoDB: Page may be an insert buffer bitmap page\n", stderr); break; case FIL_PAGE_TYPE_SYS: fputs("InnoDB: Page may be a system page\n", stderr); break; case FIL_PAGE_TYPE_TRX_SYS: fputs("InnoDB: Page may be a transaction system page\n", stderr); break; case FIL_PAGE_TYPE_FSP_HDR: fputs("InnoDB: Page may be a file space header page\n", stderr); break; case FIL_PAGE_TYPE_XDES: fputs("InnoDB: Page may be an extent descriptor page\n", stderr); break; case FIL_PAGE_TYPE_BLOB: fputs("InnoDB: Page may be a BLOB page\n", stderr); break; case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: fputs("InnoDB: Page may be a compressed BLOB page\n", stderr); break; } } #ifndef UNIV_HOTBACKUP /********************************************************************//** Initializes a buffer control block when the buf_pool is created. */ static void buf_block_init( /*===========*/ buf_block_t* block, /*!< in: pointer to control block */ byte* frame) /*!< in: pointer to buffer frame */ { UNIV_MEM_DESC(frame, UNIV_PAGE_SIZE, block); block->frame = frame; block->page.state = BUF_BLOCK_NOT_USED; block->page.buf_fix_count = 0; block->page.io_fix = BUF_IO_NONE; block->modify_clock = 0; #ifdef UNIV_DEBUG_FILE_ACCESSES block->page.file_page_was_freed = FALSE; #endif /* UNIV_DEBUG_FILE_ACCESSES */ block->check_index_page_at_flush = FALSE; block->index = NULL; #ifdef UNIV_DEBUG block->page.in_page_hash = FALSE; block->page.in_zip_hash = FALSE; block->page.in_flush_list = FALSE; block->page.in_free_list = FALSE; #endif /* UNIV_DEBUG */ block->page.in_LRU_list = FALSE; block->in_unzip_LRU_list = FALSE; #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG block->n_pointers = 0; #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ page_zip_des_init(&block->page.zip); mutex_create(&block->mutex, SYNC_BUF_BLOCK); rw_lock_create(&block->lock, SYNC_LEVEL_VARYING); ut_ad(rw_lock_validate(&(block->lock))); #ifdef UNIV_SYNC_DEBUG rw_lock_create(&block->debug_latch, SYNC_NO_ORDER_CHECK); #endif /* UNIV_SYNC_DEBUG */ } /********************************************************************//** Allocates a chunk of buffer frames. @return chunk, or NULL on failure */ static buf_chunk_t* buf_chunk_init( /*===========*/ buf_chunk_t* chunk, /*!< out: chunk of buffers */ ulint mem_size) /*!< in: requested size in bytes */ { buf_block_t* block; byte* frame; ulint i; /* Round down to a multiple of page size, although it already should be. */ mem_size = ut_2pow_round(mem_size, UNIV_PAGE_SIZE); /* Reserve space for the block descriptors. */ mem_size += ut_2pow_round((mem_size / UNIV_PAGE_SIZE) * (sizeof *block) + (UNIV_PAGE_SIZE - 1), UNIV_PAGE_SIZE); chunk->mem_size = mem_size; chunk->mem = os_mem_alloc_large(&chunk->mem_size); if (UNIV_UNLIKELY(chunk->mem == NULL)) { return(NULL); } /* Allocate the block descriptors from the start of the memory block. */ chunk->blocks = chunk->mem; /* Align a pointer to the first frame. Note that when os_large_page_size is smaller than UNIV_PAGE_SIZE, we may allocate one fewer block than requested. When it is bigger, we may allocate more blocks than requested. */ frame = ut_align(chunk->mem, UNIV_PAGE_SIZE); chunk->size = chunk->mem_size / UNIV_PAGE_SIZE - (frame != chunk->mem); /* Subtract the space needed for block descriptors. */ { ulint size = chunk->size; while (frame < (byte*) (chunk->blocks + size)) { frame += UNIV_PAGE_SIZE; size--; } chunk->size = size; } /* Init block structs and assign frames for them. Then we assign the frames to the first blocks (we already mapped the memory above). */ block = chunk->blocks; for (i = chunk->size; i--; ) { buf_block_init(block, frame); #ifdef HAVE_purify /* Wipe contents of frame to eliminate a Purify warning */ memset(block->frame, '\0', UNIV_PAGE_SIZE); #endif /* Add the block to the free list */ mutex_enter(&free_list_mutex); UT_LIST_ADD_LAST(free, buf_pool->free, (&block->page)); ut_d(block->page.in_free_list = TRUE); mutex_exit(&free_list_mutex); block++; frame += UNIV_PAGE_SIZE; } return(chunk); } #ifdef UNIV_DEBUG /*********************************************************************//** Finds a block in the given buffer chunk that points to a given compressed page. @return buffer block pointing to the compressed page, or NULL */ static buf_block_t* buf_chunk_contains_zip( /*===================*/ buf_chunk_t* chunk, /*!< in: chunk being checked */ const void* data) /*!< in: pointer to compressed page */ { buf_block_t* block; ulint i; ut_ad(buf_pool); //ut_ad(buf_pool_mutex_own()); block = chunk->blocks; for (i = chunk->size; i--; block++) { if (block->page.zip.data == data) { return(block); } } return(NULL); } /*********************************************************************//** Finds a block in the buffer pool that points to a given compressed page. @return buffer block pointing to the compressed page, or NULL */ UNIV_INTERN buf_block_t* buf_pool_contains_zip( /*==================*/ const void* data) /*!< in: pointer to compressed page */ { ulint n; buf_chunk_t* chunk = buf_pool->chunks; for (n = buf_pool->n_chunks; n--; chunk++) { buf_block_t* block = buf_chunk_contains_zip(chunk, data); if (block) { return(block); } } return(NULL); } #endif /* UNIV_DEBUG */ /*********************************************************************//** Checks that all file pages in the buffer chunk are in a replaceable state. @return address of a non-free block, or NULL if all freed */ static const buf_block_t* buf_chunk_not_freed( /*================*/ buf_chunk_t* chunk) /*!< in: chunk being checked */ { buf_block_t* block; ulint i; ut_ad(buf_pool); //ut_ad(buf_pool_mutex_own()); /*optimistic...*/ block = chunk->blocks; for (i = chunk->size; i--; block++) { ibool ready; switch (buf_block_get_state(block)) { case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: /* The uncompressed buffer pool should never contain compressed block descriptors. */ ut_error; break; case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: /* Skip blocks that are not being used for file pages. */ break; case BUF_BLOCK_FILE_PAGE: mutex_enter(&block->mutex); ready = buf_flush_ready_for_replace(&block->page); mutex_exit(&block->mutex); if (!ready) { return(block); } break; } } return(NULL); } /*********************************************************************//** Checks that all blocks in the buffer chunk are in BUF_BLOCK_NOT_USED state. @return TRUE if all freed */ static ibool buf_chunk_all_free( /*===============*/ const buf_chunk_t* chunk) /*!< in: chunk being checked */ { const buf_block_t* block; ulint i; ut_ad(buf_pool); ut_ad(buf_pool_mutex_own()); /* but we need all mutex here */ block = chunk->blocks; for (i = chunk->size; i--; block++) { if (buf_block_get_state(block) != BUF_BLOCK_NOT_USED) { return(FALSE); } } return(TRUE); } /********************************************************************//** Frees a chunk of buffer frames. */ static void buf_chunk_free( /*===========*/ buf_chunk_t* chunk) /*!< out: chunk of buffers */ { buf_block_t* block; const buf_block_t* block_end; ut_ad(buf_pool_mutex_own()); /* but we need all mutex here */ block_end = chunk->blocks + chunk->size; for (block = chunk->blocks; block < block_end; block++) { ut_a(buf_block_get_state(block) == BUF_BLOCK_NOT_USED); ut_a(!block->page.zip.data); ut_ad(!block->page.in_LRU_list); ut_ad(!block->in_unzip_LRU_list); ut_ad(!block->page.in_flush_list); /* Remove the block from the free list. */ mutex_enter(&free_list_mutex); ut_ad(block->page.in_free_list); UT_LIST_REMOVE(free, buf_pool->free, (&block->page)); mutex_exit(&free_list_mutex); /* Free the latches. */ mutex_free(&block->mutex); rw_lock_free(&block->lock); #ifdef UNIV_SYNC_DEBUG rw_lock_free(&block->debug_latch); #endif /* UNIV_SYNC_DEBUG */ UNIV_MEM_UNDESC(block); } os_mem_free_large(chunk->mem, chunk->mem_size); } /********************************************************************//** Creates the buffer pool. @return own: buf_pool object, NULL if not enough memory or error */ UNIV_INTERN buf_pool_t* buf_pool_init(void) /*===============*/ { buf_chunk_t* chunk; ulint i; buf_pool = mem_zalloc(sizeof(buf_pool_t)); /* 1. Initialize general fields ------------------------------- */ mutex_create(&buf_pool_mutex, SYNC_BUF_POOL); mutex_create(&LRU_list_mutex, SYNC_BUF_LRU_LIST); mutex_create(&flush_list_mutex, SYNC_BUF_FLUSH_LIST); rw_lock_create(&page_hash_latch, SYNC_BUF_PAGE_HASH); mutex_create(&free_list_mutex, SYNC_BUF_FREE_LIST); mutex_create(&zip_free_mutex, SYNC_BUF_ZIP_FREE); mutex_create(&zip_hash_mutex, SYNC_BUF_ZIP_HASH); mutex_create(&buf_pool_zip_mutex, SYNC_BUF_BLOCK); mutex_enter(&LRU_list_mutex); rw_lock_x_lock(&page_hash_latch); buf_pool_mutex_enter(); buf_pool->n_chunks = 1; buf_pool->chunks = chunk = mem_alloc(sizeof *chunk); UT_LIST_INIT(buf_pool->free); if (!buf_chunk_init(chunk, srv_buf_pool_size)) { mem_free(chunk); mem_free(buf_pool); buf_pool = NULL; return(NULL); } srv_buf_pool_old_size = srv_buf_pool_size; buf_pool->curr_size = chunk->size; srv_buf_pool_curr_size = buf_pool->curr_size * UNIV_PAGE_SIZE; buf_pool->page_hash = hash_create(2 * buf_pool->curr_size); buf_pool->zip_hash = hash_create(2 * buf_pool->curr_size); buf_pool->last_printout_time = time(NULL); /* 2. Initialize flushing fields -------------------------------- */ for (i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; i++) { buf_pool->no_flush[i] = os_event_create(NULL); } /* 3. Initialize LRU fields --------------------------- */ /* All fields are initialized by mem_zalloc(). */ mutex_exit(&LRU_list_mutex); rw_lock_x_unlock(&page_hash_latch); buf_pool_mutex_exit(); btr_search_sys_create(buf_pool->curr_size * UNIV_PAGE_SIZE / sizeof(void*) / 64); /* 4. Initialize the buddy allocator fields */ /* All fields are initialized by mem_zalloc(). */ return(buf_pool); } /********************************************************************//** Frees the buffer pool at shutdown. This must not be invoked before freeing all mutexes. */ UNIV_INTERN void buf_pool_free(void) /*===============*/ { buf_chunk_t* chunk; buf_chunk_t* chunks; chunks = buf_pool->chunks; chunk = chunks + buf_pool->n_chunks; while (--chunk >= chunks) { /* Bypass the checks of buf_chunk_free(), since they would fail at shutdown. */ os_mem_free_large(chunk->mem, chunk->mem_size); } mem_free(buf_pool->chunks); hash_table_free(buf_pool->page_hash); hash_table_free(buf_pool->zip_hash); mem_free(buf_pool); buf_pool = NULL; } /********************************************************************//** Drops the adaptive hash index. To prevent a livelock, this function is only to be called while holding btr_search_latch and while btr_search_enabled == FALSE. */ UNIV_INTERN void buf_pool_drop_hash_index(void) /*==========================*/ { ibool released_search_latch; #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&btr_search_latch, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(!btr_search_enabled); do { buf_chunk_t* chunks = buf_pool->chunks; buf_chunk_t* chunk = chunks + buf_pool->n_chunks; released_search_latch = FALSE; while (--chunk >= chunks) { buf_block_t* block = chunk->blocks; ulint i = chunk->size; for (; i--; block++) { /* block->is_hashed cannot be modified when we have an x-latch on btr_search_latch; see the comment in buf0buf.h */ if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE || !block->is_hashed) { continue; } /* To follow the latching order, we have to release btr_search_latch before acquiring block->latch. */ rw_lock_x_unlock(&btr_search_latch); /* When we release the search latch, we must rescan all blocks, because some may become hashed again. */ released_search_latch = TRUE; rw_lock_x_lock(&block->lock); /* This should be guaranteed by the callers, which will be holding btr_search_enabled_mutex. */ ut_ad(!btr_search_enabled); /* Because we did not buffer-fix the block by calling buf_block_get_gen(), it is possible that the block has been allocated for some other use after btr_search_latch was released above. We do not care which file page the block is mapped to. All we want to do is to drop any hash entries referring to the page. */ /* It is possible that block->page.state != BUF_FILE_PAGE. Even that does not matter, because btr_search_drop_page_hash_index() will check block->is_hashed before doing anything. block->is_hashed can only be set on uncompressed file pages. */ btr_search_drop_page_hash_index(block); rw_lock_x_unlock(&block->lock); rw_lock_x_lock(&btr_search_latch); ut_ad(!btr_search_enabled); } } } while (released_search_latch); } /********************************************************************//** Relocate a buffer control block. Relocates the block on the LRU list and in buf_pool->page_hash. Does not relocate bpage->list. The caller must take care of relocating bpage->list. */ UNIV_INTERN void buf_relocate( /*=========*/ buf_page_t* bpage, /*!< in/out: control block being relocated; buf_page_get_state(bpage) must be BUF_BLOCK_ZIP_DIRTY or BUF_BLOCK_ZIP_PAGE */ buf_page_t* dpage) /*!< in/out: destination control block */ { buf_page_t* b; ulint fold; //ut_ad(buf_pool_mutex_own()); ut_ad(mutex_own(&LRU_list_mutex)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&page_hash_latch, RW_LOCK_EX)); #endif ut_ad(mutex_own(buf_page_get_mutex(bpage))); ut_a(buf_page_get_io_fix(bpage) == BUF_IO_NONE); ut_a(bpage->buf_fix_count == 0); ut_ad(bpage->in_LRU_list); ut_ad(!bpage->in_zip_hash); ut_ad(bpage->in_page_hash); ut_ad(bpage == buf_page_hash_get(bpage->space, bpage->offset)); #ifdef UNIV_DEBUG switch (buf_page_get_state(bpage)) { case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_FILE_PAGE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; case BUF_BLOCK_ZIP_DIRTY: case BUF_BLOCK_ZIP_PAGE: break; } #endif /* UNIV_DEBUG */ memcpy(dpage, bpage, sizeof *dpage); bpage->in_LRU_list = FALSE; ut_d(bpage->in_page_hash = FALSE); /* relocate buf_pool->LRU */ b = UT_LIST_GET_PREV(LRU, bpage); UT_LIST_REMOVE(LRU, buf_pool->LRU, bpage); if (b) { UT_LIST_INSERT_AFTER(LRU, buf_pool->LRU, b, dpage); } else { UT_LIST_ADD_FIRST(LRU, buf_pool->LRU, dpage); } if (UNIV_UNLIKELY(buf_pool->LRU_old == bpage)) { buf_pool->LRU_old = dpage; #ifdef UNIV_LRU_DEBUG /* buf_pool->LRU_old must be the first item in the LRU list whose "old" flag is set. */ ut_a(buf_pool->LRU_old->old); ut_a(!UT_LIST_GET_PREV(LRU, buf_pool->LRU_old) || !UT_LIST_GET_PREV(LRU, buf_pool->LRU_old)->old); ut_a(!UT_LIST_GET_NEXT(LRU, buf_pool->LRU_old) || UT_LIST_GET_NEXT(LRU, buf_pool->LRU_old)->old); } else { /* Check that the "old" flag is consistent in the block and its neighbours. */ buf_page_set_old(dpage, buf_page_is_old(dpage)); #endif /* UNIV_LRU_DEBUG */ } ut_d(UT_LIST_VALIDATE(LRU, buf_page_t, buf_pool->LRU, ut_ad(ut_list_node_313->in_LRU_list))); /* relocate buf_pool->page_hash */ fold = buf_page_address_fold(bpage->space, bpage->offset); HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, fold, bpage); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, fold, dpage); } /********************************************************************//** Shrinks the buffer pool. */ static void buf_pool_shrink( /*============*/ ulint chunk_size) /*!< in: number of pages to remove */ { buf_chunk_t* chunks; buf_chunk_t* chunk; ulint max_size; ulint max_free_size; buf_chunk_t* max_chunk; buf_chunk_t* max_free_chunk; ut_ad(!buf_pool_mutex_own()); try_again: btr_search_disable(); /* Empty the adaptive hash index again */ //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); shrink_again: if (buf_pool->n_chunks <= 1) { /* Cannot shrink if there is only one chunk */ goto func_done; } /* Search for the largest free chunk not larger than the size difference */ chunks = buf_pool->chunks; chunk = chunks + buf_pool->n_chunks; max_size = max_free_size = 0; max_chunk = max_free_chunk = NULL; while (--chunk >= chunks) { if (chunk->size <= chunk_size && chunk->size > max_free_size) { if (chunk->size > max_size) { max_size = chunk->size; max_chunk = chunk; } if (buf_chunk_all_free(chunk)) { max_free_size = chunk->size; max_free_chunk = chunk; } } } if (!max_free_size) { ulint dirty = 0; ulint nonfree = 0; buf_block_t* block; buf_block_t* bend; /* Cannot shrink: try again later (do not assign srv_buf_pool_old_size) */ if (!max_chunk) { goto func_exit; } block = max_chunk->blocks; bend = block + max_chunk->size; /* Move the blocks of chunk to the end of the LRU list and try to flush them. */ for (; block < bend; block++) { switch (buf_block_get_state(block)) { case BUF_BLOCK_NOT_USED: continue; case BUF_BLOCK_FILE_PAGE: break; default: nonfree++; continue; } mutex_enter(&block->mutex); /* The following calls will temporarily release block->mutex and buf_pool_mutex. Therefore, we have to always retry, even if !dirty && !nonfree. */ if (!buf_flush_ready_for_replace(&block->page)) { buf_LRU_make_block_old(&block->page); dirty++; } else if (buf_LRU_free_block(&block->page, TRUE, NULL, FALSE) != BUF_LRU_FREED) { nonfree++; } mutex_exit(&block->mutex); } //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); /* Request for a flush of the chunk if it helps. Do not flush if there are non-free blocks, since flushing will not make the chunk freeable. */ if (nonfree) { /* Avoid busy-waiting. */ os_thread_sleep(100000); } else if (dirty && buf_flush_batch(BUF_FLUSH_LRU, dirty, 0) == ULINT_UNDEFINED) { buf_flush_wait_batch_end(BUF_FLUSH_LRU); } goto try_again; } max_size = max_free_size; max_chunk = max_free_chunk; srv_buf_pool_old_size = srv_buf_pool_size; /* Rewrite buf_pool->chunks. Copy everything but max_chunk. */ chunks = mem_alloc((buf_pool->n_chunks - 1) * sizeof *chunks); memcpy(chunks, buf_pool->chunks, (max_chunk - buf_pool->chunks) * sizeof *chunks); memcpy(chunks + (max_chunk - buf_pool->chunks), max_chunk + 1, buf_pool->chunks + buf_pool->n_chunks - (max_chunk + 1)); ut_a(buf_pool->curr_size > max_chunk->size); buf_pool->curr_size -= max_chunk->size; srv_buf_pool_curr_size = buf_pool->curr_size * UNIV_PAGE_SIZE; chunk_size -= max_chunk->size; buf_chunk_free(max_chunk); mem_free(buf_pool->chunks); buf_pool->chunks = chunks; buf_pool->n_chunks--; /* Allow a slack of one megabyte. */ if (chunk_size > 1048576 / UNIV_PAGE_SIZE) { goto shrink_again; } func_done: srv_buf_pool_old_size = srv_buf_pool_size; func_exit: //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); btr_search_enable(); } /********************************************************************//** Rebuild buf_pool->page_hash. */ static void buf_pool_page_hash_rebuild(void) /*============================*/ { ulint i; ulint n_chunks; buf_chunk_t* chunk; hash_table_t* page_hash; hash_table_t* zip_hash; buf_page_t* b; //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); rw_lock_x_lock(&page_hash_latch); mutex_enter(&flush_list_mutex); /* Free, create, and populate the hash table. */ hash_table_free(buf_pool->page_hash); buf_pool->page_hash = page_hash = hash_create(2 * buf_pool->curr_size); zip_hash = hash_create(2 * buf_pool->curr_size); HASH_MIGRATE(buf_pool->zip_hash, zip_hash, buf_page_t, hash, BUF_POOL_ZIP_FOLD_BPAGE); hash_table_free(buf_pool->zip_hash); buf_pool->zip_hash = zip_hash; /* Insert the uncompressed file pages to buf_pool->page_hash. */ chunk = buf_pool->chunks; n_chunks = buf_pool->n_chunks; for (i = 0; i < n_chunks; i++, chunk++) { ulint j; buf_block_t* block = chunk->blocks; for (j = 0; j < chunk->size; j++, block++) { if (buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE) { ut_ad(!block->page.in_zip_hash); ut_ad(block->page.in_page_hash); HASH_INSERT(buf_page_t, hash, page_hash, buf_page_address_fold( block->page.space, block->page.offset), &block->page); } } } /* Insert the compressed-only pages to buf_pool->page_hash. All such blocks are either in buf_pool->zip_clean or in buf_pool->flush_list. */ for (b = UT_LIST_GET_FIRST(buf_pool->zip_clean); b; b = UT_LIST_GET_NEXT(zip_list, b)) { ut_a(buf_page_get_state(b) == BUF_BLOCK_ZIP_PAGE); ut_ad(!b->in_flush_list); ut_ad(b->in_LRU_list); ut_ad(b->in_page_hash); ut_ad(!b->in_zip_hash); HASH_INSERT(buf_page_t, hash, page_hash, buf_page_address_fold(b->space, b->offset), b); } for (b = UT_LIST_GET_FIRST(buf_pool->flush_list); b; b = UT_LIST_GET_NEXT(flush_list, b)) { ut_ad(b->in_flush_list); ut_ad(b->in_LRU_list); ut_ad(b->in_page_hash); ut_ad(!b->in_zip_hash); switch (buf_page_get_state(b)) { case BUF_BLOCK_ZIP_DIRTY: HASH_INSERT(buf_page_t, hash, page_hash, buf_page_address_fold(b->space, b->offset), b); break; case BUF_BLOCK_FILE_PAGE: /* uncompressed page */ break; case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } } //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); rw_lock_x_unlock(&page_hash_latch); mutex_exit(&flush_list_mutex); } /********************************************************************//** Resizes the buffer pool. */ UNIV_INTERN void buf_pool_resize(void) /*=================*/ { //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); if (srv_buf_pool_old_size == srv_buf_pool_size) { //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); return; } if (srv_buf_pool_curr_size + 1048576 > srv_buf_pool_size) { //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); /* Disable adaptive hash indexes and empty the index in order to free up memory in the buffer pool chunks. */ buf_pool_shrink((srv_buf_pool_curr_size - srv_buf_pool_size) / UNIV_PAGE_SIZE); } else if (srv_buf_pool_curr_size + 1048576 < srv_buf_pool_size) { /* Enlarge the buffer pool by at least one megabyte */ ulint mem_size = srv_buf_pool_size - srv_buf_pool_curr_size; buf_chunk_t* chunks; buf_chunk_t* chunk; chunks = mem_alloc((buf_pool->n_chunks + 1) * sizeof *chunks); memcpy(chunks, buf_pool->chunks, buf_pool->n_chunks * sizeof *chunks); chunk = &chunks[buf_pool->n_chunks]; if (!buf_chunk_init(chunk, mem_size)) { mem_free(chunks); } else { buf_pool->curr_size += chunk->size; srv_buf_pool_curr_size = buf_pool->curr_size * UNIV_PAGE_SIZE; mem_free(buf_pool->chunks); buf_pool->chunks = chunks; buf_pool->n_chunks++; } srv_buf_pool_old_size = srv_buf_pool_size; //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); } buf_pool_page_hash_rebuild(); } /********************************************************************//** Moves a page to the start of the buffer pool LRU list. This high-level function can be used to prevent an important page from slipping out of the buffer pool. */ UNIV_INTERN void buf_page_make_young( /*================*/ buf_page_t* bpage) /*!< in: buffer block of a file page */ { //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); ut_a(buf_page_in_file(bpage)); buf_LRU_make_block_young(bpage); //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); } /********************************************************************//** Sets the time of the first access of a page and moves a page to the start of the buffer pool LRU list if it is too old. This high-level function can be used to prevent an important page from slipping out of the buffer pool. */ static void buf_page_set_accessed_make_young( /*=============================*/ buf_page_t* bpage, /*!< in/out: buffer block of a file page */ unsigned access_time) /*!< in: bpage->access_time read under mutex protection, or 0 if unknown */ { ut_ad(!buf_pool_mutex_own()); ut_a(buf_page_in_file(bpage)); if (buf_page_peek_if_too_old(bpage)) { //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); buf_LRU_make_block_young(bpage); //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); } else if (!access_time) { ulint time_ms = ut_time_ms(); mutex_t* block_mutex = buf_page_get_mutex_enter(bpage); //buf_pool_mutex_enter(); if (block_mutex) { buf_page_set_accessed(bpage, time_ms); mutex_exit(block_mutex); } //buf_pool_mutex_exit(); } } /********************************************************************//** Resets the check_index_page_at_flush field of a page if found in the buffer pool. */ UNIV_INTERN void buf_reset_check_index_page_at_flush( /*================================*/ ulint space, /*!< in: space id */ ulint offset) /*!< in: page number */ { buf_block_t* block; //buf_pool_mutex_enter(); rw_lock_s_lock(&page_hash_latch); block = (buf_block_t*) buf_page_hash_get(space, offset); if (block && buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE) { block->check_index_page_at_flush = FALSE; } //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); } /********************************************************************//** Returns the current state of is_hashed of a page. FALSE if the page is not in the pool. NOTE that this operation does not fix the page in the pool if it is found there. @return TRUE if page hash index is built in search system */ UNIV_INTERN ibool buf_page_peek_if_search_hashed( /*===========================*/ ulint space, /*!< in: space id */ ulint offset) /*!< in: page number */ { buf_block_t* block; ibool is_hashed; //buf_pool_mutex_enter(); rw_lock_s_lock(&page_hash_latch); block = (buf_block_t*) buf_page_hash_get(space, offset); if (!block || buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { is_hashed = FALSE; } else { is_hashed = block->is_hashed; } //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); return(is_hashed); } #ifdef UNIV_DEBUG_FILE_ACCESSES /********************************************************************//** Sets file_page_was_freed TRUE if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. @return control block if found in page hash table, otherwise NULL */ UNIV_INTERN buf_page_t* buf_page_set_file_page_was_freed( /*=============================*/ ulint space, /*!< in: space id */ ulint offset) /*!< in: page number */ { buf_page_t* bpage; //buf_pool_mutex_enter(); rw_lock_s_lock(&page_hash_latch); bpage = buf_page_hash_get(space, offset); if (bpage) { bpage->file_page_was_freed = TRUE; } //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); return(bpage); } /********************************************************************//** Sets file_page_was_freed FALSE if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. @return control block if found in page hash table, otherwise NULL */ UNIV_INTERN buf_page_t* buf_page_reset_file_page_was_freed( /*===============================*/ ulint space, /*!< in: space id */ ulint offset) /*!< in: page number */ { buf_page_t* bpage; //buf_pool_mutex_enter(); rw_lock_s_lock(&page_hash_latch); bpage = buf_page_hash_get(space, offset); if (bpage) { bpage->file_page_was_freed = FALSE; } //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); return(bpage); } #endif /* UNIV_DEBUG_FILE_ACCESSES */ /********************************************************************//** Get read access to a compressed page (usually of type FIL_PAGE_TYPE_ZBLOB or FIL_PAGE_TYPE_ZBLOB2). The page must be released with buf_page_release_zip(). NOTE: the page is not protected by any latch. Mutual exclusion has to be implemented at a higher level. In other words, all possible accesses to a given page through this function must be protected by the same set of mutexes or latches. @return pointer to the block */ UNIV_INTERN buf_page_t* buf_page_get_zip( /*=============*/ ulint space, /*!< in: space id */ ulint zip_size,/*!< in: compressed page size */ ulint offset) /*!< in: page number */ { buf_page_t* bpage; mutex_t* block_mutex; ibool must_read; unsigned access_time; trx_t* trx = NULL; ulint sec; ulint ms; ib_uint64_t start_time; ib_uint64_t finish_time; #ifndef UNIV_LOG_DEBUG ut_ad(!ibuf_inside()); #endif if (innobase_get_slow_log()) { trx = innobase_get_trx(); } buf_pool->stat.n_page_gets++; for (;;) { //buf_pool_mutex_enter(); lookup: rw_lock_s_lock(&page_hash_latch); bpage = buf_page_hash_get(space, offset); if (bpage) { break; } /* Page not in buf_pool: needs to be read from file */ //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); buf_read_page(space, zip_size, offset, trx); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 37 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ } if (UNIV_UNLIKELY(!bpage->zip.data)) { /* There is no compressed page. */ err_exit: //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); return(NULL); } if (srv_pass_corrupt_table) { if (bpage->is_corrupt) { rw_lock_s_unlock(&page_hash_latch); return(NULL); } } ut_a(!(bpage->is_corrupt)); block_mutex = buf_page_get_mutex_enter(bpage); rw_lock_s_unlock(&page_hash_latch); switch (buf_page_get_state(bpage)) { case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: case BUF_BLOCK_ZIP_FREE: if (block_mutex) mutex_exit(block_mutex); break; case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: ut_a(block_mutex == &buf_pool_zip_mutex); bpage->buf_fix_count++; goto got_block; case BUF_BLOCK_FILE_PAGE: ut_a(block_mutex == &((buf_block_t*) bpage)->mutex); /* Discard the uncompressed page frame if possible. */ if (buf_LRU_free_block(bpage, FALSE, NULL, FALSE) == BUF_LRU_FREED) { mutex_exit(block_mutex); goto lookup; } buf_block_buf_fix_inc((buf_block_t*) bpage, __FILE__, __LINE__); goto got_block; } ut_error; goto err_exit; got_block: must_read = buf_page_get_io_fix(bpage) == BUF_IO_READ; access_time = buf_page_is_accessed(bpage); //buf_pool_mutex_exit(); mutex_exit(block_mutex); buf_page_set_accessed_make_young(bpage, access_time); #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(!bpage->file_page_was_freed); #endif #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(bpage->buf_fix_count > 0); ut_a(buf_page_in_file(bpage)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ if (must_read) { /* Let us wait until the read operation completes */ if (innobase_get_slow_log() && trx && trx->take_stats) { ut_usectime(&sec, &ms); start_time = (ib_uint64_t)sec * 1000000 + ms; } else { start_time = 0; } for (;;) { enum buf_io_fix io_fix; mutex_enter(block_mutex); io_fix = buf_page_get_io_fix(bpage); mutex_exit(block_mutex); if (io_fix == BUF_IO_READ) { os_thread_sleep(WAIT_FOR_READ); } else { break; } } if (innobase_get_slow_log() && trx && trx->take_stats && start_time) { ut_usectime(&sec, &ms); finish_time = (ib_uint64_t)sec * 1000000 + ms; trx->io_reads_wait_timer += (ulint)(finish_time - start_time); } } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(buf_page_get_space(bpage), buf_page_get_page_no(bpage)) == 0); #endif return(bpage); } /********************************************************************//** Initialize some fields of a control block. */ UNIV_INLINE void buf_block_init_low( /*===============*/ buf_block_t* block) /*!< in: block to init */ { block->check_index_page_at_flush = FALSE; block->index = NULL; block->n_hash_helps = 0; block->is_hashed = FALSE; block->n_fields = 1; block->n_bytes = 0; block->left_side = TRUE; } #endif /* !UNIV_HOTBACKUP */ /********************************************************************//** Decompress a block. @return TRUE if successful */ UNIV_INTERN ibool buf_zip_decompress( /*===============*/ buf_block_t* block, /*!< in/out: block */ ibool check) /*!< in: TRUE=verify the page checksum */ { const byte* frame = block->page.zip.data; ulint stamp_checksum = mach_read_from_4( frame + FIL_PAGE_SPACE_OR_CHKSUM); ut_ad(buf_block_get_zip_size(block)); ut_a(buf_block_get_space(block) != 0); if (UNIV_LIKELY(check && stamp_checksum != BUF_NO_CHECKSUM_MAGIC)) { ulint calc_checksum = page_zip_calc_checksum( frame, page_zip_get_size(&block->page.zip)); if (UNIV_UNLIKELY(stamp_checksum != calc_checksum)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: compressed page checksum mismatch" " (space %u page %u): %lu != %lu\n", block->page.space, block->page.offset, stamp_checksum, calc_checksum); return(FALSE); } } switch (fil_page_get_type(frame)) { case FIL_PAGE_INDEX: if (page_zip_decompress(&block->page.zip, block->frame, TRUE)) { return(TRUE); } fprintf(stderr, "InnoDB: unable to decompress space %lu page %lu\n", (ulong) block->page.space, (ulong) block->page.offset); return(FALSE); case FIL_PAGE_TYPE_ALLOCATED: case FIL_PAGE_INODE: case FIL_PAGE_IBUF_BITMAP: case FIL_PAGE_TYPE_FSP_HDR: case FIL_PAGE_TYPE_XDES: case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: /* Copy to uncompressed storage. */ memcpy(block->frame, frame, buf_block_get_zip_size(block)); return(TRUE); } ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: unknown compressed page" " type %lu\n", fil_page_get_type(frame)); return(FALSE); } #ifndef UNIV_HOTBACKUP /*******************************************************************//** Gets the block to whose frame the pointer is pointing to. @return pointer to block, never NULL */ UNIV_INTERN buf_block_t* buf_block_align( /*============*/ const byte* ptr) /*!< in: pointer to a frame */ { buf_chunk_t* chunk; ulint i; /* TODO: protect buf_pool->chunks with a mutex (it will currently remain constant after buf_pool_init()) */ for (chunk = buf_pool->chunks, i = buf_pool->n_chunks; i--; chunk++) { lint offs = ptr - chunk->blocks->frame; if (UNIV_UNLIKELY(offs < 0)) { continue; } offs >>= UNIV_PAGE_SIZE_SHIFT; if (UNIV_LIKELY((ulint) offs < chunk->size)) { buf_block_t* block = &chunk->blocks[offs]; /* The function buf_chunk_init() invokes buf_block_init() so that block[n].frame == block->frame + n * UNIV_PAGE_SIZE. Check it. */ ut_ad(block->frame == page_align(ptr)); #ifdef UNIV_DEBUG /* A thread that updates these fields must hold buf_pool_mutex and block->mutex. Acquire only the latter. */ mutex_enter(&block->mutex); switch (buf_block_get_state(block)) { case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: /* These types should only be used in the compressed buffer pool, whose memory is allocated from buf_pool->chunks, in UNIV_PAGE_SIZE blocks flagged as BUF_BLOCK_MEMORY. */ ut_error; break; case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: /* Some data structures contain "guess" pointers to file pages. The file pages may have been freed and reused. Do not complain. */ break; case BUF_BLOCK_REMOVE_HASH: /* buf_LRU_block_remove_hashed_page() will overwrite the FIL_PAGE_OFFSET and FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID with 0xff and set the state to BUF_BLOCK_REMOVE_HASH. */ ut_ad(page_get_space_id(page_align(ptr)) == 0xffffffff); ut_ad(page_get_page_no(page_align(ptr)) == 0xffffffff); break; case BUF_BLOCK_FILE_PAGE: ut_ad(block->page.space == page_get_space_id(page_align(ptr))); ut_ad(block->page.offset == page_get_page_no(page_align(ptr))); break; } mutex_exit(&block->mutex); #endif /* UNIV_DEBUG */ return(block); } } /* The block should always be found. */ ut_error; return(NULL); } /********************************************************************//** Find out if a pointer belongs to a buf_block_t. It can be a pointer to the buf_block_t itself or a member of it @return TRUE if ptr belongs to a buf_block_t struct */ UNIV_INTERN ibool buf_pointer_is_block_field( /*=======================*/ const void* ptr) /*!< in: pointer not dereferenced */ { const buf_chunk_t* chunk = buf_pool->chunks; const buf_chunk_t* const echunk = chunk + buf_pool->n_chunks; /* TODO: protect buf_pool->chunks with a mutex (it will currently remain constant after buf_pool_init()) */ while (chunk < echunk) { if (ptr >= (void *)chunk->blocks && ptr < (void *)(chunk->blocks + chunk->size)) { return(TRUE); } chunk++; } return(FALSE); } /********************************************************************//** Find out if a buffer block was created by buf_chunk_init(). @return TRUE if "block" has been added to buf_pool->free by buf_chunk_init() */ static ibool buf_block_is_uncompressed( /*======================*/ const buf_block_t* block) /*!< in: pointer to block, not dereferenced */ { //ut_ad(buf_pool_mutex_own()); if (UNIV_UNLIKELY((((ulint) block) % sizeof *block) != 0)) { /* The pointer should be aligned. */ return(FALSE); } return(buf_pointer_is_block_field((void *)block)); } /********************************************************************//** This is the general function used to get access to a database page. @return pointer to the block or NULL */ UNIV_INTERN buf_block_t* buf_page_get_gen( /*=============*/ ulint space, /*!< in: space id */ ulint zip_size,/*!< in: compressed page size in bytes or 0 for uncompressed pages */ ulint offset, /*!< in: page number */ ulint rw_latch,/*!< in: RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH */ buf_block_t* guess, /*!< in: guessed block or NULL */ ulint mode, /*!< in: BUF_GET, BUF_GET_IF_IN_POOL, BUF_GET_NO_LATCH */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mini-transaction */ { buf_block_t* block; unsigned access_time; ulint fix_type; ibool must_read; ulint retries = 0; mutex_t* block_mutex; trx_t* trx = NULL; ulint sec; ulint ms; ib_uint64_t start_time; ib_uint64_t finish_time; ut_ad(mtr); ut_ad(mtr->state == MTR_ACTIVE); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH) || (rw_latch == RW_NO_LATCH)); ut_ad((mode != BUF_GET_NO_LATCH) || (rw_latch == RW_NO_LATCH)); ut_ad((mode == BUF_GET) || (mode == BUF_GET_IF_IN_POOL) || (mode == BUF_GET_NO_LATCH)); ut_ad(zip_size == fil_space_get_zip_size(space)); ut_ad(ut_is_2pow(zip_size)); #ifndef UNIV_LOG_DEBUG ut_ad(!ibuf_inside() || ibuf_page(space, zip_size, offset, NULL)); #endif if (innobase_get_slow_log()) { trx = innobase_get_trx(); } buf_pool->stat.n_page_gets++; loop: block = guess; //buf_pool_mutex_enter(); if (block) { block_mutex = buf_page_get_mutex_enter((buf_page_t*)block); /* If the guess is a compressed page descriptor that has been allocated by buf_buddy_alloc(), it may have been invalidated by buf_buddy_relocate(). In that case, block could point to something that happens to contain the expected bits in block->page. Similarly, the guess may be pointing to a buffer pool chunk that has been released when resizing the buffer pool. */ if (!block_mutex) { block = guess = NULL; } else if (!buf_block_is_uncompressed(block) || offset != block->page.offset || space != block->page.space || buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { mutex_exit(block_mutex); block = guess = NULL; } else { ut_ad(!block->page.in_zip_hash); ut_ad(block->page.in_page_hash); } } if (block == NULL) { rw_lock_s_lock(&page_hash_latch); block = (buf_block_t*) buf_page_hash_get(space, offset); if (block) { block_mutex = buf_page_get_mutex_enter((buf_page_t*)block); ut_a(block_mutex); } rw_lock_s_unlock(&page_hash_latch); } loop2: if (block == NULL) { /* Page not in buf_pool: needs to be read from file */ //buf_pool_mutex_exit(); if (mode == BUF_GET_IF_IN_POOL) { return(NULL); } if (buf_read_page(space, zip_size, offset, trx)) { retries = 0; } else if (retries < BUF_PAGE_READ_MAX_RETRIES) { ++retries; } else { fprintf(stderr, "InnoDB: Error: Unable" " to read tablespace %lu page no" " %lu into the buffer pool after" " %lu attempts\n" "InnoDB: The most probable cause" " of this error may be that the" " table has been corrupted.\n" "InnoDB: You can try to fix this" " problem by using" " innodb_force_recovery.\n" "InnoDB: Please see reference manual" " for more details.\n" "InnoDB: Aborting...\n", space, offset, BUF_PAGE_READ_MAX_RETRIES); ut_error; } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 37 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ goto loop; } ut_ad(page_zip_get_size(&block->page.zip) == zip_size); must_read = buf_block_get_io_fix(block) == BUF_IO_READ; if (must_read && mode == BUF_GET_IF_IN_POOL) { /* The page is only being read to buffer */ //buf_pool_mutex_exit(); mutex_exit(block_mutex); return(NULL); } if (srv_pass_corrupt_table) { if (block->page.is_corrupt) { mutex_exit(block_mutex); return(NULL); } } ut_a(!(block->page.is_corrupt)); switch (buf_block_get_state(block)) { buf_page_t* bpage; ibool success; case BUF_BLOCK_FILE_PAGE: if (block_mutex == &buf_pool_zip_mutex) { /* it is wrong mutex... */ mutex_exit(block_mutex); goto loop; } break; case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: ut_ad(block_mutex == &buf_pool_zip_mutex); bpage = &block->page; /* Protect bpage->buf_fix_count. */ /* Already proteced here. */ //mutex_enter(&buf_pool_zip_mutex); if (bpage->buf_fix_count || buf_page_get_io_fix(bpage) != BUF_IO_NONE) { /* This condition often occurs when the buffer is not buffer-fixed, but I/O-fixed by buf_page_init_for_read(). */ //mutex_exit(&buf_pool_zip_mutex); wait_until_unfixed: /* The block is buffer-fixed or I/O-fixed. Try again later. */ //buf_pool_mutex_exit(); mutex_exit(block_mutex); os_thread_sleep(WAIT_FOR_READ); goto loop; } /* Allocate an uncompressed page. */ //buf_pool_mutex_exit(); //mutex_exit(&buf_pool_zip_mutex); mutex_exit(block_mutex); block = buf_LRU_get_free_block(0); ut_a(block); block_mutex = &block->mutex; //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); rw_lock_x_lock(&page_hash_latch); mutex_enter(block_mutex); { buf_page_t* hash_bpage = buf_page_hash_get(space, offset); if (UNIV_UNLIKELY(bpage != hash_bpage)) { /* The buf_pool->page_hash was modified while buf_pool_mutex was released. Free the block that was allocated. */ buf_LRU_block_free_non_file_page(block, TRUE); mutex_exit(block_mutex); block = (buf_block_t*) hash_bpage; if (block) { block_mutex = buf_page_get_mutex_enter((buf_page_t*)block); ut_a(block_mutex); } rw_lock_x_unlock(&page_hash_latch); mutex_exit(&LRU_list_mutex); goto loop2; } } mutex_enter(&buf_pool_zip_mutex); if (UNIV_UNLIKELY (bpage->buf_fix_count || buf_page_get_io_fix(bpage) != BUF_IO_NONE)) { mutex_exit(&buf_pool_zip_mutex); /* The block was buffer-fixed or I/O-fixed while buf_pool_mutex was not held by this thread. Free the block that was allocated and try again. This should be extremely unlikely. */ buf_LRU_block_free_non_file_page(block, TRUE); //mutex_exit(&block->mutex); rw_lock_x_unlock(&page_hash_latch); mutex_exit(&LRU_list_mutex); goto wait_until_unfixed; } /* Move the compressed page from bpage to block, and uncompress it. */ mutex_enter(&flush_list_mutex); buf_relocate(bpage, &block->page); rw_lock_x_unlock(&page_hash_latch); buf_block_init_low(block); block->lock_hash_val = lock_rec_hash(space, offset); UNIV_MEM_DESC(&block->page.zip.data, page_zip_get_size(&block->page.zip), block); if (buf_page_get_state(&block->page) == BUF_BLOCK_ZIP_PAGE) { UT_LIST_REMOVE(zip_list, buf_pool->zip_clean, &block->page); ut_ad(!block->page.in_flush_list); } else { /* Relocate buf_pool->flush_list. */ buf_flush_relocate_on_flush_list(bpage, &block->page); } mutex_exit(&flush_list_mutex); /* Buffer-fix, I/O-fix, and X-latch the block for the duration of the decompression. Also add the block to the unzip_LRU list. */ block->page.state = BUF_BLOCK_FILE_PAGE; /* Insert at the front of unzip_LRU list */ buf_unzip_LRU_add_block(block, FALSE); mutex_exit(&LRU_list_mutex); block->page.buf_fix_count = 1; buf_block_set_io_fix(block, BUF_IO_READ); rw_lock_x_lock(&block->lock); UNIV_MEM_INVALID(bpage, sizeof *bpage); mutex_exit(block_mutex); mutex_exit(&buf_pool_zip_mutex); mutex_enter(&buf_pool_mutex); buf_pool->n_pend_unzip++; mutex_exit(&buf_pool_mutex); buf_buddy_free(bpage, sizeof *bpage, FALSE); //buf_pool_mutex_exit(); /* Decompress the page and apply buffered operations while not holding buf_pool_mutex or block->mutex. */ success = buf_zip_decompress(block, srv_use_checksums); ut_a(success); if (UNIV_LIKELY(!recv_no_ibuf_operations)) { ibuf_merge_or_delete_for_page(block, space, offset, zip_size, TRUE); } /* Unfix and unlatch the block. */ //buf_pool_mutex_enter(); block_mutex = &block->mutex; mutex_enter(block_mutex); block->page.buf_fix_count--; buf_block_set_io_fix(block, BUF_IO_NONE); mutex_enter(&buf_pool_mutex); buf_pool->n_pend_unzip--; mutex_exit(&buf_pool_mutex); rw_lock_x_unlock(&block->lock); break; case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); //mutex_enter(&block->mutex); UNIV_MEM_ASSERT_RW(&block->page, sizeof block->page); buf_block_buf_fix_inc(block, file, line); //mutex_exit(&block->mutex); /* Check if this is the first access to the page */ access_time = buf_page_is_accessed(&block->page); //buf_pool_mutex_exit(); mutex_exit(block_mutex); buf_page_set_accessed_make_young(&block->page, access_time); #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(!block->page.file_page_was_freed); #endif #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ switch (rw_latch) { case RW_NO_LATCH: if (must_read) { /* Let us wait until the read operation completes */ if (innobase_get_slow_log() && trx && trx->take_stats) { ut_usectime(&sec, &ms); start_time = (ib_uint64_t)sec * 1000000 + ms; } else { start_time = 0; } for (;;) { enum buf_io_fix io_fix; mutex_enter(&block->mutex); io_fix = buf_block_get_io_fix(block); mutex_exit(&block->mutex); if (io_fix == BUF_IO_READ) { os_thread_sleep(WAIT_FOR_READ); } else { break; } } if (innobase_get_slow_log() && trx && trx->take_stats && start_time) { ut_usectime(&sec, &ms); finish_time = (ib_uint64_t)sec * 1000000 + ms; trx->io_reads_wait_timer += (ulint)(finish_time - start_time); } } fix_type = MTR_MEMO_BUF_FIX; break; case RW_S_LATCH: rw_lock_s_lock_func(&(block->lock), 0, file, line); fix_type = MTR_MEMO_PAGE_S_FIX; break; default: ut_ad(rw_latch == RW_X_LATCH); rw_lock_x_lock_func(&(block->lock), 0, file, line); fix_type = MTR_MEMO_PAGE_X_FIX; break; } mtr_memo_push(mtr, block, fix_type); if (!access_time) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(space, zip_size, offset, trx); } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(buf_block_get_space(block), buf_block_get_page_no(block)) == 0); #endif if (innobase_get_slow_log()) { _increment_page_get_statistics(block, trx); } return(block); } /********************************************************************//** This is the general function used to get optimistic access to a database page. @return TRUE if success */ UNIV_INTERN ibool buf_page_optimistic_get( /*====================*/ ulint rw_latch,/*!< in: RW_S_LATCH, RW_X_LATCH */ buf_block_t* block, /*!< in: guessed buffer block */ ib_uint64_t modify_clock,/*!< in: modify clock value if mode is ..._GUESS_ON_CLOCK */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mini-transaction */ { unsigned access_time; ibool success; ulint fix_type; trx_t* trx = NULL; ut_ad(block); ut_ad(mtr); ut_ad(mtr->state == MTR_ACTIVE); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); mutex_enter(&block->mutex); if (UNIV_UNLIKELY(buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE)) { mutex_exit(&block->mutex); return(FALSE); } buf_block_buf_fix_inc(block, file, line); mutex_exit(&block->mutex); /* Check if this is the first access to the page. We do a dirty read on purpose, to avoid mutex contention. This field is only used for heuristic purposes; it does not affect correctness. */ access_time = buf_page_is_accessed(&block->page); buf_page_set_accessed_make_young(&block->page, access_time); ut_ad(!ibuf_inside() || ibuf_page(buf_block_get_space(block), buf_block_get_zip_size(block), buf_block_get_page_no(block), NULL)); if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_S_FIX; } else { success = rw_lock_x_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_X_FIX; } if (UNIV_UNLIKELY(!success)) { mutex_enter(&block->mutex); buf_block_buf_fix_dec(block); mutex_exit(&block->mutex); return(FALSE); } if (UNIV_UNLIKELY(modify_clock != block->modify_clock)) { buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK); if (rw_latch == RW_S_LATCH) { rw_lock_s_unlock(&(block->lock)); } else { rw_lock_x_unlock(&(block->lock)); } mutex_enter(&block->mutex); buf_block_buf_fix_dec(block); mutex_exit(&block->mutex); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(block->page.file_page_was_freed == FALSE); #endif if (innobase_get_slow_log()) { trx = innobase_get_trx(); } if (UNIV_UNLIKELY(!access_time)) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(buf_block_get_space(block), buf_block_get_zip_size(block), buf_block_get_page_no(block), trx); } #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(buf_block_get_space(block), buf_block_get_page_no(block)) == 0); #endif buf_pool->stat.n_page_gets++; if (innobase_get_slow_log()) { _increment_page_get_statistics(block, trx); } return(TRUE); } /********************************************************************//** This is used to get access to a known database page, when no waiting can be done. For example, if a search in an adaptive hash index leads us to this frame. @return TRUE if success */ UNIV_INTERN ibool buf_page_get_known_nowait( /*======================*/ ulint rw_latch,/*!< in: RW_S_LATCH, RW_X_LATCH */ buf_block_t* block, /*!< in: the known page */ ulint mode, /*!< in: BUF_MAKE_YOUNG or BUF_KEEP_OLD */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mini-transaction */ { ibool success; ulint fix_type; trx_t* trx = NULL; ut_ad(mtr); ut_ad(mtr->state == MTR_ACTIVE); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); mutex_enter(&block->mutex); if (buf_block_get_state(block) == BUF_BLOCK_REMOVE_HASH) { /* Another thread is just freeing the block from the LRU list of the buffer pool: do not try to access this page; this attempt to access the page can only come through the hash index because when the buffer block state is ..._REMOVE_HASH, we have already removed it from the page address hash table of the buffer pool. */ mutex_exit(&block->mutex); return(FALSE); } ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); buf_block_buf_fix_inc(block, file, line); mutex_exit(&block->mutex); if (mode == BUF_MAKE_YOUNG && buf_page_peek_if_too_old(&block->page)) { //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); buf_LRU_make_block_young(&block->page); //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); } else if (!buf_page_is_accessed(&block->page)) { /* Above, we do a dirty read on purpose, to avoid mutex contention. The field buf_page_t::access_time is only used for heuristic purposes. Writes to the field must be protected by mutex, however. */ ulint time_ms = ut_time_ms(); //buf_pool_mutex_enter(); mutex_enter(&block->mutex); buf_page_set_accessed(&block->page, time_ms); //buf_pool_mutex_exit(); mutex_exit(&block->mutex); } ut_ad(!ibuf_inside() || (mode == BUF_KEEP_OLD)); if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_S_FIX; } else { success = rw_lock_x_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_X_FIX; } if (!success) { mutex_enter(&block->mutex); buf_block_buf_fix_dec(block); mutex_exit(&block->mutex); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(block->page.file_page_was_freed == FALSE); #endif #ifdef UNIV_IBUF_COUNT_DEBUG ut_a((mode == BUF_KEEP_OLD) || (ibuf_count_get(buf_block_get_space(block), buf_block_get_page_no(block)) == 0)); #endif buf_pool->stat.n_page_gets++; if (innobase_get_slow_log()) { trx = innobase_get_trx(); _increment_page_get_statistics(block, trx); } return(TRUE); } /*******************************************************************//** Given a tablespace id and page number tries to get that page. If the page is not in the buffer pool it is not loaded and NULL is returned. Suitable for using when holding the kernel mutex. @return pointer to a page or NULL */ UNIV_INTERN const buf_block_t* buf_page_try_get_func( /*==================*/ ulint space_id,/*!< in: tablespace id */ ulint page_no,/*!< in: page number */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mini-transaction */ { buf_block_t* block; ibool success; ulint fix_type; ut_ad(mtr); ut_ad(mtr->state == MTR_ACTIVE); //buf_pool_mutex_enter(); rw_lock_s_lock(&page_hash_latch); block = buf_block_hash_get(space_id, page_no); if (!block) { //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); return(NULL); } mutex_enter(&block->mutex); //buf_pool_mutex_exit(); rw_lock_s_unlock(&page_hash_latch); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); ut_a(buf_block_get_space(block) == space_id); ut_a(buf_block_get_page_no(block) == page_no); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_block_buf_fix_inc(block, file, line); mutex_exit(&block->mutex); fix_type = MTR_MEMO_PAGE_S_FIX; success = rw_lock_s_lock_nowait(&block->lock, file, line); if (!success) { /* Let us try to get an X-latch. If the current thread is holding an X-latch on the page, we cannot get an S-latch. */ fix_type = MTR_MEMO_PAGE_X_FIX; success = rw_lock_x_lock_func_nowait(&block->lock, file, line); } if (!success) { mutex_enter(&block->mutex); buf_block_buf_fix_dec(block); mutex_exit(&block->mutex); return(NULL); } mtr_memo_push(mtr, block, fix_type); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 5771 || buf_validate()); ut_a(block->page.buf_fix_count > 0); ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(block->page.file_page_was_freed == FALSE); #endif /* UNIV_DEBUG_FILE_ACCESSES */ buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK); buf_pool->stat.n_page_gets++; #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(buf_block_get_space(block), buf_block_get_page_no(block)) == 0); #endif return(block); } /********************************************************************//** Initialize some fields of a control block. */ UNIV_INLINE void buf_page_init_low( /*==============*/ buf_page_t* bpage) /*!< in: block to init */ { bpage->flush_type = BUF_FLUSH_LRU; bpage->io_fix = BUF_IO_NONE; bpage->buf_fix_count = 0; bpage->freed_page_clock = 0; bpage->access_time = 0; bpage->newest_modification = 0; bpage->oldest_modification = 0; HASH_INVALIDATE(bpage, hash); bpage->is_corrupt = FALSE; #ifdef UNIV_DEBUG_FILE_ACCESSES bpage->file_page_was_freed = FALSE; #endif /* UNIV_DEBUG_FILE_ACCESSES */ } /********************************************************************//** Inits a page to the buffer buf_pool. */ static void buf_page_init( /*==========*/ ulint space, /*!< in: space id */ ulint offset, /*!< in: offset of the page within space in units of a page */ buf_block_t* block) /*!< in: block to init */ { buf_page_t* hash_page; //ut_ad(buf_pool_mutex_own()); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&page_hash_latch, RW_LOCK_EX)); #endif ut_ad(mutex_own(&(block->mutex))); ut_a(buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE); /* Set the state of the block */ buf_block_set_file_page(block, space, offset); #ifdef UNIV_DEBUG_VALGRIND if (!space) { /* Silence valid Valgrind warnings about uninitialized data being written to data files. There are some unused bytes on some pages that InnoDB does not initialize. */ UNIV_MEM_VALID(block->frame, UNIV_PAGE_SIZE); } #endif /* UNIV_DEBUG_VALGRIND */ buf_block_init_low(block); block->lock_hash_val = lock_rec_hash(space, offset); /* Insert into the hash table of file pages */ hash_page = buf_page_hash_get(space, offset); if (UNIV_LIKELY_NULL(hash_page)) { fprintf(stderr, "InnoDB: Error: page %lu %lu already found" " in the hash table: %p, %p\n", (ulong) space, (ulong) offset, (const void*) hash_page, (const void*) block); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG mutex_exit(&block->mutex); //buf_pool_mutex_exit(); rw_lock_x_unlock(&page_hash_latch); buf_print(); buf_LRU_print(); buf_validate(); buf_LRU_validate(); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ ut_error; } buf_page_init_low(&block->page); ut_ad(!block->page.in_zip_hash); ut_ad(!block->page.in_page_hash); ut_d(block->page.in_page_hash = TRUE); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, buf_page_address_fold(space, offset), &block->page); } /********************************************************************//** Function which inits a page for read to the buffer buf_pool. If the page is (1) already in buf_pool, or (2) if we specify to read only ibuf pages and the page is not an ibuf page, or (3) if the space is deleted or being deleted, then this function does nothing. Sets the io_fix flag to BUF_IO_READ and sets a non-recursive exclusive lock on the buffer frame. The io-handler must take care that the flag is cleared and the lock released later. @return pointer to the block or NULL */ UNIV_INTERN buf_page_t* buf_page_init_for_read( /*===================*/ ulint* err, /*!< out: DB_SUCCESS or DB_TABLESPACE_DELETED */ ulint mode, /*!< in: BUF_READ_IBUF_PAGES_ONLY, ... */ ulint space, /*!< in: space id */ ulint zip_size,/*!< in: compressed page size, or 0 */ ibool unzip, /*!< in: TRUE=request uncompressed page */ ib_int64_t tablespace_version,/*!< in: prevents reading from a wrong version of the tablespace in case we have done DISCARD + IMPORT */ ulint offset) /*!< in: page number */ { buf_block_t* block; buf_page_t* bpage; mtr_t mtr; ibool lru = FALSE; void* data; ut_ad(buf_pool); *err = DB_SUCCESS; if (mode == BUF_READ_IBUF_PAGES_ONLY) { /* It is a read-ahead within an ibuf routine */ ut_ad(!ibuf_bitmap_page(zip_size, offset)); ut_ad(ibuf_inside()); mtr_start(&mtr); if (!recv_no_ibuf_operations && !ibuf_page(space, zip_size, offset, &mtr)) { mtr_commit(&mtr); return(NULL); } } else { ut_ad(mode == BUF_READ_ANY_PAGE); } if (zip_size && UNIV_LIKELY(!unzip) && UNIV_LIKELY(!recv_recovery_is_on())) { block = NULL; } else { block = buf_LRU_get_free_block(0); ut_ad(block); } //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); rw_lock_x_lock(&page_hash_latch); if (buf_page_hash_get(space, offset)) { /* The page is already in the buffer pool. */ err_exit: if (block) { mutex_enter(&block->mutex); mutex_exit(&LRU_list_mutex); rw_lock_x_unlock(&page_hash_latch); buf_LRU_block_free_non_file_page(block, FALSE); mutex_exit(&block->mutex); } else { mutex_exit(&LRU_list_mutex); rw_lock_x_unlock(&page_hash_latch); } bpage = NULL; goto func_exit; } if (fil_tablespace_deleted_or_being_deleted_in_mem( space, tablespace_version)) { /* The page belongs to a space which has been deleted or is being deleted. */ *err = DB_TABLESPACE_DELETED; goto err_exit; } if (block) { bpage = &block->page; mutex_enter(&block->mutex); buf_page_init(space, offset, block); rw_lock_x_unlock(&page_hash_latch); /* The block must be put to the LRU list, to the old blocks */ buf_LRU_add_block(bpage, TRUE/* to old blocks */); /* We set a pass-type x-lock on the frame because then the same thread which called for the read operation (and is running now at this point of code) can wait for the read to complete by waiting for the x-lock on the frame; if the x-lock were recursive, the same thread would illegally get the x-lock before the page read is completed. The x-lock is cleared by the io-handler thread. */ rw_lock_x_lock_gen(&block->lock, BUF_IO_READ); buf_page_set_io_fix(bpage, BUF_IO_READ); if (UNIV_UNLIKELY(zip_size)) { page_zip_set_size(&block->page.zip, zip_size); /* buf_pool_mutex may be released and reacquired by buf_buddy_alloc(). Thus, we must release block->mutex in order not to break the latching order in the reacquisition of buf_pool_mutex. We also must defer this operation until after the block descriptor has been added to buf_pool->LRU and buf_pool->page_hash. */ mutex_exit(&block->mutex); data = buf_buddy_alloc(zip_size, &lru, FALSE); mutex_enter(&block->mutex); block->page.zip.data = data; /* To maintain the invariant block->in_unzip_LRU_list == buf_page_belongs_to_unzip_LRU(&block->page) we have to add this block to unzip_LRU after block->page.zip.data is set. */ ut_ad(buf_page_belongs_to_unzip_LRU(&block->page)); buf_unzip_LRU_add_block(block, TRUE); } mutex_exit(&LRU_list_mutex); mutex_exit(&block->mutex); } else { /* Defer buf_buddy_alloc() until after the block has been found not to exist. The buf_buddy_alloc() and buf_buddy_free() calls may be expensive because of buf_buddy_relocate(). */ /* The compressed page must be allocated before the control block (bpage), in order to avoid the invocation of buf_buddy_relocate_block() on uninitialized data. */ data = buf_buddy_alloc(zip_size, &lru, TRUE); bpage = buf_buddy_alloc(sizeof *bpage, &lru, TRUE); /* If buf_buddy_alloc() allocated storage from the LRU list, it released and reacquired buf_pool_mutex. Thus, we must check the page_hash again, as it may have been modified. */ if (UNIV_UNLIKELY(lru) && UNIV_LIKELY_NULL(buf_page_hash_get(space, offset))) { /* The block was added by some other thread. */ buf_buddy_free(bpage, sizeof *bpage, TRUE); buf_buddy_free(data, zip_size, TRUE); mutex_exit(&LRU_list_mutex); rw_lock_x_unlock(&page_hash_latch); bpage = NULL; goto func_exit; } page_zip_des_init(&bpage->zip); page_zip_set_size(&bpage->zip, zip_size); bpage->zip.data = data; mutex_enter(&buf_pool_zip_mutex); UNIV_MEM_DESC(bpage->zip.data, page_zip_get_size(&bpage->zip), bpage); buf_page_init_low(bpage); bpage->state = BUF_BLOCK_ZIP_PAGE; bpage->space = space; bpage->offset = offset; #ifdef UNIV_DEBUG bpage->in_page_hash = FALSE; bpage->in_zip_hash = FALSE; bpage->in_flush_list = FALSE; bpage->in_free_list = FALSE; #endif /* UNIV_DEBUG */ bpage->in_LRU_list = FALSE; ut_d(bpage->in_page_hash = TRUE); HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, buf_page_address_fold(space, offset), bpage); rw_lock_x_unlock(&page_hash_latch); /* The block must be put to the LRU list, to the old blocks */ buf_LRU_add_block(bpage, TRUE/* to old blocks */); mutex_enter(&flush_list_mutex); buf_LRU_insert_zip_clean(bpage); mutex_exit(&flush_list_mutex); mutex_exit(&LRU_list_mutex); buf_page_set_io_fix(bpage, BUF_IO_READ); mutex_exit(&buf_pool_zip_mutex); } mutex_enter(&buf_pool_mutex); buf_pool->n_pend_reads++; mutex_exit(&buf_pool_mutex); func_exit: //buf_pool_mutex_exit(); if (mode == BUF_READ_IBUF_PAGES_ONLY) { mtr_commit(&mtr); } ut_ad(!bpage || buf_page_in_file(bpage)); return(bpage); } /********************************************************************//** Initializes a page to the buffer buf_pool. The page is usually not read from a file even if it cannot be found in the buffer buf_pool. This is one of the functions which perform to a block a state transition NOT_USED => FILE_PAGE (the other is buf_page_get_gen). @return pointer to the block, page bufferfixed */ UNIV_INTERN buf_block_t* buf_page_create( /*============*/ ulint space, /*!< in: space id */ ulint offset, /*!< in: offset of the page within space in units of a page */ ulint zip_size,/*!< in: compressed page size, or 0 */ mtr_t* mtr) /*!< in: mini-transaction handle */ { buf_frame_t* frame; buf_block_t* block; buf_block_t* free_block = NULL; ulint time_ms = ut_time_ms(); ut_ad(mtr); ut_ad(mtr->state == MTR_ACTIVE); ut_ad(space || !zip_size); free_block = buf_LRU_get_free_block(0); //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); rw_lock_x_lock(&page_hash_latch); block = (buf_block_t*) buf_page_hash_get(space, offset); if (block && buf_page_in_file(&block->page)) { #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(space, offset) == 0); #endif #ifdef UNIV_DEBUG_FILE_ACCESSES block->page.file_page_was_freed = FALSE; #endif /* UNIV_DEBUG_FILE_ACCESSES */ /* Page can be found in buf_pool */ //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); rw_lock_x_unlock(&page_hash_latch); buf_block_free(free_block); return(buf_page_get_with_no_latch(space, zip_size, offset, mtr)); } /* If we get here, the page was not in buf_pool: init it there */ #ifdef UNIV_DEBUG if (buf_debug_prints) { fprintf(stderr, "Creating space %lu page %lu to buffer\n", (ulong) space, (ulong) offset); } #endif /* UNIV_DEBUG */ block = free_block; mutex_enter(&block->mutex); buf_page_init(space, offset, block); rw_lock_x_unlock(&page_hash_latch); /* The block must be put to the LRU list */ buf_LRU_add_block(&block->page, FALSE); buf_block_buf_fix_inc(block, __FILE__, __LINE__); buf_pool->stat.n_pages_created++; if (zip_size) { void* data; ibool lru; /* Prevent race conditions during buf_buddy_alloc(), which may release and reacquire buf_pool_mutex, by IO-fixing and X-latching the block. */ buf_page_set_io_fix(&block->page, BUF_IO_READ); rw_lock_x_lock(&block->lock); page_zip_set_size(&block->page.zip, zip_size); mutex_exit(&block->mutex); /* buf_pool_mutex may be released and reacquired by buf_buddy_alloc(). Thus, we must release block->mutex in order not to break the latching order in the reacquisition of buf_pool_mutex. We also must defer this operation until after the block descriptor has been added to buf_pool->LRU and buf_pool->page_hash. */ data = buf_buddy_alloc(zip_size, &lru, FALSE); mutex_enter(&block->mutex); block->page.zip.data = data; /* To maintain the invariant block->in_unzip_LRU_list == buf_page_belongs_to_unzip_LRU(&block->page) we have to add this block to unzip_LRU after block->page.zip.data is set. */ ut_ad(buf_page_belongs_to_unzip_LRU(&block->page)); buf_unzip_LRU_add_block(block, FALSE); buf_page_set_io_fix(&block->page, BUF_IO_NONE); rw_lock_x_unlock(&block->lock); } buf_page_set_accessed(&block->page, time_ms); //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); mtr_memo_push(mtr, block, MTR_MEMO_BUF_FIX); mutex_exit(&block->mutex); /* Delete possible entries for the page from the insert buffer: such can exist if the page belonged to an index which was dropped */ ibuf_merge_or_delete_for_page(NULL, space, offset, zip_size, TRUE); /* Flush pages from the end of the LRU list if necessary */ buf_flush_free_margin(FALSE); frame = block->frame; memset(frame + FIL_PAGE_PREV, 0xff, 4); memset(frame + FIL_PAGE_NEXT, 0xff, 4); mach_write_to_2(frame + FIL_PAGE_TYPE, FIL_PAGE_TYPE_ALLOCATED); /* Reset to zero the file flush lsn field in the page; if the first page of an ibdata file is 'created' in this function into the buffer pool then we lose the original contents of the file flush lsn stamp. Then InnoDB could in a crash recovery print a big, false, corruption warning if the stamp contains an lsn bigger than the ib_logfile lsn. */ memset(frame + FIL_PAGE_FILE_FLUSH_LSN, 0, 8); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(++buf_dbg_counter % 357 || buf_validate()); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(buf_block_get_space(block), buf_block_get_page_no(block)) == 0); #endif return(block); } /********************************************************************//** Completes an asynchronous read or write request of a file page to or from the buffer pool. */ UNIV_INTERN void buf_page_io_complete( /*=================*/ buf_page_t* bpage, /*!< in: pointer to the block in question */ trx_t* trx) { enum buf_io_fix io_type; const ibool uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); enum buf_flush flush_type; mutex_t* block_mutex; ut_a(buf_page_in_file(bpage)); /* We do not need protect io_fix here by mutex to read it because this is the only function where we can change the value from BUF_IO_READ or BUF_IO_WRITE to some other value, and our code ensures that this is the only thread that handles the i/o for this block. */ io_type = buf_page_get_io_fix(bpage); ut_ad(io_type == BUF_IO_READ || io_type == BUF_IO_WRITE); if (io_type == BUF_IO_READ) { ulint read_page_no; ulint read_space_id; byte* frame; if (buf_page_get_zip_size(bpage)) { frame = bpage->zip.data; buf_pool->n_pend_unzip++; if (uncompressed && !buf_zip_decompress((buf_block_t*) bpage, FALSE)) { buf_pool->n_pend_unzip--; goto corrupt; } buf_pool->n_pend_unzip--; } else { ut_a(uncompressed); frame = ((buf_block_t*) bpage)->frame; } /* If this page is not uninitialized and not in the doublewrite buffer, then the page number and space id should be the same as in block. */ read_page_no = mach_read_from_4(frame + FIL_PAGE_OFFSET); read_space_id = mach_read_from_4( frame + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID); if ((bpage->space == TRX_SYS_SPACE || (srv_doublewrite_file && bpage->space == TRX_DOUBLEWRITE_SPACE)) && trx_doublewrite_page_inside(bpage->offset)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: reading page %lu\n" "InnoDB: which is in the" " doublewrite buffer!\n", (ulong) bpage->offset); } else if (!read_space_id && !read_page_no) { /* This is likely an uninitialized page. */ } else if ((bpage->space && bpage->space != read_space_id) || bpage->offset != read_page_no) { /* We did not compare space_id to read_space_id if bpage->space == 0, because the field on the page may contain garbage in MySQL < 4.1.1, which only supported bpage->space == 0. */ ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: space id and page n:o" " stored in the page\n" "InnoDB: read in are %lu:%lu," " should be %lu:%lu!\n", (ulong) read_space_id, (ulong) read_page_no, (ulong) bpage->space, (ulong) bpage->offset); } if (!srv_pass_corrupt_table || !bpage->is_corrupt) { /* From version 3.23.38 up we store the page checksum to the 4 first bytes of the page end lsn field */ if (buf_page_is_corrupted(frame, buf_page_get_zip_size(bpage))) { corrupt: fprintf(stderr, "InnoDB: Database page corruption on disk" " or a failed\n" "InnoDB: file read of page %lu.\n" "InnoDB: You may have to recover" " from a backup.\n", (ulong) bpage->offset); buf_page_print(frame, buf_page_get_zip_size(bpage)); fprintf(stderr, "InnoDB: Database page corruption on disk" " or a failed\n" "InnoDB: file read of page %lu.\n" "InnoDB: You may have to recover" " from a backup.\n", (ulong) bpage->offset); fputs("InnoDB: It is also possible that" " your operating\n" "InnoDB: system has corrupted its" " own file cache\n" "InnoDB: and rebooting your computer" " removes the\n" "InnoDB: error.\n" "InnoDB: If the corrupt page is an index page\n" "InnoDB: you can also try to" " fix the corruption\n" "InnoDB: by dumping, dropping," " and reimporting\n" "InnoDB: the corrupt table." " You can use CHECK\n" "InnoDB: TABLE to scan your" " table for corruption.\n" "InnoDB: See also " REFMAN "forcing-recovery.html\n" "InnoDB: about forcing recovery.\n", stderr); if (srv_pass_corrupt_table && !trx_sys_sys_space(bpage->space) && bpage->space < SRV_LOG_SPACE_FIRST_ID) { fprintf(stderr, "InnoDB: space %lu will be treated as corrupt.\n", bpage->space); fil_space_set_corrupt(bpage->space); if (trx && trx->dict_operation_lock_mode == 0) { dict_table_set_corrupt_by_space(bpage->space, TRUE); } else { dict_table_set_corrupt_by_space(bpage->space, FALSE); } bpage->is_corrupt = TRUE; } else if (srv_force_recovery < SRV_FORCE_IGNORE_CORRUPT) { fputs("InnoDB: Ending processing because of" " a corrupt database page.\n", stderr); exit(1); } } } /**/ if (recv_recovery_is_on()) { /* Pages must be uncompressed for crash recovery. */ ut_a(uncompressed); recv_recover_page(TRUE, (buf_block_t*) bpage); } if (uncompressed && !recv_no_ibuf_operations) { ibuf_merge_or_delete_for_page( /* Delete possible entries, if bpage is_corrupt */ (srv_pass_corrupt_table && bpage->is_corrupt) ? NULL : (buf_block_t*) bpage, bpage->space, bpage->offset, buf_page_get_zip_size(bpage), (srv_pass_corrupt_table && bpage->is_corrupt) ? FALSE : TRUE); } } //buf_pool_mutex_enter(); if (io_type == BUF_IO_WRITE) { flush_type = buf_page_get_flush_type(bpage); /* to keep consistency at buf_LRU_insert_zip_clean() */ //if (flush_type == BUF_FLUSH_LRU) { /* optimistic! */ mutex_enter(&LRU_list_mutex); //} } block_mutex = buf_page_get_mutex_enter(bpage); ut_a(block_mutex); mutex_enter(&buf_pool_mutex); #ifdef UNIV_IBUF_COUNT_DEBUG if (io_type == BUF_IO_WRITE || uncompressed) { /* For BUF_IO_READ of compressed-only blocks, the buffered operations will be merged by buf_page_get_gen() after the block has been uncompressed. */ ut_a(ibuf_count_get(bpage->space, bpage->offset) == 0); } #endif /* Because this thread which does the unlocking is not the same that did the locking, we use a pass value != 0 in unlock, which simply removes the newest lock debug record, without checking the thread id. */ buf_page_set_io_fix(bpage, BUF_IO_NONE); switch (io_type) { case BUF_IO_READ: /* NOTE that the call to ibuf may have moved the ownership of the x-latch to this OS thread: do not let this confuse you in debugging! */ ut_ad(buf_pool->n_pend_reads > 0); buf_pool->n_pend_reads--; buf_pool->stat.n_pages_read++; if (uncompressed) { rw_lock_x_unlock_gen(&((buf_block_t*) bpage)->lock, BUF_IO_READ); } break; case BUF_IO_WRITE: /* Write means a flush operation: call the completion routine in the flush system */ buf_flush_write_complete(bpage); /* to keep consistency at buf_LRU_insert_zip_clean() */ //if (flush_type == BUF_FLUSH_LRU) { /* optimistic! */ mutex_exit(&LRU_list_mutex); //} if (uncompressed) { rw_lock_s_unlock_gen(&((buf_block_t*) bpage)->lock, BUF_IO_WRITE); } buf_pool->stat.n_pages_written++; break; default: ut_error; } #ifdef UNIV_DEBUG if (buf_debug_prints) { fprintf(stderr, "Has %s page space %lu page no %lu\n", io_type == BUF_IO_READ ? "read" : "written", (ulong) buf_page_get_space(bpage), (ulong) buf_page_get_page_no(bpage)); } #endif /* UNIV_DEBUG */ mutex_exit(&buf_pool_mutex); mutex_exit(block_mutex); //buf_pool_mutex_exit(); } /*********************************************************************//** Invalidates the file pages in the buffer pool when an archive recovery is completed. All the file pages buffered must be in a replaceable state when this function is called: not latched and not modified. */ UNIV_INTERN void buf_pool_invalidate(void) /*=====================*/ { ibool freed; enum buf_flush i; buf_pool_mutex_enter(); for (i = BUF_FLUSH_LRU; i < BUF_FLUSH_N_TYPES; i++) { /* As this function is called during startup and during redo application phase during recovery, InnoDB is single threaded (apart from IO helper threads) at this stage. No new write batch can be in intialization stage at this point. */ ut_ad(buf_pool->init_flush[i] == FALSE); /* However, it is possible that a write batch that has been posted earlier is still not complete. For buffer pool invalidation to proceed we must ensure there is NO write activity happening. */ if (buf_pool->n_flush[i] > 0) { buf_pool_mutex_exit(); buf_flush_wait_batch_end(i); buf_pool_mutex_enter(); } } buf_pool_mutex_exit(); ut_ad(buf_all_freed()); freed = TRUE; while (freed) { freed = buf_LRU_search_and_free_block(100); } //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); ut_ad(UT_LIST_GET_LEN(buf_pool->LRU) == 0); ut_ad(UT_LIST_GET_LEN(buf_pool->unzip_LRU) == 0); buf_pool->freed_page_clock = 0; buf_pool->LRU_old = NULL; buf_pool->LRU_old_len = 0; buf_pool->LRU_flush_ended = 0; memset(&buf_pool->stat, 0x00, sizeof(buf_pool->stat)); buf_refresh_io_stats(); //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /*********************************************************************//** Validates the buffer buf_pool data structure. @return TRUE */ UNIV_INTERN ibool buf_validate(void) /*==============*/ { buf_page_t* b; buf_chunk_t* chunk; ulint i; ulint n_single_flush = 0; ulint n_lru_flush = 0; ulint n_list_flush = 0; ulint n_lru = 0; ulint n_flush = 0; ulint n_free = 0; ulint n_zip = 0; ut_ad(buf_pool); //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); rw_lock_x_lock(&page_hash_latch); /* for keep the new latch order, it cannot validate correctly... */ chunk = buf_pool->chunks; /* Check the uncompressed blocks. */ for (i = buf_pool->n_chunks; i--; chunk++) { ulint j; buf_block_t* block = chunk->blocks; for (j = chunk->size; j--; block++) { mutex_enter(&block->mutex); switch (buf_block_get_state(block)) { case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_ZIP_DIRTY: /* These should only occur on zip_clean, zip_free[], or flush_list. */ ut_error; break; case BUF_BLOCK_FILE_PAGE: ut_a(buf_page_hash_get(buf_block_get_space( block), buf_block_get_page_no( block)) == &block->page); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(buf_page_get_io_fix(&block->page) == BUF_IO_READ || !ibuf_count_get(buf_block_get_space( block), buf_block_get_page_no( block))); #endif switch (buf_page_get_io_fix(&block->page)) { case BUF_IO_NONE: break; case BUF_IO_WRITE: switch (buf_page_get_flush_type( &block->page)) { case BUF_FLUSH_LRU: n_lru_flush++; ut_a(rw_lock_is_locked( &block->lock, RW_LOCK_SHARED)); break; case BUF_FLUSH_LIST: n_list_flush++; break; case BUF_FLUSH_SINGLE_PAGE: n_single_flush++; break; default: ut_error; } break; case BUF_IO_READ: ut_a(rw_lock_is_locked(&block->lock, RW_LOCK_EX)); break; } n_lru++; if (block->page.oldest_modification > 0) { n_flush++; } break; case BUF_BLOCK_NOT_USED: n_free++; break; case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: /* do nothing */ break; } mutex_exit(&block->mutex); } } mutex_enter(&buf_pool_zip_mutex); /* Check clean compressed-only blocks. */ for (b = UT_LIST_GET_FIRST(buf_pool->zip_clean); b; b = UT_LIST_GET_NEXT(zip_list, b)) { ut_a(buf_page_get_state(b) == BUF_BLOCK_ZIP_PAGE); switch (buf_page_get_io_fix(b)) { case BUF_IO_NONE: /* All clean blocks should be I/O-unfixed. */ break; case BUF_IO_READ: /* In buf_LRU_free_block(), we temporarily set b->io_fix = BUF_IO_READ for a newly allocated control block in order to prevent buf_page_get_gen() from decompressing the block. */ break; default: ut_error; break; } ut_a(!b->oldest_modification); ut_a(buf_page_hash_get(b->space, b->offset) == b); n_lru++; n_zip++; } /* Check dirty compressed-only blocks. */ mutex_enter(&flush_list_mutex); for (b = UT_LIST_GET_FIRST(buf_pool->flush_list); b; b = UT_LIST_GET_NEXT(flush_list, b)) { ut_ad(b->in_flush_list); switch (buf_page_get_state(b)) { case BUF_BLOCK_ZIP_DIRTY: ut_a(b->oldest_modification); n_lru++; n_flush++; n_zip++; switch (buf_page_get_io_fix(b)) { case BUF_IO_NONE: case BUF_IO_READ: break; case BUF_IO_WRITE: switch (buf_page_get_flush_type(b)) { case BUF_FLUSH_LRU: n_lru_flush++; break; case BUF_FLUSH_LIST: n_list_flush++; break; case BUF_FLUSH_SINGLE_PAGE: n_single_flush++; break; default: ut_error; } break; } break; case BUF_BLOCK_FILE_PAGE: /* uncompressed page */ break; case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } ut_a(buf_page_hash_get(b->space, b->offset) == b); } mutex_exit(&flush_list_mutex); mutex_exit(&buf_pool_zip_mutex); if (n_lru + n_free > buf_pool->curr_size + n_zip) { fprintf(stderr, "n LRU %lu, n free %lu, pool %lu zip %lu\n", (ulong) n_lru, (ulong) n_free, (ulong) buf_pool->curr_size, (ulong) n_zip); ut_error; } ut_a(UT_LIST_GET_LEN(buf_pool->LRU) == n_lru); /* because of latching order with block->mutex, we cannot get free_list_mutex before that */ /* if (UT_LIST_GET_LEN(buf_pool->free) != n_free) { fprintf(stderr, "Free list len %lu, free blocks %lu\n", (ulong) UT_LIST_GET_LEN(buf_pool->free), (ulong) n_free); ut_error; } */ /* because of latching order with block->mutex, we cannot get flush_list_mutex before that */ /* ut_a(UT_LIST_GET_LEN(buf_pool->flush_list) == n_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE] == n_single_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LIST] == n_list_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LRU] == n_lru_flush); */ //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); rw_lock_x_unlock(&page_hash_latch); ut_a(buf_LRU_validate()); ut_a(buf_flush_validate()); return(TRUE); } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #if defined UNIV_DEBUG_PRINT || defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /*********************************************************************//** Prints info of the buffer buf_pool data structure. */ UNIV_INTERN void buf_print(void) /*===========*/ { dulint* index_ids; ulint* counts; ulint size; ulint i; ulint j; dulint id; ulint n_found; buf_chunk_t* chunk; dict_index_t* index; ut_ad(buf_pool); size = buf_pool->curr_size; index_ids = mem_alloc(sizeof(dulint) * size); counts = mem_alloc(sizeof(ulint) * size); //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); mutex_enter(&free_list_mutex); mutex_enter(&flush_list_mutex); fprintf(stderr, "buf_pool size %lu\n" "database pages %lu\n" "free pages %lu\n" "modified database pages %lu\n" "n pending decompressions %lu\n" "n pending reads %lu\n" "n pending flush LRU %lu list %lu single page %lu\n" "pages made young %lu, not young %lu\n" "pages read %lu, created %lu, written %lu\n", (ulong) size, (ulong) UT_LIST_GET_LEN(buf_pool->LRU), (ulong) UT_LIST_GET_LEN(buf_pool->free), (ulong) UT_LIST_GET_LEN(buf_pool->flush_list), (ulong) buf_pool->n_pend_unzip, (ulong) buf_pool->n_pend_reads, (ulong) buf_pool->n_flush[BUF_FLUSH_LRU], (ulong) buf_pool->n_flush[BUF_FLUSH_LIST], (ulong) buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE], (ulong) buf_pool->stat.n_pages_made_young, (ulong) buf_pool->stat.n_pages_not_made_young, (ulong) buf_pool->stat.n_pages_read, (ulong) buf_pool->stat.n_pages_created, (ulong) buf_pool->stat.n_pages_written); /* Count the number of blocks belonging to each index in the buffer */ n_found = 0; chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { buf_block_t* block = chunk->blocks; ulint n_blocks = chunk->size; for (; n_blocks--; block++) { const buf_frame_t* frame = block->frame; if (fil_page_get_type(frame) == FIL_PAGE_INDEX) { id = btr_page_get_index_id(frame); /* Look for the id in the index_ids array */ j = 0; while (j < n_found) { if (ut_dulint_cmp(index_ids[j], id) == 0) { counts[j]++; break; } j++; } if (j == n_found) { n_found++; index_ids[j] = id; counts[j] = 1; } } } } //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); mutex_exit(&free_list_mutex); mutex_exit(&flush_list_mutex); for (i = 0; i < n_found; i++) { index = dict_index_get_if_in_cache(index_ids[i]); fprintf(stderr, "Block count for index %lu in buffer is about %lu", (ulong) ut_dulint_get_low(index_ids[i]), (ulong) counts[i]); if (index) { putc(' ', stderr); dict_index_name_print(stderr, NULL, index); } putc('\n', stderr); } mem_free(index_ids); mem_free(counts); ut_a(buf_validate()); } #endif /* UNIV_DEBUG_PRINT || UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG /*********************************************************************//** Returns the number of latched pages in the buffer pool. @return number of latched pages */ UNIV_INTERN ulint buf_get_latched_pages_number(void) /*==============================*/ { buf_chunk_t* chunk; buf_page_t* b; ulint i; ulint fixed_pages_number = 0; //buf_pool_mutex_enter(); chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { buf_block_t* block; ulint j; block = chunk->blocks; for (j = chunk->size; j--; block++) { if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { continue; } mutex_enter(&block->mutex); if (block->page.buf_fix_count != 0 || buf_page_get_io_fix(&block->page) != BUF_IO_NONE) { fixed_pages_number++; } mutex_exit(&block->mutex); } } mutex_enter(&buf_pool_zip_mutex); /* Traverse the lists of clean and dirty compressed-only blocks. */ for (b = UT_LIST_GET_FIRST(buf_pool->zip_clean); b; b = UT_LIST_GET_NEXT(zip_list, b)) { ut_a(buf_page_get_state(b) == BUF_BLOCK_ZIP_PAGE); ut_a(buf_page_get_io_fix(b) != BUF_IO_WRITE); if (b->buf_fix_count != 0 || buf_page_get_io_fix(b) != BUF_IO_NONE) { fixed_pages_number++; } } mutex_enter(&flush_list_mutex); for (b = UT_LIST_GET_FIRST(buf_pool->flush_list); b; b = UT_LIST_GET_NEXT(flush_list, b)) { ut_ad(b->in_flush_list); switch (buf_page_get_state(b)) { case BUF_BLOCK_ZIP_DIRTY: if (b->buf_fix_count != 0 || buf_page_get_io_fix(b) != BUF_IO_NONE) { fixed_pages_number++; } break; case BUF_BLOCK_FILE_PAGE: /* uncompressed page */ break; case BUF_BLOCK_ZIP_FREE: case BUF_BLOCK_ZIP_PAGE: case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; } } mutex_exit(&flush_list_mutex); mutex_exit(&buf_pool_zip_mutex); //buf_pool_mutex_exit(); return(fixed_pages_number); } #endif /* UNIV_DEBUG */ /*********************************************************************//** Returns the number of pending buf pool ios. @return number of pending I/O operations */ UNIV_INTERN ulint buf_get_n_pending_ios(void) /*=======================*/ { return(buf_pool->n_pend_reads + buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]); } /*********************************************************************//** Returns the ratio in percents of modified pages in the buffer pool / database pages in the buffer pool. @return modified page percentage ratio */ UNIV_INTERN ulint buf_get_modified_ratio_pct(void) /*============================*/ { ulint ratio; //buf_pool_mutex_enter(); /* optimistic */ ratio = (100 * UT_LIST_GET_LEN(buf_pool->flush_list)) / (1 + UT_LIST_GET_LEN(buf_pool->LRU) + UT_LIST_GET_LEN(buf_pool->free)); /* 1 + is there to avoid division by zero */ //buf_pool_mutex_exit(); /* optimistic */ return(ratio); } /*********************************************************************//** Prints info of the buffer i/o. */ UNIV_INTERN void buf_print_io( /*=========*/ FILE* file) /*!< in/out: buffer where to print */ { time_t current_time; double time_elapsed; ulint n_gets_diff; ut_ad(buf_pool); //buf_pool_mutex_enter(); mutex_enter(&LRU_list_mutex); mutex_enter(&free_list_mutex); mutex_enter(&buf_pool_mutex); mutex_enter(&flush_list_mutex); fprintf(file, "Buffer pool size %lu\n" "Buffer pool size, bytes %lu\n" "Free buffers %lu\n" "Database pages %lu\n" "Old database pages %lu\n" "Modified db pages %lu\n" "Pending reads %lu\n" "Pending writes: LRU %lu, flush list %lu, single page %lu\n", (ulong) buf_pool->curr_size, (ulong) buf_pool->curr_size * UNIV_PAGE_SIZE, (ulong) UT_LIST_GET_LEN(buf_pool->free), (ulong) UT_LIST_GET_LEN(buf_pool->LRU), (ulong) buf_pool->LRU_old_len, (ulong) UT_LIST_GET_LEN(buf_pool->flush_list), (ulong) buf_pool->n_pend_reads, (ulong) buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->init_flush[BUF_FLUSH_LRU], (ulong) buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->init_flush[BUF_FLUSH_LIST], (ulong) buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]); current_time = time(NULL); time_elapsed = 0.001 + difftime(current_time, buf_pool->last_printout_time); fprintf(file, "Pages made young %lu, not young %lu\n" "%.2f youngs/s, %.2f non-youngs/s\n" "Pages read %lu, created %lu, written %lu\n" "%.2f reads/s, %.2f creates/s, %.2f writes/s\n", (ulong) buf_pool->stat.n_pages_made_young, (ulong) buf_pool->stat.n_pages_not_made_young, (buf_pool->stat.n_pages_made_young - buf_pool->old_stat.n_pages_made_young) / time_elapsed, (buf_pool->stat.n_pages_not_made_young - buf_pool->old_stat.n_pages_not_made_young) / time_elapsed, (ulong) buf_pool->stat.n_pages_read, (ulong) buf_pool->stat.n_pages_created, (ulong) buf_pool->stat.n_pages_written, (buf_pool->stat.n_pages_read - buf_pool->old_stat.n_pages_read) / time_elapsed, (buf_pool->stat.n_pages_created - buf_pool->old_stat.n_pages_created) / time_elapsed, (buf_pool->stat.n_pages_written - buf_pool->old_stat.n_pages_written) / time_elapsed); n_gets_diff = buf_pool->stat.n_page_gets - buf_pool->old_stat.n_page_gets; if (n_gets_diff) { fprintf(file, "Buffer pool hit rate %lu / 1000," " young-making rate %lu / 1000 not %lu / 1000\n", (ulong) (1000 - ((1000 * (buf_pool->stat.n_pages_read - buf_pool->old_stat.n_pages_read)) / (buf_pool->stat.n_page_gets - buf_pool->old_stat.n_page_gets))), (ulong) (1000 * (buf_pool->stat.n_pages_made_young - buf_pool->old_stat.n_pages_made_young) / n_gets_diff), (ulong) (1000 * (buf_pool->stat.n_pages_not_made_young - buf_pool->old_stat.n_pages_not_made_young) / n_gets_diff)); } else { fputs("No buffer pool page gets since the last printout\n", file); } /* Statistics about read ahead algorithm */ fprintf(file, "Pages read ahead %.2f/s," " evicted without access %.2f/s\n", (buf_pool->stat.n_ra_pages_read - buf_pool->old_stat.n_ra_pages_read) / time_elapsed, (buf_pool->stat.n_ra_pages_evicted - buf_pool->old_stat.n_ra_pages_evicted) / time_elapsed); /* Print some values to help us with visualizing what is happening with LRU eviction. */ fprintf(file, "LRU len: %lu, unzip_LRU len: %lu\n" "I/O sum[%lu]:cur[%lu], unzip sum[%lu]:cur[%lu]\n", UT_LIST_GET_LEN(buf_pool->LRU), UT_LIST_GET_LEN(buf_pool->unzip_LRU), buf_LRU_stat_sum.io, buf_LRU_stat_cur.io, buf_LRU_stat_sum.unzip, buf_LRU_stat_cur.unzip); buf_refresh_io_stats(); //buf_pool_mutex_exit(); mutex_exit(&LRU_list_mutex); mutex_exit(&free_list_mutex); mutex_exit(&buf_pool_mutex); mutex_exit(&flush_list_mutex); } /**********************************************************************//** Refreshes the statistics used to print per-second averages. */ UNIV_INTERN void buf_refresh_io_stats(void) /*======================*/ { buf_pool->last_printout_time = time(NULL); buf_pool->old_stat = buf_pool->stat; } /*********************************************************************//** Asserts that all file pages in the buffer are in a replaceable state. @return TRUE */ UNIV_INTERN ibool buf_all_freed(void) /*===============*/ { buf_chunk_t* chunk; ulint i; ut_ad(buf_pool); //buf_pool_mutex_enter(); /* optimistic */ chunk = buf_pool->chunks; for (i = buf_pool->n_chunks; i--; chunk++) { const buf_block_t* block = buf_chunk_not_freed(chunk); if (UNIV_LIKELY_NULL(block)) { fprintf(stderr, "Page %lu %lu still fixed or dirty\n", (ulong) block->page.space, (ulong) block->page.offset); ut_error; } } //buf_pool_mutex_exit(); /* optimistic */ return(TRUE); } /*********************************************************************//** Checks that there currently are no pending i/o-operations for the buffer pool. @return TRUE if there is no pending i/o */ UNIV_INTERN ibool buf_pool_check_no_pending_io(void) /*==============================*/ { ibool ret; //buf_pool_mutex_enter(); mutex_enter(&buf_pool_mutex); if (buf_pool->n_pend_reads + buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]) { ret = FALSE; } else { ret = TRUE; } //buf_pool_mutex_exit(); mutex_exit(&buf_pool_mutex); return(ret); } /*********************************************************************//** Gets the current length of the free list of buffer blocks. @return length of the free list */ UNIV_INTERN ulint buf_get_free_list_len(void) /*=======================*/ { ulint len; //buf_pool_mutex_enter(); mutex_enter(&free_list_mutex); len = UT_LIST_GET_LEN(buf_pool->free); //buf_pool_mutex_exit(); mutex_exit(&free_list_mutex); return(len); } #else /* !UNIV_HOTBACKUP */ /********************************************************************//** Inits a page to the buffer buf_pool, for use in ibbackup --restore. */ UNIV_INTERN void buf_page_init_for_backup_restore( /*=============================*/ ulint space, /*!< in: space id */ ulint offset, /*!< in: offset of the page within space in units of a page */ ulint zip_size,/*!< in: compressed page size in bytes or 0 for uncompressed pages */ buf_block_t* block) /*!< in: block to init */ { block->page.state = BUF_BLOCK_FILE_PAGE; block->page.space = space; block->page.offset = offset; page_zip_des_init(&block->page.zip); /* We assume that block->page.data has been allocated with zip_size == UNIV_PAGE_SIZE. */ ut_ad(zip_size <= UNIV_PAGE_SIZE); ut_ad(ut_is_2pow(zip_size)); page_zip_set_size(&block->page.zip, zip_size); if (zip_size) { block->page.zip.data = block->frame + UNIV_PAGE_SIZE; } } #endif /* !UNIV_HOTBACKUP */