/****************************************************** Mutex, the basic synchronization primitive (c) 1995 Innobase Oy Created 9/5/1995 Heikki Tuuri *******************************************************/ #include "sync0sync.h" #ifdef UNIV_NONINL #include "sync0sync.ic" #endif #include "sync0rw.h" #include "buf0buf.h" #include "srv0srv.h" #include "buf0types.h" /* REASONS FOR IMPLEMENTING THE SPIN LOCK MUTEX ============================================ Semaphore operations in operating systems are slow: Solaris on a 1993 Sparc takes 3 microseconds (us) for a lock-unlock pair and Windows NT on a 1995 Pentium takes 20 microseconds for a lock-unlock pair. Therefore, we have to implement our own efficient spin lock mutex. Future operating systems may provide efficient spin locks, but we cannot count on that. Another reason for implementing a spin lock is that on multiprocessor systems it can be more efficient for a processor to run a loop waiting for the semaphore to be released than to switch to a different thread. A thread switch takes 25 us on both platforms mentioned above. See Gray and Reuter's book Transaction processing for background. How long should the spin loop last before suspending the thread? On a uniprocessor, spinning does not help at all, because if the thread owning the mutex is not executing, it cannot be released. Spinning actually wastes resources. On a multiprocessor, we do not know if the thread owning the mutex is executing or not. Thus it would make sense to spin as long as the operation guarded by the mutex would typically last assuming that the thread is executing. If the mutex is not released by that time, we may assume that the thread owning the mutex is not executing and suspend the waiting thread. A typical operation (where no i/o involved) guarded by a mutex or a read-write lock may last 1 - 20 us on the current Pentium platform. The longest operations are the binary searches on an index node. We conclude that the best choice is to set the spin time at 20 us. Then the system should work well on a multiprocessor. On a uniprocessor we have to make sure that thread swithches due to mutex collisions are not frequent, i.e., they do not happen every 100 us or so, because that wastes too much resources. If the thread switches are not frequent, the 20 us wasted in spin loop is not too much. Empirical studies on the effect of spin time should be done for different platforms. IMPLEMENTATION OF THE MUTEX =========================== For background, see Curt Schimmel's book on Unix implementation on modern architectures. The key points in the implementation are atomicity and serialization of memory accesses. The test-and-set instruction (XCHG in Pentium) must be atomic. As new processors may have weak memory models, also serialization of memory references may be necessary. The successor of Pentium, P6, has at least one mode where the memory model is weak. As far as we know, in Pentium all memory accesses are serialized in the program order and we do not have to worry about the memory model. On other processors there are special machine instructions called a fence, memory barrier, or storage barrier (STBAR in Sparc), which can be used to serialize the memory accesses to happen in program order relative to the fence instruction. Leslie Lamport has devised a "bakery algorithm" to implement a mutex without the atomic test-and-set, but his algorithm should be modified for weak memory models. We do not use Lamport's algorithm, because we guess it is slower than the atomic test-and-set. Our mutex implementation works as follows: After that we perform the atomic test-and-set instruction on the memory word. If the test returns zero, we know we got the lock first. If the test returns not zero, some other thread was quicker and got the lock: then we spin in a loop reading the memory word, waiting it to become zero. It is wise to just read the word in the loop, not perform numerous test-and-set instructions, because they generate memory traffic between the cache and the main memory. The read loop can just access the cache, saving bus bandwidth. If we cannot acquire the mutex lock in the specified time, we reserve a cell in the wait array, set the waiters byte in the mutex to 1. To avoid a race condition, after setting the waiters byte and before suspending the waiting thread, we still have to check that the mutex is reserved, because it may have happened that the thread which was holding the mutex has just released it and did not see the waiters byte set to 1, a case which would lead the other thread to an infinite wait. LEMMA 1: After a thread resets the event of the cell it reserves for waiting ======== for a mutex, some thread will eventually call sync_array_signal_object with the mutex as an argument. Thus no infinite wait is possible. Proof: After making the reservation the thread sets the waiters field in the mutex to 1. Then it checks that the mutex is still reserved by some thread, or it reserves the mutex for itself. In any case, some thread (which may be also some earlier thread, not necessarily the one currently holding the mutex) will set the waiters field to 0 in mutex_exit, and then call sync_array_signal_object with the mutex as an argument. Q.E.D. */ ulint sync_dummy = 0; /* The number of system calls made in this module. Intended for performance monitoring. */ ulint mutex_system_call_count = 0; /* Number of spin waits on mutexes: for performance monitoring */ ulint mutex_spin_round_count = 0; ulint mutex_spin_wait_count = 0; ulint mutex_os_wait_count = 0; ulint mutex_exit_count = 0; /* The global array of wait cells for implementation of the database's own mutexes and read-write locks */ sync_array_t* sync_primary_wait_array; /* This variable is set to TRUE when sync_init is called */ ibool sync_initialized = FALSE; /* Global list of database mutexes (not OS mutexes) created. */ UT_LIST_BASE_NODE_T(mutex_t) mutex_list; /* Mutex protecting the mutex_list variable */ mutex_t mutex_list_mutex; typedef struct sync_level_struct sync_level_t; typedef struct sync_thread_struct sync_thread_t; /* The latch levels currently owned by threads are stored in this data structure; the size of this array is OS_THREAD_MAX_N */ sync_thread_t* sync_thread_level_arrays; /* Mutex protecting sync_thread_level_arrays */ mutex_t sync_thread_mutex; /* Latching order checks start when this is set TRUE */ ibool sync_order_checks_on = FALSE; /* Dummy mutex used to implement mutex_fence */ mutex_t dummy_mutex_for_fence; struct sync_thread_struct{ os_thread_id_t id; /* OS thread id */ sync_level_t* levels; /* level array for this thread; if this is NULL this slot is unused */ }; /* Number of slots reserved for each OS thread in the sync level array */ #define SYNC_THREAD_N_LEVELS 250 struct sync_level_struct{ void* latch; /* pointer to a mutex or an rw-lock; NULL means that the slot is empty */ ulint level; /* level of the latch in the latching order */ }; #if defined(notdefined) && defined(__GNUC__) && defined(UNIV_INTEL_X86) ulint sync_gnuc_intelx86_test_and_set( /* out: old value of the lock word */ ulint* lw) /* in: pointer to the lock word */ { ulint res; /* In assembly we use the so-called AT & T syntax where the order of operands is inverted compared to the ordinary Intel syntax. The 'l' after the mnemonics denotes a 32-bit operation. The line after the code tells which values come out of the asm code, and the second line tells the input to the asm code. */ asm volatile("movl $1, %%eax; xchgl (%%ecx), %%eax" : "=eax" (res), "=m" (*lw) : "ecx" (lw)); return(res); } void sync_gnuc_intelx86_reset( ulint* lw) /* in: pointer to the lock word */ { /* In assembly we use the so-called AT & T syntax where the order of operands is inverted compared to the ordinary Intel syntax. The 'l' after the mnemonics denotes a 32-bit operation. */ asm volatile("movl $0, %%eax; xchgl (%%ecx), %%eax" : "=m" (*lw) : "ecx" (lw) : "eax"); /* gcc does not seem to understand that our asm code resets eax: tell it explicitly that after the third ':' */ } #endif /********************************************************************** Creates, or rather, initializes a mutex object in a specified memory location (which must be appropriately aligned). The mutex is initialized in the reset state. Explicit freeing of the mutex with mutex_free is necessary only if the memory block containing it is freed. */ void mutex_create_func( /*==============*/ mutex_t* mutex, /* in: pointer to memory */ char* cfile_name, /* in: file name where created */ ulint cline) /* in: file line where created */ { #if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER) && !defined(__NETWARE) mutex_reset_lock_word(mutex); #else os_fast_mutex_init(&(mutex->os_fast_mutex)); mutex->lock_word = 0; #endif mutex_set_waiters(mutex, 0); mutex->magic_n = MUTEX_MAGIC_N; mutex->line = 0; mutex->file_name = (char *) "not yet reserved"; mutex->level = SYNC_LEVEL_NONE; mutex->cfile_name = cfile_name; mutex->cline = cline; /* Check that lock_word is aligned; this is important on Intel */ ut_ad(((ulint)(&(mutex->lock_word))) % 4 == 0); /* NOTE! The very first mutexes are not put to the mutex list */ if ((mutex == &mutex_list_mutex) || (mutex == &sync_thread_mutex)) { return; } mutex_enter(&mutex_list_mutex); UT_LIST_ADD_FIRST(list, mutex_list, mutex); mutex_exit(&mutex_list_mutex); } /********************************************************************** Calling this function is obligatory only if the memory buffer containing the mutex is freed. Removes a mutex object from the mutex list. The mutex is checked to be in the reset state. */ void mutex_free( /*=======*/ mutex_t* mutex) /* in: mutex */ { ut_ad(mutex_validate(mutex)); ut_a(mutex_get_lock_word(mutex) == 0); ut_a(mutex_get_waiters(mutex) == 0); if (mutex != &mutex_list_mutex && mutex != &sync_thread_mutex) { mutex_enter(&mutex_list_mutex); UT_LIST_REMOVE(list, mutex_list, mutex); mutex_exit(&mutex_list_mutex); } #if !defined(_WIN32) || !defined(UNIV_CAN_USE_X86_ASSEMBLER) os_fast_mutex_free(&(mutex->os_fast_mutex)); #endif /* If we free the mutex protecting the mutex list (freeing is not necessary), we have to reset the magic number AFTER removing it from the list. */ mutex->magic_n = 0; } /************************************************************************ Tries to lock the mutex for the current thread. If the lock is not acquired immediately, returns with return value 1. */ ulint mutex_enter_nowait( /*===============*/ /* out: 0 if succeed, 1 if not */ mutex_t* mutex, /* in: pointer to mutex */ char* file_name, /* in: file name where mutex requested */ ulint line) /* in: line where requested */ { ut_ad(mutex_validate(mutex)); if (!mutex_test_and_set(mutex)) { #ifdef UNIV_SYNC_DEBUG mutex_set_debug_info(mutex, file_name, line); #endif mutex->file_name = file_name; mutex->line = line; return(0); /* Succeeded! */ } return(1); } /********************************************************************** Checks that the mutex has been initialized. */ ibool mutex_validate( /*===========*/ mutex_t* mutex) { ut_a(mutex); ut_a(mutex->magic_n == MUTEX_MAGIC_N); return(TRUE); } /********************************************************************** Sets the waiters field in a mutex. */ void mutex_set_waiters( /*==============*/ mutex_t* mutex, /* in: mutex */ ulint n) /* in: value to set */ { volatile ulint* ptr; /* declared volatile to ensure that the value is stored to memory */ ut_ad(mutex); ptr = &(mutex->waiters); *ptr = n; /* Here we assume that the write of a single word in memory is atomic */ } /********************************************************************** Reserves a mutex for the current thread. If the mutex is reserved, the function spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting for the mutex before suspending the thread. */ void mutex_spin_wait( /*============*/ mutex_t* mutex, /* in: pointer to mutex */ char* file_name, /* in: file name where mutex requested */ ulint line) /* in: line where requested */ { ulint index; /* index of the reserved wait cell */ ulint i; /* spin round count */ ut_ad(mutex); mutex_loop: i = 0; /* Spin waiting for the lock word to become zero. Note that we do not have to assume that the read access to the lock word is atomic, as the actual locking is always committed with atomic test-and-set. In reality, however, all processors probably have an atomic read of a memory word. */ spin_loop: mutex_spin_wait_count++; while (mutex_get_lock_word(mutex) != 0 && i < SYNC_SPIN_ROUNDS) { if (srv_spin_wait_delay) { ut_delay(ut_rnd_interval(0, srv_spin_wait_delay)); } i++; } if (i == SYNC_SPIN_ROUNDS) { os_thread_yield(); } if (srv_print_latch_waits) { printf( "Thread %lu spin wait mutex at %lx cfile %s cline %lu rnds %lu\n", os_thread_pf(os_thread_get_curr_id()), (ulint)mutex, mutex->cfile_name, mutex->cline, i); } mutex_spin_round_count += i; if (mutex_test_and_set(mutex) == 0) { /* Succeeded! */ #ifdef UNIV_SYNC_DEBUG mutex_set_debug_info(mutex, file_name, line); #endif mutex->file_name = file_name; mutex->line = line; return; } /* We may end up with a situation where lock_word is 0 but the OS fast mutex is still reserved. On FreeBSD the OS does not seem to schedule a thread which is constantly calling pthread_mutex_trylock (in mutex_test_and_set implementation). Then we could end up spinning here indefinitely. The following 'i++' stops this infinite spin. */ i++; if (i < SYNC_SPIN_ROUNDS) { goto spin_loop; } sync_array_reserve_cell(sync_primary_wait_array, mutex, SYNC_MUTEX, file_name, line, &index); mutex_system_call_count++; /* The memory order of the array reservation and the change in the waiters field is important: when we suspend a thread, we first reserve the cell and then set waiters field to 1. When threads are released in mutex_exit, the waiters field is first set to zero and then the event is set to the signaled state. */ mutex_set_waiters(mutex, 1); /* Try to reserve still a few times */ for (i = 0; i < 4; i++) { if (mutex_test_and_set(mutex) == 0) { /* Succeeded! Free the reserved wait cell */ sync_array_free_cell(sync_primary_wait_array, index); #ifdef UNIV_SYNC_DEBUG mutex_set_debug_info(mutex, file_name, line); #endif mutex->file_name = file_name; mutex->line = line; if (srv_print_latch_waits) { printf( "Thread %lu spin wait succeeds at 2: mutex at %lx\n", os_thread_pf(os_thread_get_curr_id()), (ulint)mutex); } return; /* Note that in this case we leave the waiters field set to 1. We cannot reset it to zero, as we do not know if there are other waiters. */ } } /* Now we know that there has been some thread holding the mutex after the change in the wait array and the waiters field was made. Now there is no risk of infinite wait on the event. */ if (srv_print_latch_waits) { printf( "Thread %lu OS wait mutex at %lx cfile %s cline %lu rnds %lu\n", os_thread_pf(os_thread_get_curr_id()), (ulint)mutex, mutex->cfile_name, mutex->cline, i); } mutex_system_call_count++; mutex_os_wait_count++; sync_array_wait_event(sync_primary_wait_array, index); goto mutex_loop; } /********************************************************************** Releases the threads waiting in the primary wait array for this mutex. */ void mutex_signal_object( /*================*/ mutex_t* mutex) /* in: mutex */ { mutex_set_waiters(mutex, 0); /* The memory order of resetting the waiters field and signaling the object is important. See LEMMA 1 above. */ sync_array_signal_object(sync_primary_wait_array, mutex); } /********************************************************************** Sets the debug information for a reserved mutex. */ void mutex_set_debug_info( /*=================*/ mutex_t* mutex, /* in: mutex */ char* file_name, /* in: file where requested */ ulint line) /* in: line where requested */ { ut_ad(mutex); ut_ad(file_name); sync_thread_add_level(mutex, mutex->level); mutex->file_name = file_name; mutex->line = line; mutex->thread_id = os_thread_get_curr_id(); } /********************************************************************** Gets the debug information for a reserved mutex. */ void mutex_get_debug_info( /*=================*/ mutex_t* mutex, /* in: mutex */ char** file_name, /* out: file where requested */ ulint* line, /* out: line where requested */ os_thread_id_t* thread_id) /* out: id of the thread which owns the mutex */ { ut_ad(mutex); *file_name = mutex->file_name; *line = mutex->line; *thread_id = mutex->thread_id; } /********************************************************************** Sets the mutex latching level field. */ void mutex_set_level( /*============*/ mutex_t* mutex, /* in: mutex */ ulint level) /* in: level */ { mutex->level = level; } /********************************************************************** Checks that the current thread owns the mutex. Works only in the debug version. */ ibool mutex_own( /*======*/ /* out: TRUE if owns */ mutex_t* mutex) /* in: mutex */ { ut_a(mutex_validate(mutex)); if (mutex_get_lock_word(mutex) != 1) { return(FALSE); } if (!os_thread_eq(mutex->thread_id, os_thread_get_curr_id())) { return(FALSE); } return(TRUE); } /********************************************************************** Prints debug info of currently reserved mutexes. */ void mutex_list_print_info(void) /*=======================*/ { #ifndef UNIV_SYNC_DEBUG #else mutex_t* mutex; char* file_name; ulint line; os_thread_id_t thread_id; ulint count = 0; printf("----------\n"); printf("MUTEX INFO\n"); printf("----------\n"); mutex_enter(&mutex_list_mutex); mutex = UT_LIST_GET_FIRST(mutex_list); while (mutex != NULL) { count++; if (mutex_get_lock_word(mutex) != 0) { mutex_get_debug_info(mutex, &file_name, &line, &thread_id); printf( "Locked mutex: addr %lx thread %ld file %s line %ld\n", (ulint)mutex, os_thread_pf(thread_id), file_name, line); } mutex = UT_LIST_GET_NEXT(list, mutex); } printf("Total number of mutexes %ld\n", count); mutex_exit(&mutex_list_mutex); #endif } /********************************************************************** Counts currently reserved mutexes. Works only in the debug version. */ ulint mutex_n_reserved(void) /*==================*/ { #ifndef UNIV_SYNC_DEBUG printf("Sorry, cannot give mutex info in non-debug version!\n"); ut_error; return(0); #else mutex_t* mutex; ulint count = 0; mutex_enter(&mutex_list_mutex); mutex = UT_LIST_GET_FIRST(mutex_list); while (mutex != NULL) { if (mutex_get_lock_word(mutex) != 0) { count++; } mutex = UT_LIST_GET_NEXT(list, mutex); } mutex_exit(&mutex_list_mutex); ut_a(count >= 1); return(count - 1); /* Subtract one, because this function itself was holding one mutex (mutex_list_mutex) */ #endif } /********************************************************************** Returns TRUE if no mutex or rw-lock is currently locked. Works only in the debug version. */ ibool sync_all_freed(void) /*================*/ { #ifdef UNIV_SYNC_DEBUG if (mutex_n_reserved() + rw_lock_n_locked() == 0) { return(TRUE); } else { return(FALSE); } #else ut_error; return(FALSE); #endif } /********************************************************************** Gets the value in the nth slot in the thread level arrays. */ static sync_thread_t* sync_thread_level_arrays_get_nth( /*=============================*/ /* out: pointer to thread slot */ ulint n) /* in: slot number */ { ut_ad(n < OS_THREAD_MAX_N); return(sync_thread_level_arrays + n); } /********************************************************************** Looks for the thread slot for the calling thread. */ static sync_thread_t* sync_thread_level_arrays_find_slot(void) /*====================================*/ /* out: pointer to thread slot, NULL if not found */ { sync_thread_t* slot; os_thread_id_t id; ulint i; id = os_thread_get_curr_id(); for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = sync_thread_level_arrays_get_nth(i); if (slot->levels && os_thread_eq(slot->id, id)) { return(slot); } } return(NULL); } /********************************************************************** Looks for an unused thread slot. */ static sync_thread_t* sync_thread_level_arrays_find_free(void) /*====================================*/ /* out: pointer to thread slot */ { sync_thread_t* slot; ulint i; for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = sync_thread_level_arrays_get_nth(i); if (slot->levels == NULL) { return(slot); } } return(NULL); } /********************************************************************** Gets the value in the nth slot in the thread level array. */ static sync_level_t* sync_thread_levels_get_nth( /*=======================*/ /* out: pointer to level slot */ sync_level_t* arr, /* in: pointer to level array for an OS thread */ ulint n) /* in: slot number */ { ut_ad(n < SYNC_THREAD_N_LEVELS); return(arr + n); } /********************************************************************** Checks if all the level values stored in the level array are greater than the given limit. */ static ibool sync_thread_levels_g( /*=================*/ /* out: TRUE if all greater */ sync_level_t* arr, /* in: pointer to level array for an OS thread */ ulint limit) /* in: level limit */ { char* file_name; ulint line; os_thread_id_t thread_id; sync_level_t* slot; rw_lock_t* lock; mutex_t* mutex; ulint i; for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) { slot = sync_thread_levels_get_nth(arr, i); if (slot->latch != NULL) { if (slot->level <= limit) { lock = slot->latch; mutex = slot->latch; printf( "InnoDB error: sync levels should be > %lu but a level is %lu\n", limit, slot->level); if (mutex->magic_n == MUTEX_MAGIC_N) { printf("Mutex created at %s %lu\n", mutex->cfile_name, mutex->cline); if (mutex_get_lock_word(mutex) != 0) { mutex_get_debug_info(mutex, &file_name, &line, &thread_id); printf("InnoDB: Locked mutex: addr %lx thread %ld file %s line %ld\n", (ulint)mutex, os_thread_pf(thread_id), file_name, line); } else { printf("Not locked\n"); } } else { rw_lock_print(lock); } return(FALSE); } } } return(TRUE); } /********************************************************************** Checks if the level value is stored in the level array. */ static ibool sync_thread_levels_contain( /*=======================*/ /* out: TRUE if stored */ sync_level_t* arr, /* in: pointer to level array for an OS thread */ ulint level) /* in: level */ { sync_level_t* slot; ulint i; for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) { slot = sync_thread_levels_get_nth(arr, i); if (slot->latch != NULL) { if (slot->level == level) { return(TRUE); } } } return(FALSE); } /********************************************************************** Checks that the level array for the current thread is empty. */ ibool sync_thread_levels_empty_gen( /*=========================*/ /* out: TRUE if empty except the exceptions specified below */ ibool dict_mutex_allowed) /* in: TRUE if dictionary mutex is allowed to be owned by the thread, also purge_is_running mutex is allowed */ { sync_level_t* arr; sync_thread_t* thread_slot; sync_level_t* slot; rw_lock_t* lock; mutex_t* mutex; char* buf; ulint i; if (!sync_order_checks_on) { return(TRUE); } mutex_enter(&sync_thread_mutex); thread_slot = sync_thread_level_arrays_find_slot(); if (thread_slot == NULL) { mutex_exit(&sync_thread_mutex); return(TRUE); } arr = thread_slot->levels; for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) { slot = sync_thread_levels_get_nth(arr, i); if (slot->latch != NULL && (!dict_mutex_allowed || (slot->level != SYNC_DICT && slot->level != SYNC_DICT_OPERATION))) { lock = slot->latch; mutex = slot->latch; mutex_exit(&sync_thread_mutex); buf = mem_alloc(20000); sync_print(buf, buf + 18000); ut_error; return(FALSE); } } mutex_exit(&sync_thread_mutex); return(TRUE); } /********************************************************************** Checks that the level array for the current thread is empty. */ ibool sync_thread_levels_empty(void) /*==========================*/ /* out: TRUE if empty */ { return(sync_thread_levels_empty_gen(FALSE)); } /********************************************************************** Adds a latch and its level in the thread level array. Allocates the memory for the array if called first time for this OS thread. Makes the checks against other latch levels stored in the array for this thread. */ void sync_thread_add_level( /*==================*/ void* latch, /* in: pointer to a mutex or an rw-lock */ ulint level) /* in: level in the latching order; if SYNC_LEVEL_NONE, nothing is done */ { sync_level_t* array; sync_level_t* slot; sync_thread_t* thread_slot; ulint i; if (!sync_order_checks_on) { return; } if ((latch == (void*)&sync_thread_mutex) || (latch == (void*)&mutex_list_mutex) || (latch == (void*)&rw_lock_debug_mutex) || (latch == (void*)&rw_lock_list_mutex)) { return; } if (level == SYNC_LEVEL_NONE) { return; } mutex_enter(&sync_thread_mutex); thread_slot = sync_thread_level_arrays_find_slot(); if (thread_slot == NULL) { /* We have to allocate the level array for a new thread */ array = ut_malloc(sizeof(sync_level_t) * SYNC_THREAD_N_LEVELS); thread_slot = sync_thread_level_arrays_find_free(); thread_slot->id = os_thread_get_curr_id(); thread_slot->levels = array; for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) { slot = sync_thread_levels_get_nth(array, i); slot->latch = NULL; } } array = thread_slot->levels; /* NOTE that there is a problem with _NODE and _LEAF levels: if the B-tree height changes, then a leaf can change to an internal node or the other way around. We do not know at present if this can cause unnecessary assertion failures below. */ if (level == SYNC_NO_ORDER_CHECK) { /* Do no order checking */ } else if (level == SYNC_MEM_POOL) { ut_a(sync_thread_levels_g(array, SYNC_MEM_POOL)); } else if (level == SYNC_MEM_HASH) { ut_a(sync_thread_levels_g(array, SYNC_MEM_HASH)); } else if (level == SYNC_RECV) { ut_a(sync_thread_levels_g(array, SYNC_RECV)); } else if (level == SYNC_LOG) { ut_a(sync_thread_levels_g(array, SYNC_LOG)); } else if (level == SYNC_THR_LOCAL) { ut_a(sync_thread_levels_g(array, SYNC_THR_LOCAL)); } else if (level == SYNC_ANY_LATCH) { ut_a(sync_thread_levels_g(array, SYNC_ANY_LATCH)); } else if (level == SYNC_TRX_SYS_HEADER) { ut_a(sync_thread_levels_g(array, SYNC_TRX_SYS_HEADER)); } else if (level == SYNC_DOUBLEWRITE) { ut_a(sync_thread_levels_g(array, SYNC_DOUBLEWRITE)); } else if (level == SYNC_BUF_BLOCK) { ut_a((sync_thread_levels_contain(array, SYNC_BUF_POOL) && sync_thread_levels_g(array, SYNC_BUF_BLOCK - 1)) || sync_thread_levels_g(array, SYNC_BUF_BLOCK)); } else if (level == SYNC_BUF_POOL) { ut_a(sync_thread_levels_g(array, SYNC_BUF_POOL)); } else if (level == SYNC_SEARCH_SYS) { ut_a(sync_thread_levels_g(array, SYNC_SEARCH_SYS)); } else if (level == SYNC_TRX_LOCK_HEAP) { ut_a(sync_thread_levels_g(array, SYNC_TRX_LOCK_HEAP)); } else if (level == SYNC_REC_LOCK) { ut_a((sync_thread_levels_contain(array, SYNC_KERNEL) && sync_thread_levels_g(array, SYNC_REC_LOCK - 1)) || sync_thread_levels_g(array, SYNC_REC_LOCK)); } else if (level == SYNC_KERNEL) { ut_a(sync_thread_levels_g(array, SYNC_KERNEL)); } else if (level == SYNC_IBUF_BITMAP) { ut_a((sync_thread_levels_contain(array, SYNC_IBUF_BITMAP_MUTEX) && sync_thread_levels_g(array, SYNC_IBUF_BITMAP - 1)) || sync_thread_levels_g(array, SYNC_IBUF_BITMAP)); } else if (level == SYNC_IBUF_BITMAP_MUTEX) { ut_a(sync_thread_levels_g(array, SYNC_IBUF_BITMAP_MUTEX)); } else if (level == SYNC_FSP_PAGE) { ut_a(sync_thread_levels_contain(array, SYNC_FSP)); } else if (level == SYNC_FSP) { ut_a(sync_thread_levels_contain(array, SYNC_FSP) || sync_thread_levels_g(array, SYNC_FSP)); } else if (level == SYNC_EXTERN_STORAGE) { ut_a(TRUE); } else if (level == SYNC_TRX_UNDO_PAGE) { ut_a(sync_thread_levels_contain(array, SYNC_TRX_UNDO) || sync_thread_levels_contain(array, SYNC_RSEG) || sync_thread_levels_contain(array, SYNC_PURGE_SYS) || sync_thread_levels_g(array, SYNC_TRX_UNDO_PAGE)); } else if (level == SYNC_RSEG_HEADER) { ut_a(sync_thread_levels_contain(array, SYNC_RSEG)); } else if (level == SYNC_RSEG_HEADER_NEW) { ut_a(sync_thread_levels_contain(array, SYNC_KERNEL) && sync_thread_levels_contain(array, SYNC_FSP_PAGE)); } else if (level == SYNC_RSEG) { ut_a(sync_thread_levels_g(array, SYNC_RSEG)); } else if (level == SYNC_TRX_UNDO) { ut_a(sync_thread_levels_g(array, SYNC_TRX_UNDO)); } else if (level == SYNC_PURGE_LATCH) { ut_a(sync_thread_levels_g(array, SYNC_PURGE_LATCH)); } else if (level == SYNC_PURGE_SYS) { ut_a(sync_thread_levels_g(array, SYNC_PURGE_SYS)); } else if (level == SYNC_TREE_NODE) { ut_a(sync_thread_levels_contain(array, SYNC_INDEX_TREE) || sync_thread_levels_g(array, SYNC_TREE_NODE - 1)); } else if (level == SYNC_TREE_NODE_FROM_HASH) { ut_a(1); } else if (level == SYNC_TREE_NODE_NEW) { ut_a(sync_thread_levels_contain(array, SYNC_FSP_PAGE) || sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)); } else if (level == SYNC_INDEX_TREE) { ut_a((sync_thread_levels_contain(array, SYNC_IBUF_MUTEX) && sync_thread_levels_contain(array, SYNC_FSP) && sync_thread_levels_g(array, SYNC_FSP_PAGE - 1)) || sync_thread_levels_g(array, SYNC_TREE_NODE - 1)); } else if (level == SYNC_IBUF_MUTEX) { ut_a(sync_thread_levels_g(array, SYNC_FSP_PAGE - 1)); } else if (level == SYNC_IBUF_PESS_INSERT_MUTEX) { ut_a(sync_thread_levels_g(array, SYNC_FSP - 1) && !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)); } else if (level == SYNC_IBUF_HEADER) { ut_a(sync_thread_levels_g(array, SYNC_FSP - 1) && !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX) && !sync_thread_levels_contain(array, SYNC_IBUF_PESS_INSERT_MUTEX)); } else if (level == SYNC_DICT_AUTOINC_MUTEX) { ut_a(sync_thread_levels_g(array, SYNC_DICT_AUTOINC_MUTEX)); } else if (level == SYNC_DICT_OPERATION) { ut_a(sync_thread_levels_g(array, SYNC_DICT_OPERATION)); } else if (level == SYNC_DICT_HEADER) { ut_a(sync_thread_levels_g(array, SYNC_DICT_HEADER)); } else if (level == SYNC_DICT) { ut_a(buf_debug_prints || sync_thread_levels_g(array, SYNC_DICT)); } else { ut_error; } for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) { slot = sync_thread_levels_get_nth(array, i); if (slot->latch == NULL) { slot->latch = latch; slot->level = level; break; } } ut_a(i < SYNC_THREAD_N_LEVELS); mutex_exit(&sync_thread_mutex); } /********************************************************************** Removes a latch from the thread level array if it is found there. */ ibool sync_thread_reset_level( /*====================*/ /* out: TRUE if found from the array; it is an error if the latch is not found */ void* latch) /* in: pointer to a mutex or an rw-lock */ { sync_level_t* array; sync_level_t* slot; sync_thread_t* thread_slot; ulint i; if (!sync_order_checks_on) { return(FALSE); } if ((latch == (void*)&sync_thread_mutex) || (latch == (void*)&mutex_list_mutex) || (latch == (void*)&rw_lock_debug_mutex) || (latch == (void*)&rw_lock_list_mutex)) { return(FALSE); } mutex_enter(&sync_thread_mutex); thread_slot = sync_thread_level_arrays_find_slot(); if (thread_slot == NULL) { ut_error; mutex_exit(&sync_thread_mutex); return(FALSE); } array = thread_slot->levels; for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) { slot = sync_thread_levels_get_nth(array, i); if (slot->latch == latch) { slot->latch = NULL; mutex_exit(&sync_thread_mutex); return(TRUE); } } ut_error; mutex_exit(&sync_thread_mutex); return(FALSE); } /********************************************************************** Initializes the synchronization data structures. */ void sync_init(void) /*===========*/ { sync_thread_t* thread_slot; ulint i; ut_a(sync_initialized == FALSE); sync_initialized = TRUE; /* Create the primary system wait array which is protected by an OS mutex */ sync_primary_wait_array = sync_array_create(OS_THREAD_MAX_N, SYNC_ARRAY_OS_MUTEX); /* Create the thread latch level array where the latch levels are stored for each OS thread */ sync_thread_level_arrays = ut_malloc(OS_THREAD_MAX_N * sizeof(sync_thread_t)); for (i = 0; i < OS_THREAD_MAX_N; i++) { thread_slot = sync_thread_level_arrays_get_nth(i); thread_slot->levels = NULL; } /* Init the mutex list and create the mutex to protect it. */ UT_LIST_INIT(mutex_list); mutex_create(&mutex_list_mutex); mutex_set_level(&mutex_list_mutex, SYNC_NO_ORDER_CHECK); mutex_create(&sync_thread_mutex); mutex_set_level(&sync_thread_mutex, SYNC_NO_ORDER_CHECK); /* Init the rw-lock list and create the mutex to protect it. */ UT_LIST_INIT(rw_lock_list); mutex_create(&rw_lock_list_mutex); mutex_set_level(&rw_lock_list_mutex, SYNC_NO_ORDER_CHECK); mutex_create(&rw_lock_debug_mutex); mutex_set_level(&rw_lock_debug_mutex, SYNC_NO_ORDER_CHECK); rw_lock_debug_event = os_event_create(NULL); rw_lock_debug_waiters = FALSE; } /********************************************************************** Frees the resources in InnoDB's own synchronization data structures. Use os_sync_free() after calling this. */ void sync_close(void) /*===========*/ { mutex_t* mutex; sync_array_free(sync_primary_wait_array); mutex = UT_LIST_GET_FIRST(mutex_list); while (mutex) { mutex_free(mutex); mutex = UT_LIST_GET_FIRST(mutex_list); } mutex_free(&mutex_list_mutex); mutex_free(&sync_thread_mutex); } /*********************************************************************** Prints wait info of the sync system. */ void sync_print_wait_info( /*=================*/ char* buf, /* in/out: buffer where to print */ char* buf_end) /* in: buffer end */ { #ifdef UNIV_SYNC_DEBUG printf("Mutex exits %lu, rws exits %lu, rwx exits %lu\n", mutex_exit_count, rw_s_exit_count, rw_x_exit_count); #endif if (buf_end - buf < 500) { return; } sprintf(buf, "Mutex spin waits %lu, rounds %lu, OS waits %lu\n" "RW-shared spins %lu, OS waits %lu; RW-excl spins %lu, OS waits %lu\n", mutex_spin_wait_count, mutex_spin_round_count, mutex_os_wait_count, rw_s_spin_wait_count, rw_s_os_wait_count, rw_x_spin_wait_count, rw_x_os_wait_count); } /*********************************************************************** Prints info of the sync system. */ void sync_print( /*=======*/ char* buf, /* in/out: buffer where to print */ char* buf_end) /* in: buffer end */ { mutex_list_print_info(); rw_lock_list_print_info(); sync_array_print_info(buf, buf_end, sync_primary_wait_array); buf = buf + strlen(buf); sync_print_wait_info(buf, buf_end); }