/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* TODO: Fix that MAYBE_KEY are stored in the tree so that we can detect use of full hash keys for queries like: select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205); */ /* Classes in this file are used in the following way: 1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects is created. #of rows in table and index statistics are ignored at this step. 2. Created SEL_TREE and index stats data are used to construct a TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read plans may be created. 3. The least expensive table read plan is used to create a tree of QUICK_SELECT_I-derived objects which are later used for row retrieval. QUICK_RANGEs are also created in this step. */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include #include "sql_select.h" #ifndef EXTRA_DEBUG #define test_rb_tree(A,B) {} #define test_use_count(A) {} #endif /* Convert double value to #rows. Currently this does floor(), and we might consider using round() instead. */ #define double2rows(x) ((ha_rows)(x)) static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag); static char is_null_string[2]= {1,0}; /* A construction block of the SEL_ARG-graph. The following description only covers graphs of SEL_ARG objects with sel_arg->type==KEY_RANGE: One SEL_ARG object represents an "elementary interval" in form min_value <=? table.keypartX <=? max_value The interval is a non-empty interval of any kind: with[out] minimum/maximum bound, [half]open/closed, single-point interval, etc. 1. SEL_ARG GRAPH STRUCTURE SEL_ARG objects are linked together in a graph. The meaning of the graph is better demostrated by an example: tree->keys[i] | | $ $ | part=1 $ part=2 $ part=3 | $ $ | +-------+ $ +-------+ $ +--------+ | | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 | | +-------+ $ +-------+ $ +--------+ | | $ $ | | | $ $ +--------+ | | $ $ | kp3=12 | | | $ $ +--------+ | +-------+ $ $ \->| kp1=2 |--$--------------$-+ +-------+ $ $ | +--------+ | $ $ ==>| kp3=11 | +-------+ $ $ | +--------+ | kp1=3 |--$--------------$-+ | +-------+ $ $ +--------+ | $ $ | kp3=14 | ... $ $ +--------+ The entire graph is partitioned into "interval lists". An interval list is a sequence of ordered disjoint intervals over the same key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally, all intervals in the list form an RB-tree, linked via left/right/parent pointers. The RB-tree root SEL_ARG object will be further called "root of the interval list". In the example pic, there are 4 interval lists: "kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13". The vertical lines represent SEL_ARG::next/prev pointers. In an interval list, each member X may have SEL_ARG::next_key_part pointer pointing to the root of another interval list Y. The pointed interval list must cover a key part with greater number (i.e. Y->part > X->part). In the example pic, the next_key_part pointers are represented by horisontal lines. 2. SEL_ARG GRAPH SEMANTICS It represents a condition in a special form (we don't have a name for it ATM) The SEL_ARG::next/prev is "OR", and next_key_part is "AND". For example, the picture represents the condition in form: (kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR (kp1=2 AND (kp3=11 OR kp3=14)) OR (kp1=3 AND (kp3=11 OR kp3=14)) 3. SEL_ARG GRAPH USE Use get_mm_tree() to construct SEL_ARG graph from WHERE condition. Then walk the SEL_ARG graph and get a list of dijsoint ordered key intervals (i.e. intervals in form (constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K) Those intervals can be used to access the index. The uses are in: - check_quick_select() - Walk the SEL_ARG graph and find an estimate of how many table records are contained within all intervals. - get_quick_select() - Walk the SEL_ARG, materialize the key intervals, and create QUICK_RANGE_SELECT object that will read records within these intervals. */ class SEL_ARG :public Sql_alloc { public: uint8 min_flag,max_flag,maybe_flag; uint8 part; // Which key part uint8 maybe_null; /* Number of children of this element in the RB-tree, plus 1 for this element itself. */ uint16 elements; /* Valid only for elements which are RB-tree roots: Number of times this RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by SEL_TREE::keys[i] or by a temporary SEL_ARG* variable) */ ulong use_count; Field *field; char *min_value,*max_value; // Pointer to range SEL_ARG *left,*right; /* R-B tree children */ SEL_ARG *next,*prev; /* Links for bi-directional interval list */ SEL_ARG *parent; /* R-B tree parent */ SEL_ARG *next_key_part; enum leaf_color { BLACK,RED } color; enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type; SEL_ARG() {} SEL_ARG(SEL_ARG &); SEL_ARG(Field *,const char *,const char *); SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value, uint8 min_flag, uint8 max_flag, uint8 maybe_flag); SEL_ARG(enum Type type_arg) :min_flag(0),elements(1),use_count(1),left(0),next_key_part(0), color(BLACK), type(type_arg) {} inline bool is_same(SEL_ARG *arg) { if (type != arg->type || part != arg->part) return 0; if (type != KEY_RANGE) return 1; return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0; } inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; } inline void maybe_smaller() { maybe_flag=1; } inline int cmp_min_to_min(SEL_ARG* arg) { return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag); } inline int cmp_min_to_max(SEL_ARG* arg) { return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag); } inline int cmp_max_to_max(SEL_ARG* arg) { return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag); } inline int cmp_max_to_min(SEL_ARG* arg) { return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag); } SEL_ARG *clone_and(SEL_ARG* arg) { // Get overlapping range char *new_min,*new_max; uint8 flag_min,flag_max; if (cmp_min_to_min(arg) >= 0) { new_min=min_value; flag_min=min_flag; } else { new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */ } if (cmp_max_to_max(arg) <= 0) { new_max=max_value; flag_max=max_flag; } else { new_max=arg->max_value; flag_max=arg->max_flag; } return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max, test(maybe_flag && arg->maybe_flag)); } SEL_ARG *clone_first(SEL_ARG *arg) { // min <= X < arg->min return new SEL_ARG(field,part, min_value, arg->min_value, min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX, maybe_flag | arg->maybe_flag); } SEL_ARG *clone_last(SEL_ARG *arg) { // min <= X <= key_max return new SEL_ARG(field, part, min_value, arg->max_value, min_flag, arg->max_flag, maybe_flag | arg->maybe_flag); } SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next); bool copy_min(SEL_ARG* arg) { // Get overlapping range if (cmp_min_to_min(arg) > 0) { min_value=arg->min_value; min_flag=arg->min_flag; if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) == (NO_MAX_RANGE | NO_MIN_RANGE)) return 1; // Full range } maybe_flag|=arg->maybe_flag; return 0; } bool copy_max(SEL_ARG* arg) { // Get overlapping range if (cmp_max_to_max(arg) <= 0) { max_value=arg->max_value; max_flag=arg->max_flag; if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) == (NO_MAX_RANGE | NO_MIN_RANGE)) return 1; // Full range } maybe_flag|=arg->maybe_flag; return 0; } void copy_min_to_min(SEL_ARG *arg) { min_value=arg->min_value; min_flag=arg->min_flag; } void copy_min_to_max(SEL_ARG *arg) { max_value=arg->min_value; max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX; } void copy_max_to_min(SEL_ARG *arg) { min_value=arg->max_value; min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN; } void store_min(uint length,char **min_key,uint min_key_flag) { if ((min_flag & GEOM_FLAG) || (!(min_flag & NO_MIN_RANGE) && !(min_key_flag & (NO_MIN_RANGE | NEAR_MIN)))) { if (maybe_null && *min_value) { **min_key=1; bzero(*min_key+1,length-1); } else memcpy(*min_key,min_value,length); (*min_key)+= length; } } void store(uint length,char **min_key,uint min_key_flag, char **max_key, uint max_key_flag) { store_min(length, min_key, min_key_flag); if (!(max_flag & NO_MAX_RANGE) && !(max_key_flag & (NO_MAX_RANGE | NEAR_MAX))) { if (maybe_null && *max_value) { **max_key=1; bzero(*max_key+1,length-1); } else memcpy(*max_key,max_value,length); (*max_key)+= length; } } void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag) { SEL_ARG *key_tree= first(); key_tree->store(key[key_tree->part].store_length, range_key,*range_key_flag,range_key,NO_MAX_RANGE); *range_key_flag|= key_tree->min_flag; if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && !(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) key_tree->next_key_part->store_min_key(key,range_key, range_key_flag); } void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag) { SEL_ARG *key_tree= last(); key_tree->store(key[key_tree->part].store_length, range_key, NO_MIN_RANGE, range_key,*range_key_flag); (*range_key_flag)|= key_tree->max_flag; if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && !(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) key_tree->next_key_part->store_max_key(key,range_key, range_key_flag); } SEL_ARG *insert(SEL_ARG *key); SEL_ARG *tree_delete(SEL_ARG *key); SEL_ARG *find_range(SEL_ARG *key); SEL_ARG *rb_insert(SEL_ARG *leaf); friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par); #ifdef EXTRA_DEBUG friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent); void test_use_count(SEL_ARG *root); #endif SEL_ARG *first(); SEL_ARG *last(); void make_root(); inline bool simple_key() { return !next_key_part && elements == 1; } void increment_use_count(long count) { if (next_key_part) { next_key_part->use_count+=count; count*= (next_key_part->use_count-count); for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next) if (pos->next_key_part) pos->increment_use_count(count); } } void free_tree() { for (SEL_ARG *pos=first(); pos ; pos=pos->next) if (pos->next_key_part) { pos->next_key_part->use_count--; pos->next_key_part->free_tree(); } } inline SEL_ARG **parent_ptr() { return parent->left == this ? &parent->left : &parent->right; } SEL_ARG *clone_tree(); }; class SEL_IMERGE; class SEL_TREE :public Sql_alloc { public: enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type; SEL_TREE(enum Type type_arg) :type(type_arg) {} SEL_TREE() :type(KEY) { keys_map.clear_all(); bzero((char*) keys,sizeof(keys)); } SEL_ARG *keys[MAX_KEY]; key_map keys_map; /* bitmask of non-NULL elements in keys */ /* Possible ways to read rows using index_merge. The list is non-empty only if type==KEY. Currently can be non empty only if keys_map.is_clear_all(). */ List merges; /* The members below are filled/used only after get_mm_tree is done */ key_map ror_scans_map; /* bitmask of ROR scan-able elements in keys */ uint n_ror_scans; /* number of set bits in ror_scans_map */ struct st_ror_scan_info **ror_scans; /* list of ROR key scans */ struct st_ror_scan_info **ror_scans_end; /* last ROR scan */ /* Note that #records for each key scan is stored in table->quick_rows */ }; typedef struct st_qsel_param { THD *thd; TABLE *table; KEY_PART *key_parts,*key_parts_end; KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */ MEM_ROOT *mem_root, *old_root; table_map prev_tables,read_tables,current_table; uint baseflag, max_key_part, range_count; uint keys; /* number of keys used in the query */ /* used_key_no -> table_key_no translation table */ uint real_keynr[MAX_KEY]; char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH], max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; bool quick; // Don't calulate possible keys COND *cond; uint fields_bitmap_size; MY_BITMAP needed_fields; /* bitmask of fields needed by the query */ key_map *needed_reg; /* ptr to SQL_SELECT::needed_reg */ uint *imerge_cost_buff; /* buffer for index_merge cost estimates */ uint imerge_cost_buff_size; /* size of the buffer */ /* TRUE if last checked tree->key can be used for ROR-scan */ bool is_ror_scan; /* Number of ranges in the last checked tree->key */ uint n_ranges; } PARAM; class TABLE_READ_PLAN; class TRP_RANGE; class TRP_ROR_INTERSECT; class TRP_ROR_UNION; class TRP_ROR_INDEX_MERGE; class TRP_GROUP_MIN_MAX; struct st_ror_scan_info; static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field, Item_func::Functype type,Item *value, Item_result cmp_type); static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field, KEY_PART *key_part, Item_func::Functype type,Item *value); static SEL_TREE *get_mm_tree(PARAM *param,COND *cond); static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts); static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree); static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree, char *min_key,uint min_key_flag, char *max_key, uint max_key_flag); QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index, SEL_ARG *key_tree, MEM_ROOT *alloc = NULL); static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree, bool index_read_must_be_used, double read_time); static TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree, double read_time, bool *are_all_covering); static TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param, SEL_TREE *tree, double read_time); static TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge, double read_time); static TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree); static int get_index_merge_params(PARAM *param, key_map& needed_reg, SEL_IMERGE *imerge, double *read_time, ha_rows* imerge_rows); static double get_index_only_read_time(const PARAM* param, ha_rows records, int keynr); #ifndef DBUG_OFF static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map, const char *msg); static void print_ror_scans_arr(TABLE *table, const char *msg, struct st_ror_scan_info **start, struct st_ror_scan_info **end); static void print_rowid(byte* val, int len); static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg); #endif static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2); static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2); static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2); static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2); static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag); static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1); bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key, SEL_ARG *key_tree,char *min_key,uint min_key_flag, char *max_key,uint max_key_flag); static bool eq_tree(SEL_ARG* a,SEL_ARG *b); static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE); static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length); bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param); /* SEL_IMERGE is a list of possible ways to do index merge, i.e. it is a condition in the following form: (t_1||t_2||...||t_N) && (next) where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair (t_i,t_j) contains SEL_ARGS for the same index. SEL_TREE contained in SEL_IMERGE always has merges=NULL. This class relies on memory manager to do the cleanup. */ class SEL_IMERGE : public Sql_alloc { enum { PREALLOCED_TREES= 10}; public: SEL_TREE *trees_prealloced[PREALLOCED_TREES]; SEL_TREE **trees; /* trees used to do index_merge */ SEL_TREE **trees_next; /* last of these trees */ SEL_TREE **trees_end; /* end of allocated space */ SEL_ARG ***best_keys; /* best keys to read in SEL_TREEs */ SEL_IMERGE() : trees(&trees_prealloced[0]), trees_next(trees), trees_end(trees + PREALLOCED_TREES) {} int or_sel_tree(PARAM *param, SEL_TREE *tree); int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree); int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge); }; /* Add SEL_TREE to this index_merge without any checks, NOTES This function implements the following: (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs RETURN 0 - OK -1 - Out of memory. */ int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree) { if (trees_next == trees_end) { const int realloc_ratio= 2; /* Double size for next round */ uint old_elements= (trees_end - trees); uint old_size= sizeof(SEL_TREE**) * old_elements; uint new_size= old_size * realloc_ratio; SEL_TREE **new_trees; if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size))) return -1; memcpy(new_trees, trees, old_size); trees= new_trees; trees_next= trees + old_elements; trees_end= trees + old_elements * realloc_ratio; } *(trees_next++)= tree; return 0; } /* Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree, combining new_tree with one of the trees in this SEL_IMERGE if they both have SEL_ARGs for the same key. SYNOPSIS or_sel_tree_with_checks() param PARAM from SQL_SELECT::test_quick_select new_tree SEL_TREE with type KEY or KEY_SMALLER. NOTES This does the following: (t_1||...||t_k)||new_tree = either = (t_1||...||t_k||new_tree) or = (t_1||....||(t_j|| new_tree)||...||t_k), where t_i, y are SEL_TREEs. new_tree is combined with the first t_j it has a SEL_ARG on common key with. As a consequence of this, choice of keys to do index_merge read may depend on the order of conditions in WHERE part of the query. RETURN 0 OK 1 One of the trees was combined with new_tree to SEL_TREE::ALWAYS, and (*this) should be discarded. -1 An error occurred. */ int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree) { for (SEL_TREE** tree = trees; tree != trees_next; tree++) { if (sel_trees_can_be_ored(*tree, new_tree, param)) { *tree = tree_or(param, *tree, new_tree); if (!*tree) return 1; if (((*tree)->type == SEL_TREE::MAYBE) || ((*tree)->type == SEL_TREE::ALWAYS)) return 1; /* SEL_TREE::IMPOSSIBLE is impossible here */ return 0; } } /* New tree cannot be combined with any of existing trees. */ return or_sel_tree(param, new_tree); } /* Perform OR operation on this index_merge and supplied index_merge list. RETURN 0 - OK 1 - One of conditions in result is always TRUE and this SEL_IMERGE should be discarded. -1 - An error occurred */ int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge) { for (SEL_TREE** tree= imerge->trees; tree != imerge->trees_next; tree++) { if (or_sel_tree_with_checks(param, *tree)) return 1; } return 0; } /* Perform AND operation on two index_merge lists and store result in *im1. */ inline void imerge_list_and_list(List *im1, List *im2) { im1->concat(im2); } /* Perform OR operation on 2 index_merge lists, storing result in first list. NOTES The following conversion is implemented: (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) => => (a_1||b_1). i.e. all conjuncts except the first one are currently dropped. This is done to avoid producing N*K ways to do index_merge. If (a_1||b_1) produce a condition that is always TRUE, NULL is returned and index_merge is discarded (while it is actually possible to try harder). As a consequence of this, choice of keys to do index_merge read may depend on the order of conditions in WHERE part of the query. RETURN 0 OK, result is stored in *im1 other Error, both passed lists are unusable */ int imerge_list_or_list(PARAM *param, List *im1, List *im2) { SEL_IMERGE *imerge= im1->head(); im1->empty(); im1->push_back(imerge); return imerge->or_sel_imerge_with_checks(param, im2->head()); } /* Perform OR operation on index_merge list and key tree. RETURN 0 OK, result is stored in *im1. other Error */ int imerge_list_or_tree(PARAM *param, List *im1, SEL_TREE *tree) { SEL_IMERGE *imerge; List_iterator it(*im1); while ((imerge= it++)) { if (imerge->or_sel_tree_with_checks(param, tree)) it.remove(); } return im1->is_empty(); } /*************************************************************************** ** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT ***************************************************************************/ /* make a select from mysql info Error is set as following: 0 = ok 1 = Got some error (out of memory?) */ SQL_SELECT *make_select(TABLE *head, table_map const_tables, table_map read_tables, COND *conds, bool allow_null_cond, int *error) { SQL_SELECT *select; DBUG_ENTER("make_select"); *error=0; if (!conds && !allow_null_cond) DBUG_RETURN(0); if (!(select= new SQL_SELECT)) { *error= 1; // out of memory DBUG_RETURN(0); /* purecov: inspected */ } select->read_tables=read_tables; select->const_tables=const_tables; select->head=head; select->cond=conds; if (head->sort.io_cache) { select->file= *head->sort.io_cache; select->records=(ha_rows) (select->file.end_of_file/ head->file->ref_length); my_free((gptr) (head->sort.io_cache),MYF(0)); head->sort.io_cache=0; } DBUG_RETURN(select); } SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0) { quick_keys.clear_all(); needed_reg.clear_all(); my_b_clear(&file); } void SQL_SELECT::cleanup() { delete quick; quick= 0; if (free_cond) { free_cond=0; delete cond; cond= 0; } close_cached_file(&file); } SQL_SELECT::~SQL_SELECT() { cleanup(); } #undef index // Fix for Unixware 7 QUICK_SELECT_I::QUICK_SELECT_I() :max_used_key_length(0), used_key_parts(0) {} QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr, bool no_alloc, MEM_ROOT *parent_alloc) :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),range(0) { sorted= 0; index= key_nr; head= table; key_part_info= head->key_info[index].key_part; my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16); /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */ multi_range_bufsiz= thd->variables.read_rnd_buff_size; multi_range_count= thd->variables.multi_range_count; multi_range_length= 0; multi_range= NULL; multi_range_buff= NULL; if (!no_alloc && !parent_alloc) { // Allocates everything through the internal memroot init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); thd->mem_root= &alloc; } else bzero((char*) &alloc,sizeof(alloc)); file= head->file; record= head->record[0]; } int QUICK_RANGE_SELECT::init() { DBUG_ENTER("QUICK_RANGE_SELECT::init"); if (file->inited != handler::NONE) file->ha_index_or_rnd_end(); DBUG_RETURN(error= file->ha_index_init(index)); } void QUICK_RANGE_SELECT::range_end() { if (file->inited != handler::NONE) file->ha_index_or_rnd_end(); } QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT() { DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT"); if (!dont_free) { /* file is NULL for CPK scan on covering ROR-intersection */ if (file) { range_end(); file->extra(HA_EXTRA_NO_KEYREAD); if (free_file) { DBUG_PRINT("info", ("Freeing separate handler %p (free=%d)", file, free_file)); file->reset(); file->external_lock(current_thd, F_UNLCK); file->close(); } } delete_dynamic(&ranges); /* ranges are allocated in alloc */ free_root(&alloc,MYF(0)); } if (multi_range) my_free((char*) multi_range, MYF(0)); if (multi_range_buff) my_free((char*) multi_range_buff, MYF(0)); DBUG_VOID_RETURN; } QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param, TABLE *table) :pk_quick_select(NULL), thd(thd_param) { DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT"); index= MAX_KEY; head= table; bzero(&read_record, sizeof(read_record)); init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); DBUG_VOID_RETURN; } int QUICK_INDEX_MERGE_SELECT::init() { DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init"); DBUG_RETURN(0); } int QUICK_INDEX_MERGE_SELECT::reset() { DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset"); DBUG_RETURN(read_keys_and_merge()); } bool QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range) { /* Save quick_select that does scan on clustered primary key as it will be processed separately. */ if (head->file->primary_key_is_clustered() && quick_sel_range->index == head->s->primary_key) pk_quick_select= quick_sel_range; else return quick_selects.push_back(quick_sel_range); return 0; } QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT() { List_iterator_fast quick_it(quick_selects); QUICK_RANGE_SELECT* quick; DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT"); quick_it.rewind(); while ((quick= quick_it++)) quick->file= NULL; quick_selects.delete_elements(); delete pk_quick_select; free_root(&alloc,MYF(0)); DBUG_VOID_RETURN; } QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param, TABLE *table, bool retrieve_full_rows, MEM_ROOT *parent_alloc) : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows), scans_inited(FALSE) { index= MAX_KEY; head= table; record= head->record[0]; if (!parent_alloc) init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); else bzero(&alloc, sizeof(MEM_ROOT)); last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc, head->file->ref_length); } /* Do post-constructor initialization. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::init() RETURN 0 OK other Error code */ int QUICK_ROR_INTERSECT_SELECT::init() { DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init"); /* Check if last_rowid was successfully allocated in ctor */ DBUG_RETURN(!last_rowid); } /* Initialize this quick select to be a ROR-merged scan. SYNOPSIS QUICK_RANGE_SELECT::init_ror_merged_scan() reuse_handler If TRUE, use head->file, otherwise create a separate handler object NOTES This function creates and prepares for subsequent use a separate handler object if it can't reuse head->file. The reason for this is that during ROR-merge several key scans are performed simultaneously, and a single handler is only capable of preserving context of a single key scan. In ROR-merge the quick select doing merge does full records retrieval, merged quick selects read only keys. RETURN 0 ROR child scan initialized, ok to use. 1 error */ int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler) { handler *save_file= file; DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan"); if (reuse_handler) { DBUG_PRINT("info", ("Reusing handler %p", file)); if (file->extra(HA_EXTRA_KEYREAD) || file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) || init() || reset()) { DBUG_RETURN(1); } DBUG_RETURN(0); } /* Create a separate handler object for this quick select */ if (free_file) { /* already have own 'handler' object. */ DBUG_RETURN(0); } THD *thd= current_thd; if (!(file= get_new_handler(head, thd->mem_root, head->s->db_type))) goto failure; DBUG_PRINT("info", ("Allocated new handler %p", file)); if (file->ha_open(head->s->path, head->db_stat, HA_OPEN_IGNORE_IF_LOCKED)) { /* Caller will free the memory */ goto failure; } if (file->external_lock(thd, F_RDLCK)) goto failure; if (file->extra(HA_EXTRA_KEYREAD) || file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) || init() || reset()) { file->external_lock(thd, F_UNLCK); file->close(); goto failure; } free_file= TRUE; last_rowid= file->ref; DBUG_RETURN(0); failure: file= save_file; DBUG_RETURN(1); } /* Initialize this quick select to be a part of a ROR-merged scan. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan() reuse_handler If TRUE, use head->file, otherwise create separate handler object. RETURN 0 OK other error code */ int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler) { List_iterator_fast quick_it(quick_selects); QUICK_RANGE_SELECT* quick; DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan"); /* Initialize all merged "children" quick selects */ DBUG_ASSERT(!need_to_fetch_row || reuse_handler); if (!need_to_fetch_row && reuse_handler) { quick= quick_it++; /* There is no use of this->file. Use it for the first of merged range selects. */ if (quick->init_ror_merged_scan(TRUE)) DBUG_RETURN(1); quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS); } while ((quick= quick_it++)) { if (quick->init_ror_merged_scan(FALSE)) DBUG_RETURN(1); quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS); /* All merged scans share the same record buffer in intersection. */ quick->record= head->record[0]; } if (need_to_fetch_row && head->file->ha_rnd_init(1)) { DBUG_PRINT("error", ("ROR index_merge rnd_init call failed")); DBUG_RETURN(1); } DBUG_RETURN(0); } /* Initialize quick select for row retrieval. SYNOPSIS reset() RETURN 0 OK other Error code */ int QUICK_ROR_INTERSECT_SELECT::reset() { DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset"); if (!scans_inited && init_ror_merged_scan(TRUE)) DBUG_RETURN(1); scans_inited= TRUE; List_iterator_fast it(quick_selects); QUICK_RANGE_SELECT *quick; while ((quick= it++)) quick->reset(); DBUG_RETURN(0); } /* Add a merged quick select to this ROR-intersection quick select. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::push_quick_back() quick Quick select to be added. The quick select must return rows in rowid order. NOTES This call can only be made before init() is called. RETURN FALSE OK TRUE Out of memory. */ bool QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick) { return quick_selects.push_back(quick); } QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT() { DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT"); quick_selects.delete_elements(); delete cpk_quick; free_root(&alloc,MYF(0)); if (need_to_fetch_row && head->file->inited != handler::NONE) head->file->ha_rnd_end(); DBUG_VOID_RETURN; } QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param, TABLE *table) : thd(thd_param), scans_inited(FALSE) { index= MAX_KEY; head= table; rowid_length= table->file->ref_length; record= head->record[0]; init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); thd_param->mem_root= &alloc; } /* Do post-constructor initialization. SYNOPSIS QUICK_ROR_UNION_SELECT::init() RETURN 0 OK other Error code */ int QUICK_ROR_UNION_SELECT::init() { DBUG_ENTER("QUICK_ROR_UNION_SELECT::init"); if (init_queue(&queue, quick_selects.elements, 0, FALSE , QUICK_ROR_UNION_SELECT::queue_cmp, (void*) this)) { bzero(&queue, sizeof(QUEUE)); DBUG_RETURN(1); } if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length))) DBUG_RETURN(1); prev_rowid= cur_rowid + head->file->ref_length; DBUG_RETURN(0); } /* Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority queue. SYNPOSIS QUICK_ROR_UNION_SELECT::queue_cmp() arg Pointer to QUICK_ROR_UNION_SELECT val1 First merged select val2 Second merged select */ int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2) { QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg; return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid, ((QUICK_SELECT_I*)val2)->last_rowid); } /* Initialize quick select for row retrieval. SYNOPSIS reset() RETURN 0 OK other Error code */ int QUICK_ROR_UNION_SELECT::reset() { QUICK_SELECT_I* quick; int error; DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset"); have_prev_rowid= FALSE; if (!scans_inited) { QUICK_SELECT_I *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (quick->init_ror_merged_scan(FALSE)) DBUG_RETURN(1); } scans_inited= TRUE; } queue_remove_all(&queue); /* Initialize scans for merged quick selects and put all merged quick selects into the queue. */ List_iterator_fast it(quick_selects); while ((quick= it++)) { if (quick->reset()) DBUG_RETURN(1); if ((error= quick->get_next())) { if (error == HA_ERR_END_OF_FILE) continue; DBUG_RETURN(error); } quick->save_last_pos(); queue_insert(&queue, (byte*)quick); } if (head->file->ha_rnd_init(1)) { DBUG_PRINT("error", ("ROR index_merge rnd_init call failed")); DBUG_RETURN(1); } DBUG_RETURN(0); } bool QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range) { return quick_selects.push_back(quick_sel_range); } QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT() { DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT"); delete_queue(&queue); quick_selects.delete_elements(); if (head->file->inited != handler::NONE) head->file->ha_rnd_end(); free_root(&alloc,MYF(0)); DBUG_VOID_RETURN; } QUICK_RANGE::QUICK_RANGE() :min_key(0),max_key(0),min_length(0),max_length(0), flag(NO_MIN_RANGE | NO_MAX_RANGE) {} SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc() { type=arg.type; min_flag=arg.min_flag; max_flag=arg.max_flag; maybe_flag=arg.maybe_flag; maybe_null=arg.maybe_null; part=arg.part; field=arg.field; min_value=arg.min_value; max_value=arg.max_value; next_key_part=arg.next_key_part; use_count=1; elements=1; } inline void SEL_ARG::make_root() { left=right= &null_element; color=BLACK; next=prev=0; use_count=0; elements=1; } SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg) :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()), elements(1), use_count(1), field(f), min_value((char*) min_value_arg), max_value((char*) max_value_arg), next(0),prev(0), next_key_part(0),color(BLACK),type(KEY_RANGE) { left=right= &null_element; } SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_, uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_) :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_), part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1), field(field_), min_value(min_value_), max_value(max_value_), next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE) { left=right= &null_element; } SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg) { SEL_ARG *tmp; if (type != KEY_RANGE) { if (!(tmp= new SEL_ARG(type))) return 0; // out of memory tmp->prev= *next_arg; // Link into next/prev chain (*next_arg)->next=tmp; (*next_arg)= tmp; } else { if (!(tmp= new SEL_ARG(field,part, min_value,max_value, min_flag, max_flag, maybe_flag))) return 0; // OOM tmp->parent=new_parent; tmp->next_key_part=next_key_part; if (left != &null_element) tmp->left=left->clone(tmp,next_arg); tmp->prev= *next_arg; // Link into next/prev chain (*next_arg)->next=tmp; (*next_arg)= tmp; if (right != &null_element) if (!(tmp->right= right->clone(tmp,next_arg))) return 0; // OOM } increment_use_count(1); tmp->color= color; tmp->elements= this->elements; return tmp; } SEL_ARG *SEL_ARG::first() { SEL_ARG *next_arg=this; if (!next_arg->left) return 0; // MAYBE_KEY while (next_arg->left != &null_element) next_arg=next_arg->left; return next_arg; } SEL_ARG *SEL_ARG::last() { SEL_ARG *next_arg=this; if (!next_arg->right) return 0; // MAYBE_KEY while (next_arg->right != &null_element) next_arg=next_arg->right; return next_arg; } /* Check if a compare is ok, when one takes ranges in account Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2 */ static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag) { int cmp; /* First check if there was a compare to a min or max element */ if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) { if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) == (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))) return 0; return (a_flag & NO_MIN_RANGE) ? -1 : 1; } if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) return (b_flag & NO_MIN_RANGE) ? 1 : -1; if (field->real_maybe_null()) // If null is part of key { if (*a != *b) { return *a ? -1 : 1; } if (*a) goto end; // NULL where equal a++; b++; // Skip NULL marker } cmp=field->key_cmp((byte*) a,(byte*) b); if (cmp) return cmp < 0 ? -1 : 1; // The values differed // Check if the compared equal arguments was defined with open/closed range end: if (a_flag & (NEAR_MIN | NEAR_MAX)) { if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX))) return 0; if (!(b_flag & (NEAR_MIN | NEAR_MAX))) return (a_flag & NEAR_MIN) ? 2 : -2; return (a_flag & NEAR_MIN) ? 1 : -1; } if (b_flag & (NEAR_MIN | NEAR_MAX)) return (b_flag & NEAR_MIN) ? -2 : 2; return 0; // The elements where equal } SEL_ARG *SEL_ARG::clone_tree() { SEL_ARG tmp_link,*next_arg,*root; next_arg= &tmp_link; root= clone((SEL_ARG *) 0, &next_arg); next_arg->next=0; // Fix last link tmp_link.next->prev=0; // Fix first link if (root) // If not OOM root->use_count= 0; return root; } /* Find the best index to retrieve first N records in given order SYNOPSIS get_index_for_order() table Table to be accessed order Required ordering limit Number of records that will be retrieved DESCRIPTION Find the best index that allows to retrieve first #limit records in the given order cheaper then one would retrieve them using full table scan. IMPLEMENTATION Run through all table indexes and find the shortest index that allows records to be retrieved in given order. We look for the shortest index as we will have fewer index pages to read with it. This function is used only by UPDATE/DELETE, so we take into account how the UPDATE/DELETE code will work: * index can only be scanned in forward direction * HA_EXTRA_KEYREAD will not be used Perhaps these assumptions could be relaxed RETURN index number MAX_KEY if no such index was found. */ uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit) { uint idx; uint match_key= MAX_KEY, match_key_len= MAX_KEY_LENGTH + 1; ORDER *ord; for (ord= order; ord; ord= ord->next) if (!ord->asc) return MAX_KEY; for (idx= 0; idx < table->s->keys; idx++) { if (!(table->keys_in_use_for_query.is_set(idx))) continue; KEY_PART_INFO *keyinfo= table->key_info[idx].key_part; uint partno= 0; /* The below check is sufficient considering we now have either BTREE indexes (records are returned in order for any index prefix) or HASH indexes (records are not returned in order for any index prefix). */ if (!(table->file->index_flags(idx, 0, 1) & HA_READ_ORDER)) continue; for (ord= order; ord; ord= ord->next, partno++) { Item *item= order->item[0]; if (!(item->type() == Item::FIELD_ITEM && ((Item_field*)item)->field->eq(keyinfo[partno].field))) break; } if (!ord && table->key_info[idx].key_length < match_key_len) { /* Ok, the ordering is compatible and this key is shorter then previous match (we want shorter keys as we'll have to read fewer index pages for the same number of records) */ match_key= idx; match_key_len= table->key_info[idx].key_length; } } if (match_key != MAX_KEY) { /* Found an index that allows records to be retrieved in the requested order. Now we'll check if using the index is cheaper then doing a table scan. */ double full_scan_time= table->file->scan_time(); double index_scan_time= table->file->read_time(match_key, 1, limit); if (index_scan_time > full_scan_time) match_key= MAX_KEY; } return match_key; } /* Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived objects from table read plans. */ class TABLE_READ_PLAN { public: /* Plan read cost, with or without cost of full row retrieval, depending on plan creation parameters. */ double read_cost; ha_rows records; /* estimate of #rows to be examined */ /* If TRUE, the scan returns rows in rowid order. This is used only for scans that can be both ROR and non-ROR. */ bool is_ror; /* Create quick select for this plan. SYNOPSIS make_quick() param Parameter from test_quick_select retrieve_full_rows If TRUE, created quick select will do full record retrieval. parent_alloc Memory pool to use, if any. NOTES retrieve_full_rows is ignored by some implementations. RETURN created quick select NULL on any error. */ virtual QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc=NULL) = 0; /* Table read plans are allocated on MEM_ROOT and are never deleted */ static void *operator new(size_t size, MEM_ROOT *mem_root) { return (void*) alloc_root(mem_root, (uint) size); } static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); } static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ } virtual ~TABLE_READ_PLAN() {} /* Remove gcc warning */ }; class TRP_ROR_INTERSECT; class TRP_ROR_UNION; class TRP_INDEX_MERGE; /* Plan for a QUICK_RANGE_SELECT scan. TRP_RANGE::make_quick ignores retrieve_full_rows parameter because QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full record retrieval scans. */ class TRP_RANGE : public TABLE_READ_PLAN { public: SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */ uint key_idx; /* key number in PARAM::key */ TRP_RANGE(SEL_ARG *key_arg, uint idx_arg) : key(key_arg), key_idx(idx_arg) {} virtual ~TRP_RANGE() {} /* Remove gcc warning */ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { DBUG_ENTER("TRP_RANGE::make_quick"); QUICK_RANGE_SELECT *quick; if ((quick= get_quick_select(param, key_idx, key, parent_alloc))) { quick->records= records; quick->read_time= read_cost; } DBUG_RETURN(quick); } }; /* Plan for QUICK_ROR_INTERSECT_SELECT scan. */ class TRP_ROR_INTERSECT : public TABLE_READ_PLAN { public: TRP_ROR_INTERSECT() {} /* Remove gcc warning */ virtual ~TRP_ROR_INTERSECT() {} /* Remove gcc warning */ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc); /* Array of pointers to ROR range scans used in this intersection */ struct st_ror_scan_info **first_scan; struct st_ror_scan_info **last_scan; /* End of the above array */ struct st_ror_scan_info *cpk_scan; /* Clustered PK scan, if there is one */ bool is_covering; /* TRUE if no row retrieval phase is necessary */ double index_scan_costs; /* SUM(cost(index_scan)) */ }; /* Plan for QUICK_ROR_UNION_SELECT scan. QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows is ignored by make_quick. */ class TRP_ROR_UNION : public TABLE_READ_PLAN { public: TRP_ROR_UNION() {} /* Remove gcc warning */ virtual ~TRP_ROR_UNION() {} /* Remove gcc warning */ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc); TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */ TABLE_READ_PLAN **last_ror; /* end of the above array */ }; /* Plan for QUICK_INDEX_MERGE_SELECT scan. QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows is ignored by make_quick. */ class TRP_INDEX_MERGE : public TABLE_READ_PLAN { public: TRP_INDEX_MERGE() {} /* Remove gcc warning */ virtual ~TRP_INDEX_MERGE() {} /* Remove gcc warning */ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc); TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */ TRP_RANGE **range_scans_end; /* end of the array */ }; /* Plan for a QUICK_GROUP_MIN_MAX_SELECT scan. */ class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN { private: bool have_min, have_max; KEY_PART_INFO *min_max_arg_part; uint group_prefix_len; uint used_key_parts; uint group_key_parts; KEY *index_info; uint index; uint key_infix_len; byte key_infix[MAX_KEY_LENGTH]; SEL_TREE *range_tree; /* Represents all range predicates in the query. */ SEL_ARG *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */ uint param_idx; /* Index of used key in param->key. */ /* Number of records selected by the ranges in index_tree. */ public: ha_rows quick_prefix_records; public: TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg, KEY_PART_INFO *min_max_arg_part_arg, uint group_prefix_len_arg, uint used_key_parts_arg, uint group_key_parts_arg, KEY *index_info_arg, uint index_arg, uint key_infix_len_arg, byte *key_infix_arg, SEL_TREE *tree_arg, SEL_ARG *index_tree_arg, uint param_idx_arg, ha_rows quick_prefix_records_arg) : have_min(have_min_arg), have_max(have_max_arg), min_max_arg_part(min_max_arg_part_arg), group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg), group_key_parts(group_key_parts_arg), index_info(index_info_arg), index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg), index_tree(index_tree_arg), param_idx(param_idx_arg), quick_prefix_records(quick_prefix_records_arg) { if (key_infix_len) memcpy(this->key_infix, key_infix_arg, key_infix_len); } virtual ~TRP_GROUP_MIN_MAX() {} /* Remove gcc warning */ QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc); }; /* Fill param->needed_fields with bitmap of fields used in the query. SYNOPSIS fill_used_fields_bitmap() param Parameter from test_quick_select function. NOTES Clustered PK members are not put into the bitmap as they are implicitly present in all keys (and it is impossible to avoid reading them). RETURN 0 Ok 1 Out of memory. */ static int fill_used_fields_bitmap(PARAM *param) { TABLE *table= param->table; param->fields_bitmap_size= (table->s->fields/8 + 1); uchar *tmp; uint pk; if (!(tmp= (uchar*)alloc_root(param->mem_root,param->fields_bitmap_size)) || bitmap_init(¶m->needed_fields, tmp, param->fields_bitmap_size*8, FALSE)) return 1; bitmap_clear_all(¶m->needed_fields); for (uint i= 0; i < table->s->fields; i++) { if (param->thd->query_id == table->field[i]->query_id) bitmap_set_bit(¶m->needed_fields, i+1); } pk= param->table->s->primary_key; if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY) { /* The table uses clustered PK and it is not internally generated */ KEY_PART_INFO *key_part= param->table->key_info[pk].key_part; KEY_PART_INFO *key_part_end= key_part + param->table->key_info[pk].key_parts; for (;key_part != key_part_end; ++key_part) { bitmap_clear_bit(¶m->needed_fields, key_part->fieldnr); } } return 0; } /* Test if a key can be used in different ranges SYNOPSIS SQL_SELECT::test_quick_select() thd Current thread keys_to_use Keys to use for range retrieval prev_tables Tables assumed to be already read when the scan is performed (but not read at the moment of this call) limit Query limit force_quick_range Prefer to use range (instead of full table scan) even if it is more expensive. NOTES Updates the following in the select parameter: needed_reg - Bits for keys with may be used if all prev regs are read quick - Parameter to use when reading records. In the table struct the following information is updated: quick_keys - Which keys can be used quick_rows - How many rows the key matches TODO Check if this function really needs to modify keys_to_use, and change the code to pass it by reference if it doesn't. In addition to force_quick_range other means can be (an usually are) used to make this function prefer range over full table scan. Figure out if force_quick_range is really needed. RETURN -1 if impossible select (i.e. certainly no rows will be selected) 0 if can't use quick_select 1 if found usable ranges and quick select has been successfully created. */ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use, table_map prev_tables, ha_rows limit, bool force_quick_range) { uint idx; double scan_time; DBUG_ENTER("SQL_SELECT::test_quick_select"); DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu", keys_to_use.to_ulonglong(), (ulong) prev_tables, (ulong) const_tables)); DBUG_PRINT("info", ("records=%lu", (ulong)head->file->records)); delete quick; quick=0; needed_reg.clear_all(); quick_keys.clear_all(); if ((specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range || !limit) DBUG_RETURN(0); /* purecov: inspected */ if (keys_to_use.is_clear_all()) DBUG_RETURN(0); records= head->file->records; if (!records) records++; /* purecov: inspected */ scan_time= (double) records / TIME_FOR_COMPARE + 1; read_time= (double) head->file->scan_time() + scan_time + 1.1; if (head->force_index) scan_time= read_time= DBL_MAX; if (limit < records) read_time= (double) records + scan_time + 1; // Force to use index else if (read_time <= 2.0 && !force_quick_range) DBUG_RETURN(0); /* No need for quick select */ DBUG_PRINT("info",("Time to scan table: %g", read_time)); keys_to_use.intersect(head->keys_in_use_for_query); if (!keys_to_use.is_clear_all()) { MEM_ROOT alloc; SEL_TREE *tree= NULL; KEY_PART *key_parts; KEY *key_info; PARAM param; /* set up parameter that is passed to all functions */ param.thd= thd; param.baseflag=head->file->table_flags(); param.prev_tables=prev_tables | const_tables; param.read_tables=read_tables; param.current_table= head->map; param.table=head; param.keys=0; param.mem_root= &alloc; param.old_root= thd->mem_root; param.needed_reg= &needed_reg; param.imerge_cost_buff_size= 0; thd->no_errors=1; // Don't warn about NULL init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0); if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc, sizeof(KEY_PART)* head->s->key_parts)) || fill_used_fields_bitmap(¶m)) { thd->no_errors=0; free_root(&alloc,MYF(0)); // Return memory & allocator DBUG_RETURN(0); // Can't use range } key_parts= param.key_parts; thd->mem_root= &alloc; /* Make an array with description of all key parts of all table keys. This is used in get_mm_parts function. */ key_info= head->key_info; for (idx=0 ; idx < head->s->keys ; idx++, key_info++) { KEY_PART_INFO *key_part_info; if (!keys_to_use.is_set(idx)) continue; if (key_info->flags & HA_FULLTEXT) continue; // ToDo: ft-keys in non-ft ranges, if possible SerG param.key[param.keys]=key_parts; key_part_info= key_info->key_part; for (uint part=0 ; part < key_info->key_parts ; part++, key_parts++, key_part_info++) { key_parts->key= param.keys; key_parts->part= part; key_parts->length= key_part_info->length; key_parts->store_length= key_part_info->store_length; key_parts->field= key_part_info->field; key_parts->null_bit= key_part_info->null_bit; key_parts->image_type = (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW; } param.real_keynr[param.keys++]=idx; } param.key_parts_end=key_parts; /* Calculate cost of full index read for the shortest covering index */ if (!head->used_keys.is_clear_all()) { int key_for_use= find_shortest_key(head, &head->used_keys); double key_read_time= (get_index_only_read_time(¶m, records, key_for_use) + (double) records / TIME_FOR_COMPARE); DBUG_PRINT("info", ("'all'+'using index' scan will be using key %d, " "read time %g", key_for_use, key_read_time)); if (key_read_time < read_time) read_time= key_read_time; } TABLE_READ_PLAN *best_trp= NULL; TRP_GROUP_MIN_MAX *group_trp; double best_read_time= read_time; if (cond) { if ((tree= get_mm_tree(¶m,cond))) { if (tree->type == SEL_TREE::IMPOSSIBLE) { records=0L; /* Return -1 from this function. */ read_time= (double) HA_POS_ERROR; goto free_mem; } if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER) goto free_mem; } } /* Try to construct a QUICK_GROUP_MIN_MAX_SELECT. Notice that it can be constructed no matter if there is a range tree. */ group_trp= get_best_group_min_max(¶m, tree); if (group_trp && group_trp->read_cost < best_read_time) { best_trp= group_trp; best_read_time= best_trp->read_cost; } if (tree) { /* It is possible to use a range-based quick select (but it might be slower than 'all' table scan). */ if (tree->merges.is_empty()) { TRP_RANGE *range_trp; TRP_ROR_INTERSECT *rori_trp; bool can_build_covering= FALSE; /* Get best 'range' plan and prepare data for making other plans */ if ((range_trp= get_key_scans_params(¶m, tree, FALSE, best_read_time))) { best_trp= range_trp; best_read_time= best_trp->read_cost; } /* Simultaneous key scans and row deletes on several handler objects are not allowed so don't use ROR-intersection for table deletes. */ if ((thd->lex->sql_command != SQLCOM_DELETE)) #ifdef NOT_USED if ((thd->lex->sql_command != SQLCOM_UPDATE)) #endif { /* Get best non-covering ROR-intersection plan and prepare data for building covering ROR-intersection. */ if ((rori_trp= get_best_ror_intersect(¶m, tree, best_read_time, &can_build_covering))) { best_trp= rori_trp; best_read_time= best_trp->read_cost; /* Try constructing covering ROR-intersect only if it looks possible and worth doing. */ if (!rori_trp->is_covering && can_build_covering && (rori_trp= get_best_covering_ror_intersect(¶m, tree, best_read_time))) best_trp= rori_trp; } } } else { /* Try creating index_merge/ROR-union scan. */ SEL_IMERGE *imerge; TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp; LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */ DBUG_PRINT("info",("No range reads possible," " trying to construct index_merge")); List_iterator_fast it(tree->merges); while ((imerge= it++)) { new_conj_trp= get_best_disjunct_quick(¶m, imerge, best_read_time); if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost < best_conj_trp->read_cost)) best_conj_trp= new_conj_trp; } if (best_conj_trp) best_trp= best_conj_trp; } } thd->mem_root= param.old_root; /* If we got a read plan, create a quick select from it. */ if (best_trp) { records= best_trp->records; if (!(quick= best_trp->make_quick(¶m, TRUE)) || quick->init()) { delete quick; quick= NULL; } } free_mem: free_root(&alloc,MYF(0)); // Return memory & allocator thd->mem_root= param.old_root; thd->no_errors=0; } DBUG_EXECUTE("info", print_quick(quick, &needed_reg);); /* Assume that if the user is using 'limit' we will only need to scan limit rows if we are using a key */ DBUG_RETURN(records ? test(quick) : -1); } /* Get cost of 'sweep' full records retrieval. SYNOPSIS get_sweep_read_cost() param Parameter from test_quick_select records # of records to be retrieved RETURN cost of sweep */ double get_sweep_read_cost(const PARAM *param, ha_rows records) { double result; DBUG_ENTER("get_sweep_read_cost"); if (param->table->file->primary_key_is_clustered()) { result= param->table->file->read_time(param->table->s->primary_key, records, records); } else { double n_blocks= ceil(ulonglong2double(param->table->file->data_file_length) / IO_SIZE); double busy_blocks= n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records))); if (busy_blocks < 1.0) busy_blocks= 1.0; DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks, busy_blocks)); /* Disabled: Bail out if # of blocks to read is bigger than # of blocks in table data file. if (max_cost != DBL_MAX && (busy_blocks+index_reads_cost) >= n_blocks) return 1; */ JOIN *join= param->thd->lex->select_lex.join; if (!join || join->tables == 1) { /* No join, assume reading is done in one 'sweep' */ result= busy_blocks*(DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/busy_blocks); } else { /* Possibly this is a join with source table being non-last table, so assume that disk seeks are random here. */ result= busy_blocks; } } DBUG_PRINT("info",("returning cost=%g", result)); DBUG_RETURN(result); } /* Get best plan for a SEL_IMERGE disjunctive expression. SYNOPSIS get_best_disjunct_quick() param Parameter from check_quick_select function imerge Expression to use read_time Don't create scans with cost > read_time NOTES index_merge cost is calculated as follows: index_merge_cost = cost(index_reads) + (see #1) cost(rowid_to_row_scan) + (see #2) cost(unique_use) (see #3) 1. cost(index_reads) =SUM_i(cost(index_read_i)) For non-CPK scans, cost(index_read_i) = {cost of ordinary 'index only' scan} For CPK scan, cost(index_read_i) = {cost of non-'index only' scan} 2. cost(rowid_to_row_scan) If table PK is clustered then cost(rowid_to_row_scan) = {cost of ordinary clustered PK scan with n_ranges=n_rows} Otherwise, we use the following model to calculate costs: We need to retrieve n_rows rows from file that occupies n_blocks blocks. We assume that offsets of rows we need are independent variates with uniform distribution in [0..max_file_offset] range. We'll denote block as "busy" if it contains row(s) we need to retrieve and "empty" if doesn't contain rows we need. Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this applies to any block in file). Let x_i be a variate taking value 1 if block #i is empty and 0 otherwise. Then E(x_i) = (1 - 1/n_blocks)^n_rows; E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) = = n_blocks * ((1 - 1/n_blocks)^n_rows) = ~= n_blocks * exp(-n_rows/n_blocks). E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) = ~= n_blocks * (1 - exp(-n_rows/n_blocks)). Average size of "hole" between neighbor non-empty blocks is E(hole_size) = n_blocks/E(n_busy_blocks). The total cost of reading all needed blocks in one "sweep" is: E(n_busy_blocks)* (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)). 3. Cost of Unique use is calculated in Unique::get_use_cost function. ROR-union cost is calculated in the same way index_merge, but instead of Unique a priority queue is used. RETURN Created read plan NULL - Out of memory or no read scan could be built. */ static TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge, double read_time) { SEL_TREE **ptree; TRP_INDEX_MERGE *imerge_trp= NULL; uint n_child_scans= imerge->trees_next - imerge->trees; TRP_RANGE **range_scans; TRP_RANGE **cur_child; TRP_RANGE **cpk_scan= NULL; bool imerge_too_expensive= FALSE; double imerge_cost= 0.0; ha_rows cpk_scan_records= 0; ha_rows non_cpk_scan_records= 0; bool pk_is_clustered= param->table->file->primary_key_is_clustered(); bool all_scans_ror_able= TRUE; bool all_scans_rors= TRUE; uint unique_calc_buff_size; TABLE_READ_PLAN **roru_read_plans; TABLE_READ_PLAN **cur_roru_plan; double roru_index_costs; ha_rows roru_total_records; double roru_intersect_part= 1.0; DBUG_ENTER("get_best_disjunct_quick"); DBUG_PRINT("info", ("Full table scan cost =%g", read_time)); if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root, sizeof(TRP_RANGE*)* n_child_scans))) DBUG_RETURN(NULL); /* Collect best 'range' scan for each of disjuncts, and, while doing so, analyze possibility of ROR scans. Also calculate some values needed by other parts of the code. */ for (ptree= imerge->trees, cur_child= range_scans; ptree != imerge->trees_next; ptree++, cur_child++) { DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map, "tree in SEL_IMERGE");); if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time))) { /* One of index scans in this index_merge is more expensive than entire table read for another available option. The entire index_merge (and any possible ROR-union) will be more expensive then, too. We continue here only to update SQL_SELECT members. */ imerge_too_expensive= TRUE; } if (imerge_too_expensive) continue; imerge_cost += (*cur_child)->read_cost; all_scans_ror_able &= ((*ptree)->n_ror_scans > 0); all_scans_rors &= (*cur_child)->is_ror; if (pk_is_clustered && param->real_keynr[(*cur_child)->key_idx] == param->table->s->primary_key) { cpk_scan= cur_child; cpk_scan_records= (*cur_child)->records; } else non_cpk_scan_records += (*cur_child)->records; } DBUG_PRINT("info", ("index_merge scans cost=%g", imerge_cost)); if (imerge_too_expensive || (imerge_cost > read_time) || (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) && read_time != DBL_MAX) { /* Bail out if it is obvious that both index_merge and ROR-union will be more expensive */ DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than " "full table scan, bailing out")); DBUG_RETURN(NULL); } if (all_scans_rors) { roru_read_plans= (TABLE_READ_PLAN**)range_scans; goto skip_to_ror_scan; } if (cpk_scan) { /* Add one ROWID comparison for each row retrieved on non-CPK scan. (it is done in QUICK_RANGE_SELECT::row_in_ranges) */ imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID; } /* Calculate cost(rowid_to_row_scan) */ imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records); DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g", imerge_cost)); if (imerge_cost > read_time) goto build_ror_index_merge; /* Add Unique operations cost */ unique_calc_buff_size= Unique::get_cost_calc_buff_size(non_cpk_scan_records, param->table->file->ref_length, param->thd->variables.sortbuff_size); if (param->imerge_cost_buff_size < unique_calc_buff_size) { if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root, unique_calc_buff_size))) DBUG_RETURN(NULL); param->imerge_cost_buff_size= unique_calc_buff_size; } imerge_cost += Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records, param->table->file->ref_length, param->thd->variables.sortbuff_size); DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)", imerge_cost, read_time)); if (imerge_cost < read_time) { if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE)) { imerge_trp->read_cost= imerge_cost; imerge_trp->records= non_cpk_scan_records + cpk_scan_records; imerge_trp->records= min(imerge_trp->records, param->table->file->records); imerge_trp->range_scans= range_scans; imerge_trp->range_scans_end= range_scans + n_child_scans; read_time= imerge_cost; } } build_ror_index_merge: if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE) DBUG_RETURN(imerge_trp); /* Ok, it is possible to build a ROR-union, try it. */ bool dummy; if (!(roru_read_plans= (TABLE_READ_PLAN**)alloc_root(param->mem_root, sizeof(TABLE_READ_PLAN*)* n_child_scans))) DBUG_RETURN(imerge_trp); skip_to_ror_scan: roru_index_costs= 0.0; roru_total_records= 0; cur_roru_plan= roru_read_plans; /* Find 'best' ROR scan for each of trees in disjunction */ for (ptree= imerge->trees, cur_child= range_scans; ptree != imerge->trees_next; ptree++, cur_child++, cur_roru_plan++) { /* Assume the best ROR scan is the one that has cheapest full-row-retrieval scan cost. Also accumulate index_only scan costs as we'll need them to calculate overall index_intersection cost. */ double cost; if ((*cur_child)->is_ror) { /* Ok, we have index_only cost, now get full rows scan cost */ cost= param->table->file-> read_time(param->real_keynr[(*cur_child)->key_idx], 1, (*cur_child)->records) + rows2double((*cur_child)->records) / TIME_FOR_COMPARE; } else cost= read_time; TABLE_READ_PLAN *prev_plan= *cur_child; if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost, &dummy))) { if (prev_plan->is_ror) *cur_roru_plan= prev_plan; else DBUG_RETURN(imerge_trp); roru_index_costs += (*cur_roru_plan)->read_cost; } else roru_index_costs += ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs; roru_total_records += (*cur_roru_plan)->records; roru_intersect_part *= (*cur_roru_plan)->records / param->table->file->records; } /* rows to retrieve= SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows). This is valid because index_merge construction guarantees that conditions in disjunction do not share key parts. */ roru_total_records -= (ha_rows)(roru_intersect_part* param->table->file->records); /* ok, got a ROR read plan for each of the disjuncts Calculate cost: cost(index_union_scan(scan_1, ... scan_n)) = SUM_i(cost_of_index_only_scan(scan_i)) + queue_use_cost(rowid_len, n) + cost_of_row_retrieval See get_merge_buffers_cost function for queue_use_cost formula derivation. */ double roru_total_cost; roru_total_cost= roru_index_costs + rows2double(roru_total_records)*log((double)n_child_scans) / (TIME_FOR_COMPARE_ROWID * M_LN2) + get_sweep_read_cost(param, roru_total_records); DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost, n_child_scans)); TRP_ROR_UNION* roru; if (roru_total_cost < read_time) { if ((roru= new (param->mem_root) TRP_ROR_UNION)) { roru->first_ror= roru_read_plans; roru->last_ror= roru_read_plans + n_child_scans; roru->read_cost= roru_total_cost; roru->records= roru_total_records; DBUG_RETURN(roru); } } DBUG_RETURN(imerge_trp); } /* Calculate cost of 'index only' scan for given index and number of records. SYNOPSIS get_index_only_read_time() param parameters structure records #of records to read keynr key to read NOTES It is assumed that we will read trough the whole key range and that all key blocks are half full (normally things are much better). It is also assumed that each time we read the next key from the index, the handler performs a random seek, thus the cost is proportional to the number of blocks read. TODO: Move this to handler->read_time() by adding a flag 'index-only-read' to this call. The reason for doing this is that the current function doesn't handle the case when the row is stored in the b-tree (like in innodb clustered index) */ static double get_index_only_read_time(const PARAM* param, ha_rows records, int keynr) { double read_time; uint keys_per_block= (param->table->file->block_size/2/ (param->table->key_info[keynr].key_length+ param->table->file->ref_length) + 1); read_time=((double) (records+keys_per_block-1)/ (double) keys_per_block); return read_time; } typedef struct st_ror_scan_info { uint idx; /* # of used key in param->keys */ uint keynr; /* # of used key in table */ ha_rows records; /* estimate of # records this scan will return */ /* Set of intervals over key fields that will be used for row retrieval. */ SEL_ARG *sel_arg; /* Fields used in the query and covered by this ROR scan. */ MY_BITMAP covered_fields; uint used_fields_covered; /* # of set bits in covered_fields */ int key_rec_length; /* length of key record (including rowid) */ /* Cost of reading all index records with values in sel_arg intervals set (assuming there is no need to access full table records) */ double index_read_cost; uint first_uncovered_field; /* first unused bit in covered_fields */ uint key_components; /* # of parts in the key */ } ROR_SCAN_INFO; /* Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using sel_arg set of intervals. SYNOPSIS make_ror_scan() param Parameter from test_quick_select function idx Index of key in param->keys sel_arg Set of intervals for a given key RETURN NULL - out of memory ROR scan structure containing a scan for {idx, sel_arg} */ static ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg) { ROR_SCAN_INFO *ror_scan; uchar *bitmap_buf; uint keynr; DBUG_ENTER("make_ror_scan"); if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO)))) DBUG_RETURN(NULL); ror_scan->idx= idx; ror_scan->keynr= keynr= param->real_keynr[idx]; ror_scan->key_rec_length= (param->table->key_info[keynr].key_length + param->table->file->ref_length); ror_scan->sel_arg= sel_arg; ror_scan->records= param->table->quick_rows[keynr]; if (!(bitmap_buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size))) DBUG_RETURN(NULL); if (bitmap_init(&ror_scan->covered_fields, bitmap_buf, param->fields_bitmap_size*8, FALSE)) DBUG_RETURN(NULL); bitmap_clear_all(&ror_scan->covered_fields); KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part; KEY_PART_INFO *key_part_end= key_part + param->table->key_info[keynr].key_parts; for (;key_part != key_part_end; ++key_part) { if (bitmap_is_set(¶m->needed_fields, key_part->fieldnr)) bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr); } ror_scan->index_read_cost= get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr], ror_scan->keynr); DBUG_RETURN(ror_scan); } /* Compare two ROR_SCAN_INFO** by E(#records_matched) * key_record_length. SYNOPSIS cmp_ror_scan_info() a ptr to first compared value b ptr to second compared value RETURN -1 a < b 0 a = b 1 a > b */ static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b) { double val1= rows2double((*a)->records) * (*a)->key_rec_length; double val2= rows2double((*b)->records) * (*b)->key_rec_length; return (val1 < val2)? -1: (val1 == val2)? 0 : 1; } /* Compare two ROR_SCAN_INFO** by (#covered fields in F desc, #components asc, number of first not covered component asc) SYNOPSIS cmp_ror_scan_info_covering() a ptr to first compared value b ptr to second compared value RETURN -1 a < b 0 a = b 1 a > b */ static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b) { if ((*a)->used_fields_covered > (*b)->used_fields_covered) return -1; if ((*a)->used_fields_covered < (*b)->used_fields_covered) return 1; if ((*a)->key_components < (*b)->key_components) return -1; if ((*a)->key_components > (*b)->key_components) return 1; if ((*a)->first_uncovered_field < (*b)->first_uncovered_field) return -1; if ((*a)->first_uncovered_field > (*b)->first_uncovered_field) return 1; return 0; } /* Auxiliary structure for incremental ROR-intersection creation */ typedef struct { const PARAM *param; MY_BITMAP covered_fields; /* union of fields covered by all scans */ /* Fraction of table records that satisfies conditions of all scans. This is the number of full records that will be retrieved if a non-index_only index intersection will be employed. */ double out_rows; /* TRUE if covered_fields is a superset of needed_fields */ bool is_covering; ha_rows index_records; /* sum(#records to look in indexes) */ double index_scan_costs; /* SUM(cost of 'index-only' scans) */ double total_cost; } ROR_INTERSECT_INFO; /* Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans. SYNOPSIS ror_intersect_init() param Parameter from test_quick_select RETURN allocated structure NULL on error */ static ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param) { ROR_INTERSECT_INFO *info; uchar* buf; if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root, sizeof(ROR_INTERSECT_INFO)))) return NULL; info->param= param; if (!(buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size))) return NULL; if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8, FALSE)) return NULL; info->is_covering= FALSE; info->index_scan_costs= 0.0; info->index_records= 0; info->out_rows= param->table->file->records; bitmap_clear_all(&info->covered_fields); return info; } void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src) { dst->param= src->param; memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap, src->covered_fields.bitmap_size); dst->out_rows= src->out_rows; dst->is_covering= src->is_covering; dst->index_records= src->index_records; dst->index_scan_costs= src->index_scan_costs; dst->total_cost= src->total_cost; } /* Get selectivity of a ROR scan wrt ROR-intersection. SYNOPSIS ror_scan_selectivity() info ROR-interection scan ROR scan NOTES Suppose we have a condition on several keys cond=k_11=c_11 AND k_12=c_12 AND ... // parts of first key k_21=c_21 AND k_22=c_22 AND ... // parts of second key ... k_n1=c_n1 AND k_n3=c_n3 AND ... (1) //parts of the key used by *scan where k_ij may be the same as any k_pq (i.e. keys may have common parts). A full row is retrieved if entire condition holds. The recursive procedure for finding P(cond) is as follows: First step: Pick 1st part of 1st key and break conjunction (1) into two parts: cond= (k_11=c_11 AND R) Here R may still contain condition(s) equivalent to k_11=c_11. Nevertheless, the following holds: P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11). Mark k_11 as fixed field (and satisfied condition) F, save P(F), save R to be cond and proceed to recursion step. Recursion step: We have a set of fixed fields/satisfied conditions) F, probability P(F), and remaining conjunction R Pick next key part on current key and its condition "k_ij=c_ij". We will add "k_ij=c_ij" into F and update P(F). Lets denote k_ij as t, R = t AND R1, where R1 may still contain t. Then P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2) (where '|' mean conditional probability, not "or") Consider the first multiplier in (2). One of the following holds: a) F contains condition on field used in t (i.e. t AND F = F). Then P(t|F) = 1 b) F doesn't contain condition on field used in t. Then F and t are considered independent. P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) = = P(t|fields_before_t_in_key). P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) / #records(fields_before_t_in_key, t) The second multiplier is calculated by applying this step recursively. IMPLEMENTATION This function calculates the result of application of the "recursion step" described above for all fixed key members of a single key, accumulating set of covered fields, selectivity, etc. The calculation is conducted as follows: Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate n_{k1} n_{k_2} --------- * --------- * .... (3) n_{k1-1} n_{k2_1} where k1,k2,... are key parts which fields were not yet marked as fixed ( this is result of application of option b) of the recursion step for parts of a single key). Since it is reasonable to expect that most of the fields are not marked as fixed, we calculate (3) as n_{i1} n_{i_2} (3) = n_{max_key_part} / ( --------- * --------- * .... ) n_{i1-1} n_{i2_1} where i1,i2, .. are key parts that were already marked as fixed. In order to minimize number of expensive records_in_range calls we group and reduce adjacent fractions. RETURN Selectivity of given ROR scan. */ static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info, const ROR_SCAN_INFO *scan) { double selectivity_mult= 1.0; KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part; byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */ char *key_ptr= (char*) key_val; SEL_ARG *sel_arg, *tuple_arg= NULL; bool cur_covered; bool prev_covered= test(bitmap_is_set(&info->covered_fields, key_part->fieldnr)); key_range min_range; key_range max_range; min_range.key= (byte*) key_val; min_range.flag= HA_READ_KEY_EXACT; max_range.key= (byte*) key_val; max_range.flag= HA_READ_AFTER_KEY; ha_rows prev_records= info->param->table->file->records; DBUG_ENTER("ror_intersect_selectivity"); for (sel_arg= scan->sel_arg; sel_arg; sel_arg= sel_arg->next_key_part) { DBUG_PRINT("info",("sel_arg step")); cur_covered= test(bitmap_is_set(&info->covered_fields, key_part[sel_arg->part].fieldnr)); if (cur_covered != prev_covered) { /* create (part1val, ..., part{n-1}val) tuple. */ ha_rows records; if (!tuple_arg) { tuple_arg= scan->sel_arg; /* Here we use the length of the first key part */ tuple_arg->store_min(key_part->store_length, &key_ptr, 0); } while (tuple_arg->next_key_part != sel_arg) { tuple_arg= tuple_arg->next_key_part; tuple_arg->store_min(key_part[tuple_arg->part].store_length, &key_ptr, 0); } min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val); records= (info->param->table->file-> records_in_range(scan->keynr, &min_range, &max_range)); if (cur_covered) { /* uncovered -> covered */ double tmp= rows2double(records)/rows2double(prev_records); DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp)); selectivity_mult *= tmp; prev_records= HA_POS_ERROR; } else { /* covered -> uncovered */ prev_records= records; } } prev_covered= cur_covered; } if (!prev_covered) { double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) / rows2double(prev_records); DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp)); selectivity_mult *= tmp; } DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult)); DBUG_RETURN(selectivity_mult); } /* Check if adding a ROR scan to a ROR-intersection reduces its cost of ROR-intersection and if yes, update parameters of ROR-intersection, including its cost. SYNOPSIS ror_intersect_add() param Parameter from test_quick_select info ROR-intersection structure to add the scan to. ror_scan ROR scan info to add. is_cpk_scan If TRUE, add the scan as CPK scan (this can be inferred from other parameters and is passed separately only to avoid duplicating the inference code) NOTES Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR- intersection decreases. The cost of ROR-intersection is calculated as follows: cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval When we add a scan the first increases and the second decreases. cost_of_full_rows_retrieval= (union of indexes used covers all needed fields) ? cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) : 0 E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) * ror_scan_selectivity({scan1}, scan2) * ... * ror_scan_selectivity({scan1,...}, scanN). RETURN TRUE ROR scan added to ROR-intersection, cost updated. FALSE It doesn't make sense to add this ROR scan to this ROR-intersection. */ static bool ror_intersect_add(ROR_INTERSECT_INFO *info, ROR_SCAN_INFO* ror_scan, bool is_cpk_scan) { double selectivity_mult= 1.0; DBUG_ENTER("ror_intersect_add"); DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows)); DBUG_PRINT("info", ("Adding scan on %s", info->param->table->key_info[ror_scan->keynr].name)); DBUG_PRINT("info", ("is_cpk_scan=%d",is_cpk_scan)); selectivity_mult = ror_scan_selectivity(info, ror_scan); if (selectivity_mult == 1.0) { /* Don't add this scan if it doesn't improve selectivity. */ DBUG_PRINT("info", ("The scan doesn't improve selectivity.")); DBUG_RETURN(FALSE); } info->out_rows *= selectivity_mult; DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost)); if (is_cpk_scan) { /* CPK scan is used to filter out rows. We apply filtering for each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID per check this gives us: */ info->index_scan_costs += rows2double(info->index_records) / TIME_FOR_COMPARE_ROWID; } else { info->index_records += info->param->table->quick_rows[ror_scan->keynr]; info->index_scan_costs += ror_scan->index_read_cost; bitmap_union(&info->covered_fields, &ror_scan->covered_fields); if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields, &info->covered_fields)) { DBUG_PRINT("info", ("ROR-intersect is covering now")); info->is_covering= TRUE; } } info->total_cost= info->index_scan_costs; DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost)); if (!info->is_covering) { info->total_cost += get_sweep_read_cost(info->param, double2rows(info->out_rows)); DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost)); } DBUG_PRINT("info", ("New out_rows= %g", info->out_rows)); DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost, info->is_covering?"" : "non-")); DBUG_RETURN(TRUE); } /* Get best ROR-intersection plan using non-covering ROR-intersection search algorithm. The returned plan may be covering. SYNOPSIS get_best_ror_intersect() param Parameter from test_quick_select function. tree Transformed restriction condition to be used to look for ROR scans. read_time Do not return read plans with cost > read_time. are_all_covering [out] set to TRUE if union of all scans covers all fields needed by the query (and it is possible to build a covering ROR-intersection) NOTES get_key_scans_params must be called before this function can be called. When this function is called by ROR-union construction algorithm it assumes it is building an uncovered ROR-intersection (and thus # of full records to be retrieved is wrong here). This is a hack. IMPLEMENTATION The approximate best non-covering plan search algorithm is as follows: find_min_ror_intersection_scan() { R= select all ROR scans; order R by (E(#records_matched) * key_record_length). S= first(R); -- set of scans that will be used for ROR-intersection R= R-first(S); min_cost= cost(S); min_scan= make_scan(S); while (R is not empty) { firstR= R - first(R); if (!selectivity(S + firstR < selectivity(S))) continue; S= S + first(R); if (cost(S) < min_cost) { min_cost= cost(S); min_scan= make_scan(S); } } return min_scan; } See ror_intersect_add function for ROR intersection costs. Special handling for Clustered PK scans Clustered PK contains all table fields, so using it as a regular scan in index intersection doesn't make sense: a range scan on CPK will be less expensive in this case. Clustered PK scan has special handling in ROR-intersection: it is not used to retrieve rows, instead its condition is used to filter row references we get from scans on other keys. RETURN ROR-intersection table read plan NULL if out of memory or no suitable plan found. */ static TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree, double read_time, bool *are_all_covering) { uint idx; double min_cost= DBL_MAX; DBUG_ENTER("get_best_ror_intersect"); if ((tree->n_ror_scans < 2) || !param->table->file->records) DBUG_RETURN(NULL); /* Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of them. Also find and save clustered PK scan if there is one. */ ROR_SCAN_INFO **cur_ror_scan; ROR_SCAN_INFO *cpk_scan= NULL; uint cpk_no; bool cpk_scan_used= FALSE; if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)* param->keys))) return NULL; cpk_no= ((param->table->file->primary_key_is_clustered()) ? param->table->s->primary_key : MAX_KEY); for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++) { ROR_SCAN_INFO *scan; if (!tree->ror_scans_map.is_set(idx)) continue; if (!(scan= make_ror_scan(param, idx, tree->keys[idx]))) return NULL; if (param->real_keynr[idx] == cpk_no) { cpk_scan= scan; tree->n_ror_scans--; } else *(cur_ror_scan++)= scan; } tree->ror_scans_end= cur_ror_scan; DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original", tree->ror_scans, tree->ror_scans_end);); /* Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized ROR_SCAN_INFO's. Step 2: Get best ROR-intersection using an approximate algorithm. */ qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*), (qsort_cmp)cmp_ror_scan_info); DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered", tree->ror_scans, tree->ror_scans_end);); ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */ ROR_SCAN_INFO **intersect_scans_end; if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)* tree->n_ror_scans))) return NULL; intersect_scans_end= intersect_scans; /* Create and incrementally update ROR intersection. */ ROR_INTERSECT_INFO *intersect, *intersect_best; if (!(intersect= ror_intersect_init(param)) || !(intersect_best= ror_intersect_init(param))) return NULL; /* [intersect_scans,intersect_scans_best) will hold the best intersection */ ROR_SCAN_INFO **intersect_scans_best; cur_ror_scan= tree->ror_scans; intersect_scans_best= intersect_scans; while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering) { /* S= S + first(R); R= R - first(R); */ if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE)) { cur_ror_scan++; continue; } *(intersect_scans_end++)= *(cur_ror_scan++); if (intersect->total_cost < min_cost) { /* Local minimum found, save it */ ror_intersect_cpy(intersect_best, intersect); intersect_scans_best= intersect_scans_end; min_cost = intersect->total_cost; } } if (intersect_scans_best == intersect_scans) { DBUG_PRINT("info", ("None of scans increase selectivity")); DBUG_RETURN(NULL); } DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "best ROR-intersection", intersect_scans, intersect_scans_best);); *are_all_covering= intersect->is_covering; uint best_num= intersect_scans_best - intersect_scans; ror_intersect_cpy(intersect, intersect_best); /* Ok, found the best ROR-intersection of non-CPK key scans. Check if we should add a CPK scan. If the obtained ROR-intersection is covering, it doesn't make sense to add CPK scan. */ if (cpk_scan && !intersect->is_covering) { if (ror_intersect_add(intersect, cpk_scan, TRUE) && (intersect->total_cost < min_cost)) { cpk_scan_used= TRUE; intersect_best= intersect; //just set pointer here } } /* Ok, return ROR-intersect plan if we have found one */ TRP_ROR_INTERSECT *trp= NULL; if (min_cost < read_time && (cpk_scan_used || best_num > 1)) { if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT)) DBUG_RETURN(trp); if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)*best_num))) DBUG_RETURN(NULL); memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*)); trp->last_scan= trp->first_scan + best_num; trp->is_covering= intersect_best->is_covering; trp->read_cost= intersect_best->total_cost; /* Prevent divisons by zero */ ha_rows best_rows = double2rows(intersect_best->out_rows); if (!best_rows) best_rows= 1; trp->records= best_rows; trp->index_scan_costs= intersect_best->index_scan_costs; trp->cpk_scan= cpk_scan_used? cpk_scan: NULL; DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:" "cost %g, records %lu", trp->read_cost, (ulong) trp->records)); } DBUG_RETURN(trp); } /* Get best covering ROR-intersection. SYNOPSIS get_best_covering_ror_intersect() param Parameter from test_quick_select function. tree SEL_TREE with sets of intervals for different keys. read_time Don't return table read plans with cost > read_time. RETURN Best covering ROR-intersection plan NULL if no plan found. NOTES get_best_ror_intersect must be called for a tree before calling this function for it. This function invalidates tree->ror_scans member values. The following approximate algorithm is used: I=set of all covering indexes F=set of all fields to cover S={} do { Order I by (#covered fields in F desc, #components asc, number of first not covered component asc); F=F-covered by first(I); S=S+first(I); I=I-first(I); } while F is not empty. */ static TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param, SEL_TREE *tree, double read_time) { ROR_SCAN_INFO **ror_scan_mark; ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end; DBUG_ENTER("get_best_covering_ror_intersect"); uint nbits= param->fields_bitmap_size*8; for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan) (*scan)->key_components= param->table->key_info[(*scan)->keynr].key_parts; /* Run covering-ROR-search algorithm. Assume set I is [ror_scan .. ror_scans_end) */ /*I=set of all covering indexes */ ror_scan_mark= tree->ror_scans; uchar buf[MAX_KEY/8+1]; MY_BITMAP covered_fields; if (bitmap_init(&covered_fields, buf, nbits, FALSE)) DBUG_RETURN(0); bitmap_clear_all(&covered_fields); double total_cost= 0.0f; ha_rows records=0; bool all_covered; DBUG_PRINT("info", ("Building covering ROR-intersection")); DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "building covering ROR-I", ror_scan_mark, ror_scans_end);); do { /* Update changed sorting info: #covered fields, number of first not covered component Calculate and save these values for each of remaining scans. */ for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan) { bitmap_subtract(&(*scan)->covered_fields, &covered_fields); (*scan)->used_fields_covered= bitmap_bits_set(&(*scan)->covered_fields); (*scan)->first_uncovered_field= bitmap_get_first(&(*scan)->covered_fields); } qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*), (qsort_cmp)cmp_ror_scan_info_covering); DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "remaining scans", ror_scan_mark, ror_scans_end);); /* I=I-first(I) */ total_cost += (*ror_scan_mark)->index_read_cost; records += (*ror_scan_mark)->records; DBUG_PRINT("info", ("Adding scan on %s", param->table->key_info[(*ror_scan_mark)->keynr].name)); if (total_cost > read_time) DBUG_RETURN(NULL); /* F=F-covered by first(I) */ bitmap_union(&covered_fields, &(*ror_scan_mark)->covered_fields); all_covered= bitmap_is_subset(¶m->needed_fields, &covered_fields); } while ((++ror_scan_mark < ror_scans_end) && !all_covered); if (!all_covered || (ror_scan_mark - tree->ror_scans) == 1) DBUG_RETURN(NULL); /* Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with cost total_cost. */ DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost)); DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "creating covering ROR-intersect", tree->ror_scans, ror_scan_mark);); /* Add priority queue use cost. */ total_cost += rows2double(records)* log((double)(ror_scan_mark - tree->ror_scans)) / (TIME_FOR_COMPARE_ROWID * M_LN2); DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost)); if (total_cost > read_time) DBUG_RETURN(NULL); TRP_ROR_INTERSECT *trp; if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT)) DBUG_RETURN(trp); uint best_num= (ror_scan_mark - tree->ror_scans); if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root, sizeof(ROR_SCAN_INFO*)* best_num))) DBUG_RETURN(NULL); memcpy(trp->first_scan, tree->ror_scans, best_num*sizeof(ROR_SCAN_INFO*)); trp->last_scan= trp->first_scan + best_num; trp->is_covering= TRUE; trp->read_cost= total_cost; trp->records= records; trp->cpk_scan= NULL; DBUG_PRINT("info", ("Returning covering ROR-intersect plan: cost %g, records %lu", trp->read_cost, (ulong) trp->records)); DBUG_RETURN(trp); } /* Get best "range" table read plan for given SEL_TREE. Also update PARAM members and store ROR scans info in the SEL_TREE. SYNOPSIS get_key_scans_params param parameters from test_quick_select tree make range select for this SEL_TREE index_read_must_be_used if TRUE, assume 'index only' option will be set (except for clustered PK indexes) read_time don't create read plans with cost > read_time. RETURN Best range read plan NULL if no plan found or error occurred */ static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree, bool index_read_must_be_used, double read_time) { int idx; SEL_ARG **key,**end, **key_to_read= NULL; ha_rows best_records; TRP_RANGE* read_plan= NULL; bool pk_is_clustered= param->table->file->primary_key_is_clustered(); DBUG_ENTER("get_key_scans_params"); LINT_INIT(best_records); /* protected by key_to_read */ /* Note that there may be trees that have type SEL_TREE::KEY but contain no key reads at all, e.g. tree for expression "key1 is not null" where key1 is defined as "not null". */ DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map, "tree scans");); tree->ror_scans_map.clear_all(); tree->n_ror_scans= 0; for (idx= 0,key=tree->keys, end=key+param->keys; key != end ; key++,idx++) { ha_rows found_records; double found_read_time; if (*key) { uint keynr= param->real_keynr[idx]; if ((*key)->type == SEL_ARG::MAYBE_KEY || (*key)->maybe_flag) param->needed_reg->set_bit(keynr); bool read_index_only= index_read_must_be_used ? TRUE : (bool) param->table->used_keys.is_set(keynr); found_records= check_quick_select(param, idx, *key); if (param->is_ror_scan) { tree->n_ror_scans++; tree->ror_scans_map.set_bit(idx); } double cpu_cost= (double) found_records / TIME_FOR_COMPARE; if (found_records != HA_POS_ERROR && found_records > 2 && read_index_only && (param->table->file->index_flags(keynr, param->max_key_part,1) & HA_KEYREAD_ONLY) && !(pk_is_clustered && keynr == param->table->s->primary_key)) { /* We can resolve this by only reading through this key. 0.01 is added to avoid races between range and 'index' scan. */ found_read_time= get_index_only_read_time(param,found_records,keynr) + cpu_cost + 0.01; } else { /* cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks) The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function. */ found_read_time= param->table->file->read_time(keynr, param->range_count, found_records) + cpu_cost + 0.01; } DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)", param->table->key_info[keynr].name, found_read_time, read_time)); if (read_time > found_read_time && found_records != HA_POS_ERROR /*|| read_time == DBL_MAX*/ ) { read_time= found_read_time; best_records= found_records; key_to_read= key; } } } DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map, "ROR scans");); if (key_to_read) { idx= key_to_read - tree->keys; if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx))) { read_plan->records= best_records; read_plan->is_ror= tree->ror_scans_map.is_set(idx); read_plan->read_cost= read_time; DBUG_PRINT("info", ("Returning range plan for key %s, cost %g, records %lu", param->table->key_info[param->real_keynr[idx]].name, read_plan->read_cost, (ulong) read_plan->records)); } } else DBUG_PRINT("info", ("No 'range' table read plan found")); DBUG_RETURN(read_plan); } QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { QUICK_INDEX_MERGE_SELECT *quick_imerge; QUICK_RANGE_SELECT *quick; /* index_merge always retrieves full rows, ignore retrieve_full_rows */ if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table))) return NULL; quick_imerge->records= records; quick_imerge->read_time= read_cost; for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end; range_scan++) { if (!(quick= (QUICK_RANGE_SELECT*) ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))|| quick_imerge->push_quick_back(quick)) { delete quick; delete quick_imerge; return NULL; } } return quick_imerge; } QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { QUICK_ROR_INTERSECT_SELECT *quick_intrsect; QUICK_RANGE_SELECT *quick; DBUG_ENTER("TRP_ROR_INTERSECT::make_quick"); MEM_ROOT *alloc; if ((quick_intrsect= new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table, retrieve_full_rows? (!is_covering):FALSE, parent_alloc))) { DBUG_EXECUTE("info", print_ror_scans_arr(param->table, "creating ROR-intersect", first_scan, last_scan);); alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc; for (; first_scan != last_scan;++first_scan) { if (!(quick= get_quick_select(param, (*first_scan)->idx, (*first_scan)->sel_arg, alloc)) || quick_intrsect->push_quick_back(quick)) { delete quick_intrsect; DBUG_RETURN(NULL); } } if (cpk_scan) { if (!(quick= get_quick_select(param, cpk_scan->idx, cpk_scan->sel_arg, alloc))) { delete quick_intrsect; DBUG_RETURN(NULL); } quick->file= NULL; quick_intrsect->cpk_quick= quick; } quick_intrsect->records= records; quick_intrsect->read_time= read_cost; } DBUG_RETURN(quick_intrsect); } QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { QUICK_ROR_UNION_SELECT *quick_roru; TABLE_READ_PLAN **scan; QUICK_SELECT_I *quick; DBUG_ENTER("TRP_ROR_UNION::make_quick"); /* It is impossible to construct a ROR-union that will not retrieve full rows, ignore retrieve_full_rows parameter. */ if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table))) { for (scan= first_ror; scan != last_ror; scan++) { if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) || quick_roru->push_quick_back(quick)) DBUG_RETURN(NULL); } quick_roru->records= records; quick_roru->read_time= read_cost; } DBUG_RETURN(quick_roru); } /* Build a SEL_TREE for <> or NOT BETWEEN predicate SYNOPSIS get_ne_mm_tree() param PARAM from SQL_SELECT::test_quick_select cond_func item for the predicate field field in the predicate lt_value constant that field should be smaller gt_value constant that field should be greaterr cmp_type compare type for the field RETURN # Pointer to tree built tree 0 on error */ static SEL_TREE *get_ne_mm_tree(PARAM *param, Item_func *cond_func, Field *field, Item *lt_value, Item *gt_value, Item_result cmp_type) { SEL_TREE *tree; tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC, lt_value, cmp_type); if (tree) { tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, Item_func::GT_FUNC, gt_value, cmp_type)); } return tree; } /* Build a SEL_TREE for a simple predicate SYNOPSIS get_func_mm_tree() param PARAM from SQL_SELECT::test_quick_select cond_func item for the predicate field field in the predicate value constant in the predicate cmp_type compare type for the field inv TRUE <> NOT cond_func is considered (makes sense only when cond_func is BETWEEN or IN) RETURN Pointer to the tree built tree */ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func, Field *field, Item *value, Item_result cmp_type, bool inv) { SEL_TREE *tree= 0; DBUG_ENTER("get_func_mm_tree"); switch (cond_func->functype()) { case Item_func::NE_FUNC: tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type); break; case Item_func::BETWEEN: if (inv) { tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1], cond_func->arguments()[2], cmp_type); } else { tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC, cond_func->arguments()[1],cmp_type); if (tree) { tree= tree_and(param, tree, get_mm_parts(param, cond_func, field, Item_func::LE_FUNC, cond_func->arguments()[2], cmp_type)); } } break; case Item_func::IN_FUNC: { Item_func_in *func=(Item_func_in*) cond_func; if (inv) { if (func->array && func->cmp_type != ROW_RESULT) { /* We get here for conditions in form "t.key NOT IN (c1, c2, ...)" (where c{i} are constants). Our goal is to produce a SEL_ARG graph that represents intervals: ($MINmem_root; param->thd->mem_root= param->old_root; /* Create one Item_type constant object. We'll need it as get_mm_parts only accepts constant values wrapped in Item_Type objects. We create the Item on param->mem_root which points to per-statement mem_root (while thd->mem_root is currently pointing to mem_root local to range optimizer). */ Item *value_item= func->array->create_item(); param->thd->mem_root= tmp_root; if (!value_item) break; /* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval. */ uint i=0; do { func->array->value_to_item(i, value_item); tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC, value_item, cmp_type); if (!tree) break; i++; } while (i < func->array->count && tree->type == SEL_TREE::IMPOSSIBLE); if (!tree || tree->type == SEL_TREE::IMPOSSIBLE) { /* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */ tree= NULL; break; } #define NOT_IN_IGNORE_THRESHOLD 1000 SEL_TREE *tree2; if (func->array->count < NOT_IN_IGNORE_THRESHOLD) { for (; i < func->array->count; i++) { if (func->array->compare_elems(i, i-1)) { /* Get a SEL_TREE for "-inf < X < c_i" interval */ func->array->value_to_item(i, value_item); tree2= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC, value_item, cmp_type); if (!tree2) { tree= NULL; break; } /* Change all intervals to be "c_{i-1} < X < c_i" */ for (uint idx= 0; idx < param->keys; idx++) { SEL_ARG *new_interval, *last_val; if (((new_interval= tree2->keys[idx])) && ((last_val= tree->keys[idx]->last()))) { new_interval->min_value= last_val->max_value; new_interval->min_flag= NEAR_MIN; } } /* The following doesn't try to allocate memory so no need to check for NULL. */ tree= tree_or(param, tree, tree2); } } } else func->array->value_to_item(func->array->count - 1, value_item); if (tree && tree->type != SEL_TREE::IMPOSSIBLE) { /* Get the SEL_TREE for the last "c_last < X < +inf" interval (value_item cotains c_last already) */ tree2= get_mm_parts(param, cond_func, field, Item_func::GT_FUNC, value_item, cmp_type); tree= tree_or(param, tree, tree2); } } else { tree= get_ne_mm_tree(param, cond_func, field, func->arguments()[1], func->arguments()[1], cmp_type); if (tree) { Item **arg, **end; for (arg= func->arguments()+2, end= arg+func->argument_count()-2; arg < end ; arg++) { tree= tree_and(param, tree, get_ne_mm_tree(param, cond_func, field, *arg, *arg, cmp_type)); } } } } else { tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC, func->arguments()[1], cmp_type); if (tree) { Item **arg, **end; for (arg= func->arguments()+2, end= arg+func->argument_count()-2; arg < end ; arg++) { tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC, *arg, cmp_type)); } } } break; } default: { /* Here the function for the following predicates are processed: <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL. If the predicate is of the form (value op field) it is handled as the equivalent predicate (field rev_op value), e.g. 2 <= a is handled as a >= 2. */ Item_func::Functype func_type= (value != cond_func->arguments()[0]) ? cond_func->functype() : ((Item_bool_func2*) cond_func)->rev_functype(); tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type); } } DBUG_RETURN(tree); } /* make a select tree of all keys in condition */ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond) { SEL_TREE *tree=0; SEL_TREE *ftree= 0; Item_field *field_item= 0; bool inv= FALSE; Item *value; DBUG_ENTER("get_mm_tree"); if (cond->type() == Item::COND_ITEM) { List_iterator li(*((Item_cond*) cond)->argument_list()); if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) { tree=0; Item *item; while ((item=li++)) { SEL_TREE *new_tree=get_mm_tree(param,item); if (param->thd->is_fatal_error) DBUG_RETURN(0); // out of memory tree=tree_and(param,tree,new_tree); if (tree && tree->type == SEL_TREE::IMPOSSIBLE) break; } } else { // COND OR tree=get_mm_tree(param,li++); if (tree) { Item *item; while ((item=li++)) { SEL_TREE *new_tree=get_mm_tree(param,item); if (!new_tree) DBUG_RETURN(0); // out of memory tree=tree_or(param,tree,new_tree); if (!tree || tree->type == SEL_TREE::ALWAYS) break; } } } DBUG_RETURN(tree); } /* Here when simple cond */ if (cond->const_item()) { /* During the cond->val_int() evaluation we can come across a subselect item which may allocate memory on the thd->mem_root and assumes all the memory allocated has the same life span as the subselect item itself. So we have to restore the thread's mem_root here. */ MEM_ROOT *tmp_root= param->mem_root; param->thd->mem_root= param->old_root; tree= cond->val_int() ? new(tmp_root) SEL_TREE(SEL_TREE::ALWAYS) : new(tmp_root) SEL_TREE(SEL_TREE::IMPOSSIBLE); param->thd->mem_root= tmp_root; DBUG_RETURN(tree); } table_map ref_tables= 0; table_map param_comp= ~(param->prev_tables | param->read_tables | param->current_table); if (cond->type() != Item::FUNC_ITEM) { // Should be a field ref_tables= cond->used_tables(); if ((ref_tables & param->current_table) || (ref_tables & ~(param->prev_tables | param->read_tables))) DBUG_RETURN(0); DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); } Item_func *cond_func= (Item_func*) cond; if (cond_func->functype() == Item_func::BETWEEN || cond_func->functype() == Item_func::IN_FUNC) inv= ((Item_func_opt_neg *) cond_func)->negated; else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE) DBUG_RETURN(0); param->cond= cond; switch (cond_func->functype()) { case Item_func::BETWEEN: if (cond_func->arguments()[0]->real_item()->type() != Item::FIELD_ITEM) DBUG_RETURN(0); field_item= (Item_field*) (cond_func->arguments()[0]->real_item()); value= NULL; break; case Item_func::IN_FUNC: { Item_func_in *func=(Item_func_in*) cond_func; if (func->key_item()->real_item()->type() != Item::FIELD_ITEM) DBUG_RETURN(0); field_item= (Item_field*) (func->key_item()->real_item()); value= NULL; break; } case Item_func::MULT_EQUAL_FUNC: { Item_equal *item_equal= (Item_equal *) cond; if (!(value= item_equal->get_const())) DBUG_RETURN(0); Item_equal_iterator it(*item_equal); ref_tables= value->used_tables(); while ((field_item= it++)) { Field *field= field_item->field; Item_result cmp_type= field->cmp_type(); if (!((ref_tables | field->table->map) & param_comp)) { tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC, value,cmp_type); ftree= !ftree ? tree : tree_and(param, ftree, tree); } } DBUG_RETURN(ftree); } default: if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM) { field_item= (Item_field*) (cond_func->arguments()[0]->real_item()); value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0; } else if (cond_func->have_rev_func() && cond_func->arguments()[1]->real_item()->type() == Item::FIELD_ITEM) { field_item= (Item_field*) (cond_func->arguments()[1]->real_item()); value= cond_func->arguments()[0]; } else DBUG_RETURN(0); } /* If the where condition contains a predicate (ti.field op const), then not only SELL_TREE for this predicate is built, but the trees for the results of substitution of ti.field for each tj.field belonging to the same multiple equality as ti.field are built as well. E.g. for WHERE t1.a=t2.a AND t2.a > 10 a SEL_TREE for t2.a > 10 will be built for quick select from t2 and a SEL_TREE for t1.a > 10 will be built for quick select from t1. */ for (uint i= 0; i < cond_func->arg_count; i++) { Item *arg= cond_func->arguments()[i]->real_item(); if (arg != field_item) ref_tables|= arg->used_tables(); } Field *field= field_item->field; Item_result cmp_type= field->cmp_type(); if (!((ref_tables | field->table->map) & param_comp)) ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv); Item_equal *item_equal= field_item->item_equal; if (item_equal) { Item_equal_iterator it(*item_equal); Item_field *item; while ((item= it++)) { Field *f= item->field; if (field->eq(f)) continue; if (!((ref_tables | f->table->map) & param_comp)) { tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv); ftree= !ftree ? tree : tree_and(param, ftree, tree); } } } DBUG_RETURN(ftree); } static SEL_TREE * get_mm_parts(PARAM *param, COND *cond_func, Field *field, Item_func::Functype type, Item *value, Item_result cmp_type) { DBUG_ENTER("get_mm_parts"); if (field->table != param->table) DBUG_RETURN(0); KEY_PART *key_part = param->key_parts; KEY_PART *end = param->key_parts_end; SEL_TREE *tree=0; if (value && value->used_tables() & ~(param->prev_tables | param->read_tables)) DBUG_RETURN(0); for (; key_part != end ; key_part++) { if (field->eq(key_part->field)) { SEL_ARG *sel_arg=0; if (!tree && !(tree=new SEL_TREE())) DBUG_RETURN(0); // OOM if (!value || !(value->used_tables() & ~param->read_tables)) { sel_arg=get_mm_leaf(param,cond_func, key_part->field,key_part,type,value); if (!sel_arg) continue; if (sel_arg->type == SEL_ARG::IMPOSSIBLE) { tree->type=SEL_TREE::IMPOSSIBLE; DBUG_RETURN(tree); } } else { // This key may be used later if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY))) DBUG_RETURN(0); // OOM } sel_arg->part=(uchar) key_part->part; tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg); tree->keys_map.set_bit(key_part->key); } } DBUG_RETURN(tree); } static SEL_ARG * get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part, Item_func::Functype type,Item *value) { uint maybe_null=(uint) field->real_maybe_null(); bool optimize_range; SEL_ARG *tree= 0; MEM_ROOT *alloc= param->mem_root; char *str; ulong orig_sql_mode; DBUG_ENTER("get_mm_leaf"); /* We need to restore the runtime mem_root of the thread in this function because it evaluates the value of its argument, while the argument can be any, e.g. a subselect. The subselect items, in turn, assume that all the memory allocated during the evaluation has the same life span as the item itself. TODO: opt_range.cc should not reset thd->mem_root at all. */ param->thd->mem_root= param->old_root; if (!value) // IS NULL or IS NOT NULL { if (field->table->maybe_null) // Can't use a key on this goto end; if (!maybe_null) // Not null field { if (type == Item_func::ISNULL_FUNC) tree= &null_element; goto end; } if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string))) goto end; // out of memory if (type == Item_func::ISNOTNULL_FUNC) { tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */ tree->max_flag=NO_MAX_RANGE; } goto end; } /* 1. Usually we can't use an index if the column collation differ from the operation collation. 2. However, we can reuse a case insensitive index for the binary searches: WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin; WHERE latin1_swedish_ci_colimn = BINARY 'a ' */ if (field->result_type() == STRING_RESULT && value->result_type() == STRING_RESULT && key_part->image_type == Field::itRAW && ((Field_str*)field)->charset() != conf_func->compare_collation() && !(conf_func->compare_collation()->state & MY_CS_BINSORT)) goto end; optimize_range= field->optimize_range(param->real_keynr[key_part->key], key_part->part); if (type == Item_func::LIKE_FUNC) { bool like_error; char buff1[MAX_FIELD_WIDTH],*min_str,*max_str; String tmp(buff1,sizeof(buff1),value->collation.collation),*res; uint length,offset,min_length,max_length; uint field_length= field->pack_length()+maybe_null; if (!optimize_range) goto end; if (!(res= value->val_str(&tmp))) { tree= &null_element; goto end; } /* TODO: Check if this was a function. This should have be optimized away in the sql_select.cc */ if (res != &tmp) { tmp.copy(*res); // Get own copy res= &tmp; } if (field->cmp_type() != STRING_RESULT) goto end; // Can only optimize strings offset=maybe_null; length=key_part->store_length; if (length != key_part->length + maybe_null) { /* key packed with length prefix */ offset+= HA_KEY_BLOB_LENGTH; field_length= length - HA_KEY_BLOB_LENGTH; } else { if (unlikely(length < field_length)) { /* This can only happen in a table created with UNIREG where one key overlaps many fields */ length= field_length; } else field_length= length; } length+=offset; if (!(min_str= (char*) alloc_root(alloc, length*2))) goto end; max_str=min_str+length; if (maybe_null) max_str[0]= min_str[0]=0; field_length-= maybe_null; like_error= my_like_range(field->charset(), res->ptr(), res->length(), ((Item_func_like*)(param->cond))->escape, wild_one, wild_many, field_length, min_str+offset, max_str+offset, &min_length, &max_length); if (like_error) // Can't optimize with LIKE goto end; if (offset != maybe_null) // BLOB or VARCHAR { int2store(min_str+maybe_null,min_length); int2store(max_str+maybe_null,max_length); } tree= new (alloc) SEL_ARG(field, min_str, max_str); goto end; } if (!optimize_range && type != Item_func::EQ_FUNC && type != Item_func::EQUAL_FUNC) goto end; // Can't optimize this /* We can't always use indexes when comparing a string index to a number cmp_type() is checked to allow compare of dates to numbers */ if (field->result_type() == STRING_RESULT && value->result_type() != STRING_RESULT && field->cmp_type() != value->result_type()) goto end; /* For comparison purposes allow invalid dates like 2000-01-32 */ orig_sql_mode= field->table->in_use->variables.sql_mode; if (value->real_item()->type() == Item::STRING_ITEM && (field->type() == FIELD_TYPE_DATE || field->type() == FIELD_TYPE_DATETIME)) field->table->in_use->variables.sql_mode|= MODE_INVALID_DATES; if (value->save_in_field_no_warnings(field, 1) < 0) { field->table->in_use->variables.sql_mode= orig_sql_mode; /* This happens when we try to insert a NULL field in a not null column */ tree= &null_element; // cmp with NULL is never TRUE goto end; } field->table->in_use->variables.sql_mode= orig_sql_mode; str= (char*) alloc_root(alloc, key_part->store_length+1); if (!str) goto end; if (maybe_null) *str= (char) field->is_real_null(); // Set to 1 if null field->get_key_image(str+maybe_null, key_part->length, key_part->image_type); if (!(tree= new (alloc) SEL_ARG(field, str, str))) goto end; // out of memory /* Check if we are comparing an UNSIGNED integer with a negative constant. In this case we know that: (a) (unsigned_int [< | <=] negative_constant) == FALSE (b) (unsigned_int [> | >=] negative_constant) == TRUE In case (a) the condition is false for all values, and in case (b) it is true for all values, so we can avoid unnecessary retrieval and condition testing, and we also get correct comparison of unsinged integers with negative integers (which otherwise fails because at query execution time negative integers are cast to unsigned if compared with unsigned). */ if (field->result_type() == INT_RESULT && value->result_type() == INT_RESULT && ((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag) { longlong item_val= value->val_int(); if (item_val < 0) { if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC) { tree->type= SEL_ARG::IMPOSSIBLE; goto end; } if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC) { tree= 0; goto end; } } } switch (type) { case Item_func::LT_FUNC: if (field_is_equal_to_item(field,value)) tree->max_flag=NEAR_MAX; /* fall through */ case Item_func::LE_FUNC: if (!maybe_null) tree->min_flag=NO_MIN_RANGE; /* From start */ else { // > NULL tree->min_value=is_null_string; tree->min_flag=NEAR_MIN; } break; case Item_func::GT_FUNC: if (field_is_equal_to_item(field,value)) tree->min_flag=NEAR_MIN; /* fall through */ case Item_func::GE_FUNC: tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_EQUALS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_DISJOINT_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_INTERSECTS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_TOUCHES_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_CROSSES_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_WITHIN_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_CONTAINS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; case Item_func::SP_OVERLAPS_FUNC: tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512; tree->max_flag=NO_MAX_RANGE; break; default: break; } end: param->thd->mem_root= alloc; DBUG_RETURN(tree); } /****************************************************************************** ** Tree manipulation functions ** If tree is 0 it means that the condition can't be tested. It refers ** to a non existent table or to a field in current table with isn't a key. ** The different tree flags: ** IMPOSSIBLE: Condition is never TRUE ** ALWAYS: Condition is always TRUE ** MAYBE: Condition may exists when tables are read ** MAYBE_KEY: Condition refers to a key that may be used in join loop ** KEY_RANGE: Condition uses a key ******************************************************************************/ /* Add a new key test to a key when scanning through all keys This will never be called for same key parts. */ static SEL_ARG * sel_add(SEL_ARG *key1,SEL_ARG *key2) { SEL_ARG *root,**key_link; if (!key1) return key2; if (!key2) return key1; key_link= &root; while (key1 && key2) { if (key1->part < key2->part) { *key_link= key1; key_link= &key1->next_key_part; key1=key1->next_key_part; } else { *key_link= key2; key_link= &key2->next_key_part; key2=key2->next_key_part; } } *key_link=key1 ? key1 : key2; return root; } #define CLONE_KEY1_MAYBE 1 #define CLONE_KEY2_MAYBE 2 #define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1) static SEL_TREE * tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2) { DBUG_ENTER("tree_and"); if (!tree1) DBUG_RETURN(tree2); if (!tree2) DBUG_RETURN(tree1); if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree1); if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree2); if (tree1->type == SEL_TREE::MAYBE) { if (tree2->type == SEL_TREE::KEY) tree2->type=SEL_TREE::KEY_SMALLER; DBUG_RETURN(tree2); } if (tree2->type == SEL_TREE::MAYBE) { tree1->type=SEL_TREE::KEY_SMALLER; DBUG_RETURN(tree1); } key_map result_keys; result_keys.clear_all(); /* Join the trees key per key */ SEL_ARG **key1,**key2,**end; for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ; key1 != end ; key1++,key2++) { uint flag=0; if (*key1 || *key2) { if (*key1 && !(*key1)->simple_key()) flag|=CLONE_KEY1_MAYBE; if (*key2 && !(*key2)->simple_key()) flag|=CLONE_KEY2_MAYBE; *key1=key_and(*key1,*key2,flag); if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE) { tree1->type= SEL_TREE::IMPOSSIBLE; DBUG_RETURN(tree1); } result_keys.set_bit(key1 - tree1->keys); #ifdef EXTRA_DEBUG if (*key1) (*key1)->test_use_count(*key1); #endif } } tree1->keys_map= result_keys; /* dispose index_merge if there is a "range" option */ if (!result_keys.is_clear_all()) { tree1->merges.empty(); DBUG_RETURN(tree1); } /* ok, both trees are index_merge trees */ imerge_list_and_list(&tree1->merges, &tree2->merges); DBUG_RETURN(tree1); } /* Check if two SEL_TREES can be combined into one (i.e. a single key range read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without using index_merge. */ bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param) { key_map common_keys= tree1->keys_map; DBUG_ENTER("sel_trees_can_be_ored"); common_keys.intersect(tree2->keys_map); if (common_keys.is_clear_all()) DBUG_RETURN(FALSE); /* trees have a common key, check if they refer to same key part */ SEL_ARG **key1,**key2; for (uint key_no=0; key_no < param->keys; key_no++) { if (common_keys.is_set(key_no)) { key1= tree1->keys + key_no; key2= tree2->keys + key_no; if ((*key1)->part == (*key2)->part) { DBUG_RETURN(TRUE); } } } DBUG_RETURN(FALSE); } static SEL_TREE * tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2) { DBUG_ENTER("tree_or"); if (!tree1 || !tree2) DBUG_RETURN(0); if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree2); if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS) DBUG_RETURN(tree1); if (tree1->type == SEL_TREE::MAYBE) DBUG_RETURN(tree1); // Can't use this if (tree2->type == SEL_TREE::MAYBE) DBUG_RETURN(tree2); SEL_TREE *result= 0; key_map result_keys; result_keys.clear_all(); if (sel_trees_can_be_ored(tree1, tree2, param)) { /* Join the trees key per key */ SEL_ARG **key1,**key2,**end; for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ; key1 != end ; key1++,key2++) { *key1=key_or(*key1,*key2); if (*key1) { result=tree1; // Added to tree1 result_keys.set_bit(key1 - tree1->keys); #ifdef EXTRA_DEBUG (*key1)->test_use_count(*key1); #endif } } if (result) result->keys_map= result_keys; } else { /* ok, two trees have KEY type but cannot be used without index merge */ if (tree1->merges.is_empty() && tree2->merges.is_empty()) { SEL_IMERGE *merge; /* both trees are "range" trees, produce new index merge structure */ if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) || (result->merges.push_back(merge)) || (merge->or_sel_tree(param, tree1)) || (merge->or_sel_tree(param, tree2))) result= NULL; else result->type= tree1->type; } else if (!tree1->merges.is_empty() && !tree2->merges.is_empty()) { if (imerge_list_or_list(param, &tree1->merges, &tree2->merges)) result= new SEL_TREE(SEL_TREE::ALWAYS); else result= tree1; } else { /* one tree is index merge tree and another is range tree */ if (tree1->merges.is_empty()) swap_variables(SEL_TREE*, tree1, tree2); /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */ if (imerge_list_or_tree(param, &tree1->merges, tree2)) result= new SEL_TREE(SEL_TREE::ALWAYS); else result= tree1; } } DBUG_RETURN(result); } /* And key trees where key1->part < key2 -> part */ static SEL_ARG * and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag) { SEL_ARG *next; ulong use_count=key1->use_count; if (key1->elements != 1) { key2->use_count+=key1->elements-1; key2->increment_use_count((int) key1->elements-1); } if (key1->type == SEL_ARG::MAYBE_KEY) { key1->right= key1->left= &null_element; key1->next= key1->prev= 0; } for (next=key1->first(); next ; next=next->next) { if (next->next_key_part) { SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag); if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE) { key1=key1->tree_delete(next); continue; } next->next_key_part=tmp; if (use_count) next->increment_use_count(use_count); } else next->next_key_part=key2; } if (!key1) return &null_element; // Impossible ranges key1->use_count++; return key1; } /* Produce a SEL_ARG graph that represents "key1 AND key2" SYNOPSIS key_and() key1 First argument, root of its RB-tree key2 Second argument, root of its RB-tree RETURN RB-tree root of the resulting SEL_ARG graph. NULL if the result of AND operation is an empty interval {0}. */ static SEL_ARG * key_and(SEL_ARG *key1, SEL_ARG *key2, uint clone_flag) { if (!key1) return key2; if (!key2) return key1; if (key1->part != key2->part) { if (key1->part > key2->part) { swap_variables(SEL_ARG *, key1, key2); clone_flag=swap_clone_flag(clone_flag); } // key1->part < key2->part key1->use_count--; if (key1->use_count > 0) if (!(key1= key1->clone_tree())) return 0; // OOM return and_all_keys(key1,key2,clone_flag); } if (((clone_flag & CLONE_KEY2_MAYBE) && !(clone_flag & CLONE_KEY1_MAYBE) && key2->type != SEL_ARG::MAYBE_KEY) || key1->type == SEL_ARG::MAYBE_KEY) { // Put simple key in key2 swap_variables(SEL_ARG *, key1, key2); clone_flag=swap_clone_flag(clone_flag); } /* If one of the key is MAYBE_KEY then the found region may be smaller */ if (key2->type == SEL_ARG::MAYBE_KEY) { if (key1->use_count > 1) { key1->use_count--; if (!(key1=key1->clone_tree())) return 0; // OOM key1->use_count++; } if (key1->type == SEL_ARG::MAYBE_KEY) { // Both are maybe key key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part, clone_flag); if (key1->next_key_part && key1->next_key_part->type == SEL_ARG::IMPOSSIBLE) return key1; } else { key1->maybe_smaller(); if (key2->next_key_part) { key1->use_count--; // Incremented in and_all_keys return and_all_keys(key1,key2,clone_flag); } key2->use_count--; // Key2 doesn't have a tree } return key1; } if ((key1->min_flag | key2->min_flag) & GEOM_FLAG) { /* TODO: why not leave one of the trees? */ key1->free_tree(); key2->free_tree(); return 0; // Can't optimize this } if ((key1->min_flag | key2->min_flag) & GEOM_FLAG) { key1->free_tree(); key2->free_tree(); return 0; // Can't optimize this } key1->use_count--; key2->use_count--; SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0; while (e1 && e2) { int cmp=e1->cmp_min_to_min(e2); if (cmp < 0) { if (get_range(&e1,&e2,key1)) continue; } else if (get_range(&e2,&e1,key2)) continue; SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag); e1->increment_use_count(1); e2->increment_use_count(1); if (!next || next->type != SEL_ARG::IMPOSSIBLE) { SEL_ARG *new_arg= e1->clone_and(e2); if (!new_arg) return &null_element; // End of memory new_arg->next_key_part=next; if (!new_tree) { new_tree=new_arg; } else new_tree=new_tree->insert(new_arg); } if (e1->cmp_max_to_max(e2) < 0) e1=e1->next; // e1 can't overlapp next e2 else e2=e2->next; } key1->free_tree(); key2->free_tree(); if (!new_tree) return &null_element; // Impossible range return new_tree; } static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1) { (*e1)=root1->find_range(*e2); // first e1->min < e2->min if ((*e1)->cmp_max_to_min(*e2) < 0) { if (!((*e1)=(*e1)->next)) return 1; if ((*e1)->cmp_min_to_max(*e2) > 0) { (*e2)=(*e2)->next; return 1; } } return 0; } static SEL_ARG * key_or(SEL_ARG *key1,SEL_ARG *key2) { if (!key1) { if (key2) { key2->use_count--; key2->free_tree(); } return 0; } if (!key2) { key1->use_count--; key1->free_tree(); return 0; } key1->use_count--; key2->use_count--; if (key1->part != key2->part || (key1->min_flag | key2->min_flag) & GEOM_FLAG) { key1->free_tree(); key2->free_tree(); return 0; // Can't optimize this } // If one of the key is MAYBE_KEY then the found region may be bigger if (key1->type == SEL_ARG::MAYBE_KEY) { key2->free_tree(); key1->use_count++; return key1; } if (key2->type == SEL_ARG::MAYBE_KEY) { key1->free_tree(); key2->use_count++; return key2; } if (key1->use_count > 0) { if (key2->use_count == 0 || key1->elements > key2->elements) { swap_variables(SEL_ARG *,key1,key2); } if (key1->use_count > 0 || !(key1=key1->clone_tree())) return 0; // OOM } // Add tree at key2 to tree at key1 bool key2_shared=key2->use_count != 0; key1->maybe_flag|=key2->maybe_flag; for (key2=key2->first(); key2; ) { SEL_ARG *tmp=key1->find_range(key2); // Find key1.min <= key2.min int cmp; if (!tmp) { tmp=key1->first(); // tmp.min > key2.min cmp= -1; } else if ((cmp=tmp->cmp_max_to_min(key2)) < 0) { // Found tmp.max < key2.min SEL_ARG *next=tmp->next; if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part)) { // Join near ranges like tmp.max < 0 and key2.min >= 0 SEL_ARG *key2_next=key2->next; if (key2_shared) { if (!(key2=new SEL_ARG(*key2))) return 0; // out of memory key2->increment_use_count(key1->use_count+1); key2->next=key2_next; // New copy of key2 } key2->copy_min(tmp); if (!(key1=key1->tree_delete(tmp))) { // Only one key in tree key1=key2; key1->make_root(); key2=key2_next; break; } } if (!(tmp=next)) // tmp.min > key2.min break; // Copy rest of key2 } if (cmp < 0) { // tmp.min > key2.min int tmp_cmp; if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max { if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part)) { // ranges are connected tmp->copy_min_to_min(key2); key1->merge_flags(key2); if (tmp->min_flag & NO_MIN_RANGE && tmp->max_flag & NO_MAX_RANGE) { if (key1->maybe_flag) return new SEL_ARG(SEL_ARG::MAYBE_KEY); return 0; } key2->increment_use_count(-1); // Free not used tree key2=key2->next; continue; } else { SEL_ARG *next=key2->next; // Keys are not overlapping if (key2_shared) { SEL_ARG *cpy= new SEL_ARG(*key2); // Must make copy if (!cpy) return 0; // OOM key1=key1->insert(cpy); key2->increment_use_count(key1->use_count+1); } else key1=key1->insert(key2); // Will destroy key2_root key2=next; continue; } } } // tmp.max >= key2.min && tmp.min <= key.max (overlapping ranges) if (eq_tree(tmp->next_key_part,key2->next_key_part)) { if (tmp->is_same(key2)) { tmp->merge_flags(key2); // Copy maybe flags key2->increment_use_count(-1); // Free not used tree } else { SEL_ARG *last=tmp; while (last->next && last->next->cmp_min_to_max(key2) <= 0 && eq_tree(last->next->next_key_part,key2->next_key_part)) { SEL_ARG *save=last; last=last->next; key1=key1->tree_delete(save); } last->copy_min(tmp); if (last->copy_min(key2) || last->copy_max(key2)) { // Full range key1->free_tree(); for (; key2 ; key2=key2->next) key2->increment_use_count(-1); // Free not used tree if (key1->maybe_flag) return new SEL_ARG(SEL_ARG::MAYBE_KEY); return 0; } } key2=key2->next; continue; } if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0) { // tmp.min <= x < key2.min SEL_ARG *new_arg=tmp->clone_first(key2); if (!new_arg) return 0; // OOM if ((new_arg->next_key_part= key1->next_key_part)) new_arg->increment_use_count(key1->use_count+1); tmp->copy_min_to_min(key2); key1=key1->insert(new_arg); } // tmp.min >= key2.min && tmp.min <= key2.max SEL_ARG key(*key2); // Get copy we can modify for (;;) { if (tmp->cmp_min_to_min(&key) > 0) { // key.min <= x < tmp.min SEL_ARG *new_arg=key.clone_first(tmp); if (!new_arg) return 0; // OOM if ((new_arg->next_key_part=key.next_key_part)) new_arg->increment_use_count(key1->use_count+1); key1=key1->insert(new_arg); } if ((cmp=tmp->cmp_max_to_max(&key)) <= 0) { // tmp.min. <= x <= tmp.max tmp->maybe_flag|= key.maybe_flag; key.increment_use_count(key1->use_count+1); tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part); if (!cmp) // Key2 is ready break; key.copy_max_to_min(tmp); if (!(tmp=tmp->next)) { SEL_ARG *tmp2= new SEL_ARG(key); if (!tmp2) return 0; // OOM key1=key1->insert(tmp2); key2=key2->next; goto end; } if (tmp->cmp_min_to_max(&key) > 0) { SEL_ARG *tmp2= new SEL_ARG(key); if (!tmp2) return 0; // OOM key1=key1->insert(tmp2); break; } } else { SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max if (!new_arg) return 0; // OOM tmp->copy_max_to_min(&key); tmp->increment_use_count(key1->use_count+1); /* Increment key count as it may be used for next loop */ key.increment_use_count(1); new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part); key1=key1->insert(new_arg); break; } } key2=key2->next; } end: while (key2) { SEL_ARG *next=key2->next; if (key2_shared) { SEL_ARG *tmp=new SEL_ARG(*key2); // Must make copy if (!tmp) return 0; key2->increment_use_count(key1->use_count+1); key1=key1->insert(tmp); } else key1=key1->insert(key2); // Will destroy key2_root key2=next; } key1->use_count++; return key1; } /* Compare if two trees are equal */ static bool eq_tree(SEL_ARG* a,SEL_ARG *b) { if (a == b) return 1; if (!a || !b || !a->is_same(b)) return 0; if (a->left != &null_element && b->left != &null_element) { if (!eq_tree(a->left,b->left)) return 0; } else if (a->left != &null_element || b->left != &null_element) return 0; if (a->right != &null_element && b->right != &null_element) { if (!eq_tree(a->right,b->right)) return 0; } else if (a->right != &null_element || b->right != &null_element) return 0; if (a->next_key_part != b->next_key_part) { // Sub range if (!a->next_key_part != !b->next_key_part || !eq_tree(a->next_key_part, b->next_key_part)) return 0; } return 1; } SEL_ARG * SEL_ARG::insert(SEL_ARG *key) { SEL_ARG *element,**par,*last_element; LINT_INIT(par); LINT_INIT(last_element); for (element= this; element != &null_element ; ) { last_element=element; if (key->cmp_min_to_min(element) > 0) { par= &element->right; element= element->right; } else { par = &element->left; element= element->left; } } *par=key; key->parent=last_element; /* Link in list */ if (par == &last_element->left) { key->next=last_element; if ((key->prev=last_element->prev)) key->prev->next=key; last_element->prev=key; } else { if ((key->next=last_element->next)) key->next->prev=key; key->prev=last_element; last_element->next=key; } key->left=key->right= &null_element; SEL_ARG *root=rb_insert(key); // rebalance tree root->use_count=this->use_count; // copy root info root->elements= this->elements+1; root->maybe_flag=this->maybe_flag; return root; } /* ** Find best key with min <= given key ** Because the call context this should never return 0 to get_range */ SEL_ARG * SEL_ARG::find_range(SEL_ARG *key) { SEL_ARG *element=this,*found=0; for (;;) { if (element == &null_element) return found; int cmp=element->cmp_min_to_min(key); if (cmp == 0) return element; if (cmp < 0) { found=element; element=element->right; } else element=element->left; } } /* Remove a element from the tree SYNOPSIS tree_delete() key Key that is to be deleted from tree (this) NOTE This also frees all sub trees that is used by the element RETURN root of new tree (with key deleted) */ SEL_ARG * SEL_ARG::tree_delete(SEL_ARG *key) { enum leaf_color remove_color; SEL_ARG *root,*nod,**par,*fix_par; DBUG_ENTER("tree_delete"); root=this; this->parent= 0; /* Unlink from list */ if (key->prev) key->prev->next=key->next; if (key->next) key->next->prev=key->prev; key->increment_use_count(-1); if (!key->parent) par= &root; else par=key->parent_ptr(); if (key->left == &null_element) { *par=nod=key->right; fix_par=key->parent; if (nod != &null_element) nod->parent=fix_par; remove_color= key->color; } else if (key->right == &null_element) { *par= nod=key->left; nod->parent=fix_par=key->parent; remove_color= key->color; } else { SEL_ARG *tmp=key->next; // next bigger key (exist!) nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree fix_par=tmp->parent; if (nod != &null_element) nod->parent=fix_par; remove_color= tmp->color; tmp->parent=key->parent; // Move node in place of key (tmp->left=key->left)->parent=tmp; if ((tmp->right=key->right) != &null_element) tmp->right->parent=tmp; tmp->color=key->color; *par=tmp; if (fix_par == key) // key->right == key->next fix_par=tmp; // new parent of nod } if (root == &null_element) DBUG_RETURN(0); // Maybe root later if (remove_color == BLACK) root=rb_delete_fixup(root,nod,fix_par); test_rb_tree(root,root->parent); root->use_count=this->use_count; // Fix root counters root->elements=this->elements-1; root->maybe_flag=this->maybe_flag; DBUG_RETURN(root); } /* Functions to fix up the tree after insert and delete */ static void left_rotate(SEL_ARG **root,SEL_ARG *leaf) { SEL_ARG *y=leaf->right; leaf->right=y->left; if (y->left != &null_element) y->left->parent=leaf; if (!(y->parent=leaf->parent)) *root=y; else *leaf->parent_ptr()=y; y->left=leaf; leaf->parent=y; } static void right_rotate(SEL_ARG **root,SEL_ARG *leaf) { SEL_ARG *y=leaf->left; leaf->left=y->right; if (y->right != &null_element) y->right->parent=leaf; if (!(y->parent=leaf->parent)) *root=y; else *leaf->parent_ptr()=y; y->right=leaf; leaf->parent=y; } SEL_ARG * SEL_ARG::rb_insert(SEL_ARG *leaf) { SEL_ARG *y,*par,*par2,*root; root= this; root->parent= 0; leaf->color=RED; while (leaf != root && (par= leaf->parent)->color == RED) { // This can't be root or 1 level under if (par == (par2= leaf->parent->parent)->left) { y= par2->right; if (y->color == RED) { par->color=BLACK; y->color=BLACK; leaf=par2; leaf->color=RED; /* And the loop continues */ } else { if (leaf == par->right) { left_rotate(&root,leaf->parent); par=leaf; /* leaf is now parent to old leaf */ } par->color=BLACK; par2->color=RED; right_rotate(&root,par2); break; } } else { y= par2->left; if (y->color == RED) { par->color=BLACK; y->color=BLACK; leaf=par2; leaf->color=RED; /* And the loop continues */ } else { if (leaf == par->left) { right_rotate(&root,par); par=leaf; } par->color=BLACK; par2->color=RED; left_rotate(&root,par2); break; } } } root->color=BLACK; test_rb_tree(root,root->parent); return root; } SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par) { SEL_ARG *x,*w; root->parent=0; x= key; while (x != root && x->color == SEL_ARG::BLACK) { if (x == par->left) { w=par->right; if (w->color == SEL_ARG::RED) { w->color=SEL_ARG::BLACK; par->color=SEL_ARG::RED; left_rotate(&root,par); w=par->right; } if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK) { w->color=SEL_ARG::RED; x=par; } else { if (w->right->color == SEL_ARG::BLACK) { w->left->color=SEL_ARG::BLACK; w->color=SEL_ARG::RED; right_rotate(&root,w); w=par->right; } w->color=par->color; par->color=SEL_ARG::BLACK; w->right->color=SEL_ARG::BLACK; left_rotate(&root,par); x=root; break; } } else { w=par->left; if (w->color == SEL_ARG::RED) { w->color=SEL_ARG::BLACK; par->color=SEL_ARG::RED; right_rotate(&root,par); w=par->left; } if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK) { w->color=SEL_ARG::RED; x=par; } else { if (w->left->color == SEL_ARG::BLACK) { w->right->color=SEL_ARG::BLACK; w->color=SEL_ARG::RED; left_rotate(&root,w); w=par->left; } w->color=par->color; par->color=SEL_ARG::BLACK; w->left->color=SEL_ARG::BLACK; right_rotate(&root,par); x=root; break; } } par=x->parent; } x->color=SEL_ARG::BLACK; return root; } /* Test that the properties for a red-black tree hold */ #ifdef EXTRA_DEBUG int test_rb_tree(SEL_ARG *element,SEL_ARG *parent) { int count_l,count_r; if (element == &null_element) return 0; // Found end of tree if (element->parent != parent) { sql_print_error("Wrong tree: Parent doesn't point at parent"); return -1; } if (element->color == SEL_ARG::RED && (element->left->color == SEL_ARG::RED || element->right->color == SEL_ARG::RED)) { sql_print_error("Wrong tree: Found two red in a row"); return -1; } if (element->left == element->right && element->left != &null_element) { // Dummy test sql_print_error("Wrong tree: Found right == left"); return -1; } count_l=test_rb_tree(element->left,element); count_r=test_rb_tree(element->right,element); if (count_l >= 0 && count_r >= 0) { if (count_l == count_r) return count_l+(element->color == SEL_ARG::BLACK); sql_print_error("Wrong tree: Incorrect black-count: %d - %d", count_l,count_r); } return -1; // Error, no more warnings } /* Count how many times SEL_ARG graph "root" refers to its part "key" SYNOPSIS count_key_part_usage() root An RB-Root node in a SEL_ARG graph. key Another RB-Root node in that SEL_ARG graph. DESCRIPTION The passed "root" node may refer to "key" node via root->next_key_part, root->next->n This function counts how many times the node "key" is referred (via SEL_ARG::next_key_part) by - intervals of RB-tree pointed by "root", - intervals of RB-trees that are pointed by SEL_ARG::next_key_part from intervals of RB-tree pointed by "root", - and so on. Here is an example (horizontal links represent next_key_part pointers, vertical links - next/prev prev pointers): +----+ $ |root|-----------------+ +----+ $ | | $ | | $ | +----+ +---+ $ | +---+ Here the return value | |- ... -| |---$-+--+->|key| will be 4. +----+ +---+ $ | | +---+ | $ | | ... $ | | | $ | | +----+ +---+ $ | | | |---| |---------+ | +----+ +---+ $ | | | $ | ... +---+ $ | | |------------+ +---+ $ RETURN Number of links to "key" from nodes reachable from "root". */ static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key) { ulong count= 0; for (root=root->first(); root ; root=root->next) { if (root->next_key_part) { if (root->next_key_part == key) count++; if (root->next_key_part->part < key->part) count+=count_key_part_usage(root->next_key_part,key); } } return count; } /* Check if SEL_ARG::use_count value is correct SYNOPSIS SEL_ARG::test_use_count() root The root node of the SEL_ARG graph (an RB-tree root node that has the least value of sel_arg->part in the entire graph, and thus is the "origin" of the graph) DESCRIPTION Check if SEL_ARG::use_count value is correct. See the definition of use_count for what is "correct". */ void SEL_ARG::test_use_count(SEL_ARG *root) { uint e_count=0; if (this == root && use_count != 1) { sql_print_information("Use_count: Wrong count %lu for root",use_count); return; } if (this->type != SEL_ARG::KEY_RANGE) return; for (SEL_ARG *pos=first(); pos ; pos=pos->next) { e_count++; if (pos->next_key_part) { ulong count=count_key_part_usage(root,pos->next_key_part); if (count > pos->next_key_part->use_count) { sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu should be %lu", pos,pos->next_key_part->use_count,count); return; } pos->next_key_part->test_use_count(root); } } if (e_count != elements) sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx", e_count, elements, (gptr) this); } #endif /* Calculate estimate of number records that will be retrieved by a range scan on given index using given SEL_ARG intervals tree. SYNOPSIS check_quick_select param Parameter from test_quick_select idx Number of index to use in PARAM::key SEL_TREE::key tree Transformed selection condition, tree->key[idx] holds intervals tree to be used for scanning. NOTES param->is_ror_scan is set to reflect if the key scan is a ROR (see is_key_scan_ror function for more info) param->table->quick_*, param->range_count (and maybe others) are updated with data of given key scan, see check_quick_keys for details. RETURN Estimate # of records to be retrieved. HA_POS_ERROR if estimate calculation failed due to table handler problems. */ static ha_rows check_quick_select(PARAM *param,uint idx,SEL_ARG *tree) { ha_rows records; bool cpk_scan; uint key; DBUG_ENTER("check_quick_select"); param->is_ror_scan= FALSE; if (!tree) DBUG_RETURN(HA_POS_ERROR); // Can't use it param->max_key_part=0; param->range_count=0; key= param->real_keynr[idx]; if (tree->type == SEL_ARG::IMPOSSIBLE) DBUG_RETURN(0L); // Impossible select. return if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0) DBUG_RETURN(HA_POS_ERROR); // Don't use tree enum ha_key_alg key_alg= param->table->key_info[key].algorithm; if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF)) { /* Records are not ordered by rowid for other types of indexes. */ cpk_scan= FALSE; } else { /* Clustered PK scan is a special case, check_quick_keys doesn't recognize CPK scans as ROR scans (while actually any CPK scan is a ROR scan). */ cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) && param->table->file->primary_key_is_clustered()); param->is_ror_scan= !cpk_scan; } param->n_ranges= 0; records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0); if (records != HA_POS_ERROR) { param->table->quick_keys.set_bit(key); param->table->quick_rows[key]=records; param->table->quick_key_parts[key]=param->max_key_part+1; param->table->quick_n_ranges[key]= param->n_ranges; if (cpk_scan) param->is_ror_scan= TRUE; } if (param->table->file->index_flags(key, 0, TRUE) & HA_KEY_SCAN_NOT_ROR) param->is_ror_scan= FALSE; DBUG_PRINT("exit", ("Records: %lu", (ulong) records)); DBUG_RETURN(records); } /* Recursively calculate estimate of # rows that will be retrieved by key scan on key idx. SYNOPSIS check_quick_keys() param Parameter from test_quick select function. idx Number of key to use in PARAM::keys in list of used keys (param->real_keynr[idx] holds the key number in table) key_tree SEL_ARG tree being examined. min_key Buffer with partial min key value tuple min_key_flag max_key Buffer with partial max key value tuple max_key_flag NOTES The function does the recursive descent on the tree via SEL_ARG::left, SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates are calculated using records_in_range calls at the leaf nodes and then summed. param->min_key and param->max_key are used to hold prefixes of key value tuples. The side effects are: param->max_key_part is updated to hold the maximum number of key parts used in scan minus 1. param->range_count is incremented if the function finds a range that wasn't counted by the caller. param->is_ror_scan is cleared if the function detects that the key scan is not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror function for description of which key scans are ROR scans) */ static ha_rows check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree, char *min_key,uint min_key_flag, char *max_key, uint max_key_flag) { ha_rows records=0, tmp; uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length; char *tmp_min_key, *tmp_max_key; param->max_key_part=max(param->max_key_part,key_tree->part); if (key_tree->left != &null_element) { /* There are at least two intervals for current key part, i.e. condition was converted to something like (keyXpartY less/equals c1) OR (keyXpartY more/equals c2). This is not a ROR scan if the key is not Clustered Primary Key. */ param->is_ror_scan= FALSE; records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag, max_key,max_key_flag); if (records == HA_POS_ERROR) // Impossible return records; } tmp_min_key= min_key; tmp_max_key= max_key; key_tree->store(param->key[idx][key_tree->part].store_length, &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag); min_key_length= (uint) (tmp_min_key- param->min_key); max_key_length= (uint) (tmp_max_key- param->max_key); if (param->is_ror_scan) { /* If the index doesn't cover entire key, mark the scan as non-ROR scan. Actually we're cutting off some ROR scans here. */ uint16 fieldnr= param->table->key_info[param->real_keynr[idx]]. key_part[key_tree->part].fieldnr - 1; if (param->table->field[fieldnr]->key_length() != param->key[idx][key_tree->part].length) param->is_ror_scan= FALSE; } if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) { // const key as prefix if (min_key_length == max_key_length && !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) && !key_tree->min_flag && !key_tree->max_flag) { tmp=check_quick_keys(param,idx,key_tree->next_key_part, tmp_min_key, min_key_flag | key_tree->min_flag, tmp_max_key, max_key_flag | key_tree->max_flag); goto end; // Ugly, but efficient } else { /* The interval for current key part is not c1 <= keyXpartY <= c1 */ param->is_ror_scan= FALSE; } tmp_min_flag=key_tree->min_flag; tmp_max_flag=key_tree->max_flag; if (!tmp_min_flag) key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key, &tmp_min_flag); if (!tmp_max_flag) key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key, &tmp_max_flag); min_key_length= (uint) (tmp_min_key- param->min_key); max_key_length= (uint) (tmp_max_key- param->max_key); } else { tmp_min_flag=min_key_flag | key_tree->min_flag; tmp_max_flag=max_key_flag | key_tree->max_flag; } keynr=param->real_keynr[idx]; param->range_count++; if (!tmp_min_flag && ! tmp_max_flag && (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts && (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME && min_key_length == max_key_length && !memcmp(param->min_key,param->max_key,min_key_length)) { tmp=1; // Max one record param->n_ranges++; } else { if (param->is_ror_scan) { /* If we get here, the condition on the key was converted to form "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND somecond(keyXpart{key_tree->part})" Check if somecond is "keyXpart{key_tree->part} = const" and uncovered "tail" of KeyX parts is either empty or is identical to first members of clustered primary key. */ if (!(min_key_length == max_key_length && !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) && !key_tree->min_flag && !key_tree->max_flag && is_key_scan_ror(param, keynr, key_tree->part + 1))) param->is_ror_scan= FALSE; } param->n_ranges++; if (tmp_min_flag & GEOM_FLAG) { key_range min_range; min_range.key= (byte*) param->min_key; min_range.length= min_key_length; /* In this case tmp_min_flag contains the handler-read-function */ min_range.flag= (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG); tmp= param->table->file->records_in_range(keynr, &min_range, (key_range*) 0); } else { key_range min_range, max_range; min_range.key= (byte*) param->min_key; min_range.length= min_key_length; min_range.flag= (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY : HA_READ_KEY_EXACT); max_range.key= (byte*) param->max_key; max_range.length= max_key_length; max_range.flag= (tmp_max_flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY); tmp=param->table->file->records_in_range(keynr, (min_key_length ? &min_range : (key_range*) 0), (max_key_length ? &max_range : (key_range*) 0)); } } end: if (tmp == HA_POS_ERROR) // Impossible range return tmp; records+=tmp; if (key_tree->right != &null_element) { /* There are at least two intervals for current key part, i.e. condition was converted to something like (keyXpartY less/equals c1) OR (keyXpartY more/equals c2). This is not a ROR scan if the key is not Clustered Primary Key. */ param->is_ror_scan= FALSE; tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag, max_key,max_key_flag); if (tmp == HA_POS_ERROR) return tmp; records+=tmp; } return records; } /* Check if key scan on given index with equality conditions on first n key parts is a ROR scan. SYNOPSIS is_key_scan_ror() param Parameter from test_quick_select keynr Number of key in the table. The key must not be a clustered primary key. nparts Number of first key parts for which equality conditions are present. NOTES ROR (Rowid Ordered Retrieval) key scan is a key scan that produces ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function) An index scan is a ROR scan if it is done using a condition in form "key1_1=c_1 AND ... AND key1_n=c_n" (1) where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n]) and the table has a clustered Primary Key PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being identical to uncovered parts ot the key being scanned (2) Scans on HASH indexes are not ROR scans, any range scan on clustered primary key is ROR scan (3) Check (1) is made in check_quick_keys() Check (3) is made check_quick_select() Check (2) is made by this function. RETURN TRUE If the scan is ROR-scan FALSE otherwise */ static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts) { KEY *table_key= param->table->key_info + keynr; KEY_PART_INFO *key_part= table_key->key_part + nparts; KEY_PART_INFO *key_part_end= (table_key->key_part + table_key->key_parts); uint pk_number; if (key_part == key_part_end) return TRUE; pk_number= param->table->s->primary_key; if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY) return FALSE; KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part; KEY_PART_INFO *pk_part_end= pk_part + param->table->key_info[pk_number].key_parts; for (;(key_part!=key_part_end) && (pk_part != pk_part_end); ++key_part, ++pk_part) { if ((key_part->field != pk_part->field) || (key_part->length != pk_part->length)) return FALSE; } return (key_part == key_part_end); } /* Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key. SYNOPSIS get_quick_select() param idx Index of used key in param->key. key_tree SEL_ARG tree for the used key parent_alloc If not NULL, use it to allocate memory for quick select data. Otherwise use quick->alloc. NOTES The caller must call QUICK_SELECT::init for returned quick select CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be deallocated when the returned quick select is deleted. RETURN NULL on error otherwise created quick select */ QUICK_RANGE_SELECT * get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree, MEM_ROOT *parent_alloc) { QUICK_RANGE_SELECT *quick; DBUG_ENTER("get_quick_select"); if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL) quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table, param->real_keynr[idx], test(parent_alloc), parent_alloc); else quick=new QUICK_RANGE_SELECT(param->thd, param->table, param->real_keynr[idx], test(parent_alloc)); if (quick) { if (quick->error || get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0, param->max_key,0)) { delete quick; quick=0; } else { quick->key_parts=(KEY_PART*) memdup_root(parent_alloc? parent_alloc : &quick->alloc, (char*) param->key[idx], sizeof(KEY_PART)* param->table->key_info[param->real_keynr[idx]].key_parts); } } DBUG_RETURN(quick); } /* ** Fix this to get all possible sub_ranges */ bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key, SEL_ARG *key_tree,char *min_key,uint min_key_flag, char *max_key, uint max_key_flag) { QUICK_RANGE *range; uint flag; if (key_tree->left != &null_element) { if (get_quick_keys(param,quick,key,key_tree->left, min_key,min_key_flag, max_key, max_key_flag)) return 1; } char *tmp_min_key=min_key,*tmp_max_key=max_key; key_tree->store(key[key_tree->part].store_length, &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag); if (key_tree->next_key_part && key_tree->next_key_part->part == key_tree->part+1 && key_tree->next_key_part->type == SEL_ARG::KEY_RANGE) { // const key as prefix if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) || memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) || key_tree->min_flag || key_tree->max_flag)) { if (get_quick_keys(param,quick,key,key_tree->next_key_part, tmp_min_key, min_key_flag | key_tree->min_flag, tmp_max_key, max_key_flag | key_tree->max_flag)) return 1; goto end; // Ugly, but efficient } { uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag; if (!tmp_min_flag) key_tree->next_key_part->store_min_key(key, &tmp_min_key, &tmp_min_flag); if (!tmp_max_flag) key_tree->next_key_part->store_max_key(key, &tmp_max_key, &tmp_max_flag); flag=tmp_min_flag | tmp_max_flag; } } else { flag = (key_tree->min_flag & GEOM_FLAG) ? key_tree->min_flag : key_tree->min_flag | key_tree->max_flag; } /* Ensure that some part of min_key and max_key are used. If not, regard this as no lower/upper range */ if ((flag & GEOM_FLAG) == 0) { if (tmp_min_key != param->min_key) flag&= ~NO_MIN_RANGE; else flag|= NO_MIN_RANGE; if (tmp_max_key != param->max_key) flag&= ~NO_MAX_RANGE; else flag|= NO_MAX_RANGE; } if (flag == 0) { uint length= (uint) (tmp_min_key - param->min_key); if (length == (uint) (tmp_max_key - param->max_key) && !memcmp(param->min_key,param->max_key,length)) { KEY *table_key=quick->head->key_info+quick->index; flag=EQ_RANGE; if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME && key->part == table_key->key_parts-1) { if (!(table_key->flags & HA_NULL_PART_KEY) || !null_part_in_key(key, param->min_key, (uint) (tmp_min_key - param->min_key))) flag|= UNIQUE_RANGE; else flag|= NULL_RANGE; } } } /* Get range for retrieving rows in QUICK_SELECT::get_next */ if (!(range= new QUICK_RANGE((const char *) param->min_key, (uint) (tmp_min_key - param->min_key), (const char *) param->max_key, (uint) (tmp_max_key - param->max_key), flag))) return 1; // out of memory set_if_bigger(quick->max_used_key_length,range->min_length); set_if_bigger(quick->max_used_key_length,range->max_length); set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1); if (insert_dynamic(&quick->ranges, (gptr)&range)) return 1; end: if (key_tree->right != &null_element) return get_quick_keys(param,quick,key,key_tree->right, min_key,min_key_flag, max_key,max_key_flag); return 0; } /* Return 1 if there is only one range and this uses the whole primary key */ bool QUICK_RANGE_SELECT::unique_key_range() { if (ranges.elements == 1) { QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer); if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE) { KEY *key=head->key_info+index; return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME && key->key_length == tmp->min_length); } } return 0; } /* Returns TRUE if any part of the key is NULL */ static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length) { for (const char *end=key+length ; key < end; key+= key_part++->store_length) { if (key_part->null_bit && *key) return 1; } return 0; } bool QUICK_SELECT_I::check_if_keys_used(List *fields) { return check_if_key_used(head, index, *fields); } bool QUICK_INDEX_MERGE_SELECT::check_if_keys_used(List *fields) { QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (check_if_key_used(head, quick->index, *fields)) return 1; } return 0; } bool QUICK_ROR_INTERSECT_SELECT::check_if_keys_used(List *fields) { QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (check_if_key_used(head, quick->index, *fields)) return 1; } return 0; } bool QUICK_ROR_UNION_SELECT::check_if_keys_used(List *fields) { QUICK_SELECT_I *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (quick->check_if_keys_used(fields)) return 1; } return 0; } /* Create quick select from ref/ref_or_null scan. SYNOPSIS get_quick_select_for_ref() thd Thread handle table Table to access ref ref[_or_null] scan parameters records Estimate of number of records (needed only to construct quick select) NOTES This allocates things in a new memory root, as this may be called many times during a query. RETURN Quick select that retrieves the same rows as passed ref scan NULL on error. */ QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, TABLE_REF *ref, ha_rows records) { MEM_ROOT *old_root, *alloc; QUICK_RANGE_SELECT *quick; KEY *key_info = &table->key_info[ref->key]; KEY_PART *key_part; QUICK_RANGE *range; uint part; old_root= thd->mem_root; /* The following call may change thd->mem_root */ quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0); /* save mem_root set by QUICK_RANGE_SELECT constructor */ alloc= thd->mem_root; /* return back default mem_root (thd->mem_root) changed by QUICK_RANGE_SELECT constructor */ thd->mem_root= old_root; if (!quick) return 0; /* no ranges found */ if (quick->init()) goto err; quick->records= records; if (cp_buffer_from_ref(thd,ref) && thd->is_fatal_error || !(range= new(alloc) QUICK_RANGE())) goto err; // out of memory range->min_key=range->max_key=(char*) ref->key_buff; range->min_length=range->max_length=ref->key_length; range->flag= ((ref->key_length == key_info->key_length && (key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME) ? EQ_RANGE : 0); if (!(quick->key_parts=key_part=(KEY_PART *) alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts))) goto err; for (part=0 ; part < ref->key_parts ;part++,key_part++) { key_part->part=part; key_part->field= key_info->key_part[part].field; key_part->length= key_info->key_part[part].length; key_part->store_length= key_info->key_part[part].store_length; key_part->null_bit= key_info->key_part[part].null_bit; } if (insert_dynamic(&quick->ranges,(gptr)&range)) goto err; /* Add a NULL range if REF_OR_NULL optimization is used. For example: if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above and have ref->null_ref_key set. Will create a new NULL range here. */ if (ref->null_ref_key) { QUICK_RANGE *null_range; *ref->null_ref_key= 1; // Set null byte then create a range if (!(null_range= new (alloc) QUICK_RANGE((char*)ref->key_buff, ref->key_length, (char*)ref->key_buff, ref->key_length, EQ_RANGE))) goto err; *ref->null_ref_key= 0; // Clear null byte if (insert_dynamic(&quick->ranges,(gptr)&null_range)) goto err; } return quick; err: delete quick; return 0; } /* Perform key scans for all used indexes (except CPK), get rowids and merge them into an ordered non-recurrent sequence of rowids. The merge/duplicate removal is performed using Unique class. We put all rowids into Unique, get the sorted sequence and destroy the Unique. If table has a clustered primary key that covers all rows (TRUE for bdb and innodb currently) and one of the index_merge scans is a scan on PK, then rows that will be retrieved by PK scan are not put into Unique and primary key scan is not performed here, it is performed later separately. RETURN 0 OK other error */ int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge() { List_iterator_fast cur_quick_it(quick_selects); QUICK_RANGE_SELECT* cur_quick; int result; Unique *unique; DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique"); /* We're going to just read rowids. */ if (head->file->extra(HA_EXTRA_KEYREAD)) DBUG_RETURN(1); /* Make innodb retrieve all PK member fields, so * ha_innobase::position (which uses them) call works. * We can filter out rows that will be retrieved by clustered PK. (This also creates a deficiency - it is possible that we will retrieve parts of key that are not used by current query at all.) */ if (head->file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY)) DBUG_RETURN(1); cur_quick_it.rewind(); cur_quick= cur_quick_it++; DBUG_ASSERT(cur_quick != 0); /* We reuse the same instance of handler so we need to call both init and reset here. */ if (cur_quick->init() || cur_quick->reset()) DBUG_RETURN(1); unique= new Unique(refpos_order_cmp, (void *)head->file, head->file->ref_length, thd->variables.sortbuff_size); if (!unique) DBUG_RETURN(1); for (;;) { while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE) { cur_quick->range_end(); cur_quick= cur_quick_it++; if (!cur_quick) break; if (cur_quick->file->inited != handler::NONE) cur_quick->file->ha_index_end(); if (cur_quick->init() || cur_quick->reset()) DBUG_RETURN(1); } if (result) { if (result != HA_ERR_END_OF_FILE) { cur_quick->range_end(); DBUG_RETURN(result); } break; } if (thd->killed) DBUG_RETURN(1); /* skip row if it will be retrieved by clustered PK scan */ if (pk_quick_select && pk_quick_select->row_in_ranges()) continue; cur_quick->file->position(cur_quick->record); result= unique->unique_add((char*)cur_quick->file->ref); if (result) DBUG_RETURN(1); } /* ok, all row ids are in Unique */ result= unique->get(head); delete unique; doing_pk_scan= FALSE; /* start table scan */ init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1); /* index_merge currently doesn't support "using index" at all */ head->file->extra(HA_EXTRA_NO_KEYREAD); DBUG_RETURN(result); } /* Get next row for index_merge. NOTES The rows are read from 1. rowids stored in Unique. 2. QUICK_RANGE_SELECT with clustered primary key (if any). The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint. */ int QUICK_INDEX_MERGE_SELECT::get_next() { int result; DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next"); if (doing_pk_scan) DBUG_RETURN(pk_quick_select->get_next()); result= read_record.read_record(&read_record); if (result == -1) { result= HA_ERR_END_OF_FILE; end_read_record(&read_record); /* All rows from Unique have been retrieved, do a clustered PK scan */ if (pk_quick_select) { doing_pk_scan= TRUE; if ((result= pk_quick_select->init()) || (result= pk_quick_select->reset())) DBUG_RETURN(result); DBUG_RETURN(pk_quick_select->get_next()); } } DBUG_RETURN(result); } /* Retrieve next record. SYNOPSIS QUICK_ROR_INTERSECT_SELECT::get_next() NOTES Invariant on enter/exit: all intersected selects have retrieved all index records with rowid <= some_rowid_val and no intersected select has retrieved any index records with rowid > some_rowid_val. We start fresh and loop until we have retrieved the same rowid in each of the key scans or we got an error. If a Clustered PK scan is present, it is used only to check if row satisfies its condition (and never used for row retrieval). RETURN 0 - Ok other - Error code if any error occurred. */ int QUICK_ROR_INTERSECT_SELECT::get_next() { List_iterator_fast quick_it(quick_selects); QUICK_RANGE_SELECT* quick; int error, cmp; uint last_rowid_count=0; DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next"); /* Get a rowid for first quick and save it as a 'candidate' */ quick= quick_it++; if (cpk_quick) { do { error= quick->get_next(); }while (!error && !cpk_quick->row_in_ranges()); } else error= quick->get_next(); if (error) DBUG_RETURN(error); quick->file->position(quick->record); memcpy(last_rowid, quick->file->ref, head->file->ref_length); last_rowid_count= 1; while (last_rowid_count < quick_selects.elements) { if (!(quick= quick_it++)) { quick_it.rewind(); quick= quick_it++; } do { if ((error= quick->get_next())) DBUG_RETURN(error); quick->file->position(quick->record); cmp= head->file->cmp_ref(quick->file->ref, last_rowid); } while (cmp < 0); /* Ok, current select 'caught up' and returned ref >= cur_ref */ if (cmp > 0) { /* Found a row with ref > cur_ref. Make it a new 'candidate' */ if (cpk_quick) { while (!cpk_quick->row_in_ranges()) { if ((error= quick->get_next())) DBUG_RETURN(error); } } memcpy(last_rowid, quick->file->ref, head->file->ref_length); last_rowid_count= 1; } else { /* current 'candidate' row confirmed by this select */ last_rowid_count++; } } /* We get here iff we got the same row ref in all scans. */ if (need_to_fetch_row) error= head->file->rnd_pos(head->record[0], last_rowid); DBUG_RETURN(error); } /* Retrieve next record. SYNOPSIS QUICK_ROR_UNION_SELECT::get_next() NOTES Enter/exit invariant: For each quick select in the queue a {key,rowid} tuple has been retrieved but the corresponding row hasn't been passed to output. RETURN 0 - Ok other - Error code if any error occurred. */ int QUICK_ROR_UNION_SELECT::get_next() { int error, dup_row; QUICK_SELECT_I *quick; byte *tmp; DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next"); do { if (!queue.elements) DBUG_RETURN(HA_ERR_END_OF_FILE); /* Ok, we have a queue with >= 1 scans */ quick= (QUICK_SELECT_I*)queue_top(&queue); memcpy(cur_rowid, quick->last_rowid, rowid_length); /* put into queue rowid from the same stream as top element */ if ((error= quick->get_next())) { if (error != HA_ERR_END_OF_FILE) DBUG_RETURN(error); queue_remove(&queue, 0); } else { quick->save_last_pos(); queue_replaced(&queue); } if (!have_prev_rowid) { /* No rows have been returned yet */ dup_row= FALSE; have_prev_rowid= TRUE; } else dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid); }while (dup_row); tmp= cur_rowid; cur_rowid= prev_rowid; prev_rowid= tmp; error= head->file->rnd_pos(quick->record, prev_rowid); DBUG_RETURN(error); } int QUICK_RANGE_SELECT::reset() { uint mrange_bufsiz; byte *mrange_buff; DBUG_ENTER("QUICK_RANGE_SELECT::reset"); next=0; range= NULL; in_range= FALSE; cur_range= (QUICK_RANGE**) ranges.buffer; if (file->inited == handler::NONE && (error= file->ha_index_init(index))) DBUG_RETURN(error); /* Do not allocate the buffers twice. */ if (multi_range_length) { DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements)); DBUG_RETURN(0); } /* Allocate the ranges array. */ DBUG_ASSERT(ranges.elements); multi_range_length= min(multi_range_count, ranges.elements); DBUG_ASSERT(multi_range_length > 0); while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*) my_malloc(multi_range_length * sizeof(KEY_MULTI_RANGE), MYF(MY_WME)))) { /* Try to shrink the buffers until it is 0. */ multi_range_length/= 2; } if (! multi_range) { multi_range_length= 0; DBUG_RETURN(HA_ERR_OUT_OF_MEM); } /* Allocate the handler buffer if necessary. */ if (file->table_flags() & HA_NEED_READ_RANGE_BUFFER) { mrange_bufsiz= min(multi_range_bufsiz, (QUICK_SELECT_I::records + 1)* head->s->reclength); while (mrange_bufsiz && ! my_multi_malloc(MYF(MY_WME), &multi_range_buff, sizeof(*multi_range_buff), &mrange_buff, mrange_bufsiz, NullS)) { /* Try to shrink the buffers until both are 0. */ mrange_bufsiz/= 2; } if (! multi_range_buff) { my_free((char*) multi_range, MYF(0)); multi_range= NULL; multi_range_length= 0; DBUG_RETURN(HA_ERR_OUT_OF_MEM); } /* Initialize the handler buffer. */ multi_range_buff->buffer= mrange_buff; multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz; multi_range_buff->end_of_used_area= mrange_buff; } DBUG_RETURN(0); } /* Get next possible record using quick-struct. SYNOPSIS QUICK_RANGE_SELECT::get_next() NOTES Record is read into table->record[0] RETURN 0 Found row HA_ERR_END_OF_FILE No (more) rows in range # Error code */ int QUICK_RANGE_SELECT::get_next() { int result; KEY_MULTI_RANGE *mrange; key_range *start_key; key_range *end_key; DBUG_ENTER("QUICK_RANGE_SELECT::get_next"); DBUG_ASSERT(multi_range_length && multi_range && (cur_range >= (QUICK_RANGE**) ranges.buffer) && (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements)); for (;;) { if (in_range) { /* We did already start to read this key. */ result= file->read_multi_range_next(&mrange); if (result != HA_ERR_END_OF_FILE) { in_range= ! result; DBUG_RETURN(result); } } uint count= min(multi_range_length, ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer)); if (count == 0) { /* Ranges have already been used up before. None is left for read. */ in_range= FALSE; DBUG_RETURN(HA_ERR_END_OF_FILE); } KEY_MULTI_RANGE *mrange_slot, *mrange_end; for (mrange_slot= multi_range, mrange_end= mrange_slot+count; mrange_slot < mrange_end; mrange_slot++) { start_key= &mrange_slot->start_key; end_key= &mrange_slot->end_key; range= *(cur_range++); start_key->key= (const byte*) range->min_key; start_key->length= range->min_length; start_key->flag= ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY : (range->flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT); end_key->key= (const byte*) range->max_key; end_key->length= range->max_length; /* We use HA_READ_AFTER_KEY here because if we are reading on a key prefix. We want to find all keys with this prefix. */ end_key->flag= (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY); mrange_slot->range_flag= range->flag; } result= file->read_multi_range_first(&mrange, multi_range, count, sorted, multi_range_buff); if (result != HA_ERR_END_OF_FILE) { in_range= ! result; DBUG_RETURN(result); } in_range= FALSE; /* No matching rows; go to next set of ranges. */ } } /* Get the next record with a different prefix. SYNOPSIS QUICK_RANGE_SELECT::get_next_prefix() prefix_length length of cur_prefix cur_prefix prefix of a key to be searched for DESCRIPTION Each subsequent call to the method retrieves the first record that has a prefix with length prefix_length different from cur_prefix, such that the record with the new prefix is within the ranges described by this->ranges. The record found is stored into the buffer pointed by this->record. The method is useful for GROUP-BY queries with range conditions to discover the prefix of the next group that satisfies the range conditions. TODO This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both methods should be unified into a more general one to reduce code duplication. RETURN 0 on success HA_ERR_END_OF_FILE if returned all keys other if some error occurred */ int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length, byte *cur_prefix) { DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix"); for (;;) { int result; key_range start_key, end_key; if (range) { /* Read the next record in the same range with prefix after cur_prefix. */ DBUG_ASSERT(cur_prefix != 0); result= file->index_read(record, cur_prefix, prefix_length, HA_READ_AFTER_KEY); if (result || (file->compare_key(file->end_range) <= 0)) DBUG_RETURN(result); } uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer); if (count == 0) { /* Ranges have already been used up before. None is left for read. */ range= 0; DBUG_RETURN(HA_ERR_END_OF_FILE); } range= *(cur_range++); start_key.key= (const byte*) range->min_key; start_key.length= min(range->min_length, prefix_length); start_key.flag= ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY : (range->flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT); end_key.key= (const byte*) range->max_key; end_key.length= min(range->max_length, prefix_length); /* We use READ_AFTER_KEY here because if we are reading on a key prefix we want to find all keys with this prefix */ end_key.flag= (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY); result= file->read_range_first(range->min_length ? &start_key : 0, range->max_length ? &end_key : 0, test(range->flag & EQ_RANGE), sorted); if (range->flag == (UNIQUE_RANGE | EQ_RANGE)) range=0; // Stop searching if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); range=0; // No matching rows; go to next range } } /* Get next for geometrical indexes */ int QUICK_RANGE_SELECT_GEOM::get_next() { DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next"); for (;;) { int result; if (range) { // Already read through key result= file->index_next_same(record, (byte*) range->min_key, range->min_length); if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); } uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer); if (count == 0) { /* Ranges have already been used up before. None is left for read. */ range= 0; DBUG_RETURN(HA_ERR_END_OF_FILE); } range= *(cur_range++); result= file->index_read(record, (byte*) range->min_key, range->min_length, (ha_rkey_function)(range->flag ^ GEOM_FLAG)); if (result != HA_ERR_KEY_NOT_FOUND) DBUG_RETURN(result); range=0; // Not found, to next range } } /* Check if current row will be retrieved by this QUICK_RANGE_SELECT NOTES It is assumed that currently a scan is being done on another index which reads all necessary parts of the index that is scanned by this quick select. The implementation does a binary search on sorted array of disjoint ranges, without taking size of range into account. This function is used to filter out clustered PK scan rows in index_merge quick select. RETURN TRUE if current row will be retrieved by this quick select FALSE if not */ bool QUICK_RANGE_SELECT::row_in_ranges() { QUICK_RANGE *range; uint min= 0; uint max= ranges.elements - 1; uint mid= (max + min)/2; while (min != max) { if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid))) { /* current row value > mid->max */ min= mid + 1; } else max= mid; mid= (min + max) / 2; } range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid); return (!cmp_next(range) && !cmp_prev(range)); } /* This is a hack: we inherit from QUICK_SELECT so that we can use the get_next() interface, but we have to hold a pointer to the original QUICK_SELECT because its data are used all over the place. What should be done is to factor out the data that is needed into a base class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC) which handle the ranges and implement the get_next() function. But for now, this seems to work right at least. */ QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint used_key_parts) : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges) { QUICK_RANGE *r; QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer; QUICK_RANGE **last_range= pr + ranges.elements; for (; pr!=last_range; pr++) rev_ranges.push_front(*pr); /* Remove EQ_RANGE flag for keys that are not using the full key */ for (r = rev_it++; r; r = rev_it++) { if ((r->flag & EQ_RANGE) && head->key_info[index].key_length != r->max_length) r->flag&= ~EQ_RANGE; } rev_it.rewind(); q->dont_free=1; // Don't free shared mem delete q; } int QUICK_SELECT_DESC::get_next() { DBUG_ENTER("QUICK_SELECT_DESC::get_next"); /* The max key is handled as follows: * - if there is NO_MAX_RANGE, start at the end and move backwards * - if it is an EQ_RANGE, which means that max key covers the entire * key, go directly to the key and read through it (sorting backwards is * same as sorting forwards) * - if it is NEAR_MAX, go to the key or next, step back once, and * move backwards * - otherwise (not NEAR_MAX == include the key), go after the key, * step back once, and move backwards */ for (;;) { int result; if (range) { // Already read through key result = ((range->flag & EQ_RANGE) ? file->index_next_same(record, (byte*) range->min_key, range->min_length) : file->index_prev(record)); if (!result) { if (cmp_prev(*rev_it.ref()) == 0) DBUG_RETURN(0); } else if (result != HA_ERR_END_OF_FILE) DBUG_RETURN(result); } if (!(range=rev_it++)) DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used if (range->flag & NO_MAX_RANGE) // Read last record { int local_error; if ((local_error=file->index_last(record))) DBUG_RETURN(local_error); // Empty table if (cmp_prev(range) == 0) DBUG_RETURN(0); range=0; // No matching records; go to next range continue; } if (range->flag & EQ_RANGE) { result = file->index_read(record, (byte*) range->max_key, range->max_length, HA_READ_KEY_EXACT); } else { DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range)); result=file->index_read(record, (byte*) range->max_key, range->max_length, ((range->flag & NEAR_MAX) ? HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV)); } if (result) { if (result != HA_ERR_KEY_NOT_FOUND) DBUG_RETURN(result); range=0; // Not found, to next range continue; } if (cmp_prev(range) == 0) { if (range->flag == (UNIQUE_RANGE | EQ_RANGE)) range = 0; // Stop searching DBUG_RETURN(0); // Found key is in range } range = 0; // To next range } } /* Compare if found key is over max-value Returns 0 if key <= range->max_key */ int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg) { if (range_arg->flag & NO_MAX_RANGE) return 0; /* key can't be to large */ KEY_PART *key_part=key_parts; uint store_length; for (char *key=range_arg->max_key, *end=key+range_arg->max_length; key < end; key+= store_length, key_part++) { int cmp; store_length= key_part->store_length; if (key_part->null_bit) { if (*key) { if (!key_part->field->is_null()) return 1; continue; } else if (key_part->field->is_null()) return 0; key++; // Skip null byte store_length--; } if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0) return 0; if (cmp > 0) return 1; } return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match } /* Returns 0 if found key is inside range (found key >= range->min_key). */ int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg) { int cmp; if (range_arg->flag & NO_MIN_RANGE) return 0; /* key can't be to small */ cmp= key_cmp(key_part_info, (byte*) range_arg->min_key, range_arg->min_length); if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN)) return 0; return 1; // outside of range } /* * TRUE if this range will require using HA_READ_AFTER_KEY See comment in get_next() about this */ bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg) { return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) || !(range_arg->flag & EQ_RANGE) || head->key_info[index].key_length != range_arg->max_length) ? 1 : 0; } /* TRUE if we are reading over a key that may have a NULL value */ #ifdef NOT_USED bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg, uint used_key_parts) { uint offset, end; KEY_PART *key_part = key_parts, *key_part_end= key_part+used_key_parts; for (offset= 0, end = min(range_arg->min_length, range_arg->max_length) ; offset < end && key_part != key_part_end ; offset+= key_part++->store_length) { if (!memcmp((char*) range_arg->min_key+offset, (char*) range_arg->max_key+offset, key_part->store_length)) continue; if (key_part->null_bit && range_arg->min_key[offset]) return 1; // min_key is null and max_key isn't // Range doesn't cover NULL. This is ok if there is no more null parts break; } /* If the next min_range is > NULL, then we can use this, even if it's a NULL key Example: SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC; */ if (key_part != key_part_end && key_part->null_bit) { if (offset >= range_arg->min_length || range_arg->min_key[offset]) return 1; // Could be null key_part++; } /* If any of the key parts used in the ORDER BY could be NULL, we can't use the key to sort the data. */ for (; key_part != key_part_end ; key_part++) if (key_part->null_bit) return 1; // Covers null part return 0; } #endif void QUICK_RANGE_SELECT::add_info_string(String *str) { KEY *key_info= head->key_info + index; str->append(key_info->name); } void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str) { QUICK_RANGE_SELECT *quick; bool first= TRUE; List_iterator_fast it(quick_selects); str->append(STRING_WITH_LEN("sort_union(")); while ((quick= it++)) { if (!first) str->append(','); else first= FALSE; quick->add_info_string(str); } if (pk_quick_select) { str->append(','); pk_quick_select->add_info_string(str); } str->append(')'); } void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str) { bool first= TRUE; QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); str->append(STRING_WITH_LEN("intersect(")); while ((quick= it++)) { KEY *key_info= head->key_info + quick->index; if (!first) str->append(','); else first= FALSE; str->append(key_info->name); } if (cpk_quick) { KEY *key_info= head->key_info + cpk_quick->index; str->append(','); str->append(key_info->name); } str->append(')'); } void QUICK_ROR_UNION_SELECT::add_info_string(String *str) { bool first= TRUE; QUICK_SELECT_I *quick; List_iterator_fast it(quick_selects); str->append(STRING_WITH_LEN("union(")); while ((quick= it++)) { if (!first) str->append(','); else first= FALSE; quick->add_info_string(str); } str->append(')'); } void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { char buf[64]; uint length; KEY *key_info= head->key_info + index; key_names->append(key_info->name); length= longlong2str(max_used_key_length, buf, 10) - buf; used_lengths->append(buf, length); } void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { char buf[64]; uint length; bool first= TRUE; QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (first) first= FALSE; else { key_names->append(','); used_lengths->append(','); } KEY *key_info= head->key_info + quick->index; key_names->append(key_info->name); length= longlong2str(quick->max_used_key_length, buf, 10) - buf; used_lengths->append(buf, length); } if (pk_quick_select) { KEY *key_info= head->key_info + pk_quick_select->index; key_names->append(','); key_names->append(key_info->name); length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf; used_lengths->append(','); used_lengths->append(buf, length); } } void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { char buf[64]; uint length; bool first= TRUE; QUICK_RANGE_SELECT *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { KEY *key_info= head->key_info + quick->index; if (first) first= FALSE; else { key_names->append(','); used_lengths->append(','); } key_names->append(key_info->name); length= longlong2str(quick->max_used_key_length, buf, 10) - buf; used_lengths->append(buf, length); } if (cpk_quick) { KEY *key_info= head->key_info + cpk_quick->index; key_names->append(','); key_names->append(key_info->name); length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf; used_lengths->append(','); used_lengths->append(buf, length); } } void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { bool first= TRUE; QUICK_SELECT_I *quick; List_iterator_fast it(quick_selects); while ((quick= it++)) { if (first) first= FALSE; else { used_lengths->append(','); key_names->append(','); } quick->add_keys_and_lengths(key_names, used_lengths); } } /******************************************************************************* * Implementation of QUICK_GROUP_MIN_MAX_SELECT *******************************************************************************/ static inline uint get_field_keypart(KEY *index, Field *field); static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param, uint *param_idx); static bool get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree, KEY_PART_INFO *first_non_group_part, KEY_PART_INFO *min_max_arg_part, KEY_PART_INFO *last_part, THD *thd, byte *key_infix, uint *key_infix_len, KEY_PART_INFO **first_non_infix_part); static bool check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item, Field::imagetype image_type); static void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts, uint group_key_parts, SEL_TREE *range_tree, SEL_ARG *index_tree, ha_rows quick_prefix_records, bool have_min, bool have_max, double *read_cost, ha_rows *records); /* Test if this access method is applicable to a GROUP query with MIN/MAX functions, and if so, construct a new TRP object. SYNOPSIS get_best_group_min_max() param Parameter from test_quick_select sel_tree Range tree generated by get_mm_tree DESCRIPTION Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT. Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the following conditions: A) Table T has at least one compound index I of the form: I = B) Query conditions: B0. Q is over a single table T. B1. The attributes referenced by Q are a subset of the attributes of I. B2. All attributes QA in Q can be divided into 3 overlapping groups: - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is referenced by any number of MIN and/or MAX functions if present. - WA = {W_1, ..., W_p} - from the WHERE clause - GA = - from the GROUP BY clause (if any) = SA - if Q is a DISTINCT query (based on the equivalence of DISTINCT and GROUP queries. - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in GROUP BY and not referenced by MIN/MAX functions. with the following properties specified below. B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not applicable. SA1. There is at most one attribute in SA referenced by any number of MIN and/or MAX functions which, which if present, is denoted as C. SA2. The position of the C attribute in the index is after the last A_k. SA3. The attribute C can be referenced in the WHERE clause only in predicates of the forms: - (C {< | <= | > | >= | =} const) - (const {< | <= | > | >= | =} C) - (C between const_i and const_j) - C IS NULL - C IS NOT NULL - C != const SA4. If Q has a GROUP BY clause, there are no other aggregate functions except MIN and MAX. For queries with DISTINCT, aggregate functions are allowed. SA5. The select list in DISTINCT queries should not contain expressions. GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if G_i = A_j => i = j. GA2. If Q has a DISTINCT clause, then there is a permutation of SA that forms a prefix of I. This permutation is used as the GROUP clause when the DISTINCT query is converted to a GROUP query. GA3. The attributes in GA may participate in arbitrary predicates, divided into two groups: - RNG(G_1,...,G_q ; where q <= k) is a range condition over the attributes of a prefix of GA - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset of GA. Since P is applied to only GROUP attributes it filters some groups, and thus can be applied after the grouping. GA4. There are no expressions among G_i, just direct column references. NGA1.If in the index I there is a gap between the last GROUP attribute G_k, and the MIN/MAX attribute C, then NGA must consist of exactly the index attributes that constitute the gap. As a result there is a permutation of NGA that coincides with the gap in the index . NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of equality conditions for all NG_i of the form (NG_i = const) or (const = NG_i), such that each NG_i is referenced in exactly one conjunct. Informally, the predicates provide constants to fill the gap in the index. WA1. There are no other attributes in the WHERE clause except the ones referenced in predicates RNG, PA, PC, EQ defined above. Therefore WA is subset of (GA union NGA union C) for GA,NGA,C that pass the above tests. By transitivity then it also follows that each WA_i participates in the index I (if this was already tested for GA, NGA and C). C) Overall query form: SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)]) FROM T WHERE [RNG(A_1,...,A_p ; where p <= k)] [AND EQ(B_1,...,B_m)] [AND PC(C)] [AND PA(A_i1,...,A_iq)] GROUP BY A_1,...,A_k [HAVING PH(A_1, ..., B_1,..., C)] where EXPR(...) is an arbitrary expression over some or all SELECT fields, or: SELECT DISTINCT A_i1,...,A_ik FROM T WHERE [RNG(A_1,...,A_p ; where p <= k)] [AND PA(A_i1,...,A_iq)]; NOTES If the current query satisfies the conditions above, and if (mem_root! = NULL), then the function constructs and returns a new TRP object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT. If (mem_root == NULL), then the function only tests whether the current query satisfies the conditions above, and, if so, sets is_applicable = TRUE. Queries with DISTINCT for which index access can be used are transformed into equivalent group-by queries of the form: SELECT A_1,...,A_k FROM T WHERE [RNG(A_1,...,A_p ; where p <= k)] [AND PA(A_i1,...,A_iq)] GROUP BY A_1,...,A_k; The group-by list is a permutation of the select attributes, according to their order in the index. TODO - What happens if the query groups by the MIN/MAX field, and there is no other field as in: "select min(a) from t1 group by a" ? - We assume that the general correctness of the GROUP-BY query was checked before this point. Is this correct, or do we have to check it completely? - Lift the limitation in condition (B3), that is, make this access method applicable to ROLLUP queries. RETURN If mem_root != NULL - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for the query - NULL o/w. If mem_root == NULL - NULL */ static TRP_GROUP_MIN_MAX * get_best_group_min_max(PARAM *param, SEL_TREE *tree) { THD *thd= param->thd; JOIN *join= thd->lex->select_lex.join; TABLE *table= param->table; bool have_min= FALSE; /* TRUE if there is a MIN function. */ bool have_max= FALSE; /* TRUE if there is a MAX function. */ Item_field *min_max_arg_item= NULL;/* The argument of all MIN/MAX functions.*/ KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */ uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */ KEY *index_info= NULL; /* The index chosen for data access. */ uint index= 0; /* The id of the chosen index. */ uint group_key_parts= 0; /* Number of index key parts in the group prefix. */ uint used_key_parts= 0; /* Number of index key parts used for access. */ byte key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/ uint key_infix_len= 0; /* Length of key_infix. */ TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */ uint key_part_nr; ORDER *tmp_group; Item *item; Item_field *item_field; DBUG_ENTER("get_best_group_min_max"); /* Perform few 'cheap' tests whether this access method is applicable. */ if (!join || (thd->lex->sql_command != SQLCOM_SELECT)) DBUG_RETURN(NULL); /* This is not a select statement. */ if ((join->tables != 1) || /* The query must reference one table. */ ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */ (!join->select_distinct)) || (thd->lex->select_lex.olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */ DBUG_RETURN(NULL); if (table->s->keys == 0) /* There are no indexes to use. */ DBUG_RETURN(NULL); /* Analyze the query in more detail. */ List_iterator select_items_it(join->fields_list); /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/ if (join->make_sum_func_list(join->all_fields, join->fields_list, 1)) DBUG_RETURN(NULL); if (join->sum_funcs[0]) { Item_sum *min_max_item; Item_sum **func_ptr= join->sum_funcs; while ((min_max_item= *(func_ptr++))) { if (min_max_item->sum_func() == Item_sum::MIN_FUNC) have_min= TRUE; else if (min_max_item->sum_func() == Item_sum::MAX_FUNC) have_max= TRUE; else DBUG_RETURN(NULL); Item *expr= min_max_item->args[0]; /* The argument of MIN/MAX. */ if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */ { if (! min_max_arg_item) min_max_arg_item= (Item_field*) expr; else if (! min_max_arg_item->eq(expr, 1)) DBUG_RETURN(NULL); } else DBUG_RETURN(NULL); } } /* Check (SA5). */ if (join->select_distinct) { while ((item= select_items_it++)) { if (item->type() != Item::FIELD_ITEM) DBUG_RETURN(NULL); } } /* Check (GA4) - that there are no expressions among the group attributes. */ for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next) { if ((*tmp_group->item)->type() != Item::FIELD_ITEM) DBUG_RETURN(NULL); } /* Check that table has at least one compound index such that the conditions (GA1,GA2) are all TRUE. If there is more than one such index, select the first one. Here we set the variables: group_prefix_len and index_info. */ KEY *cur_index_info= table->key_info; KEY *cur_index_info_end= cur_index_info + table->s->keys; KEY_PART_INFO *cur_part= NULL; KEY_PART_INFO *end_part; /* Last part for loops. */ /* Last index part. */ KEY_PART_INFO *last_part= NULL; KEY_PART_INFO *first_non_group_part= NULL; KEY_PART_INFO *first_non_infix_part= NULL; uint key_infix_parts= 0; uint cur_group_key_parts= 0; uint cur_group_prefix_len= 0; /* Cost-related variables for the best index so far. */ double best_read_cost= DBL_MAX; ha_rows best_records= 0; SEL_ARG *best_index_tree= NULL; ha_rows best_quick_prefix_records= 0; uint best_param_idx= 0; double cur_read_cost= DBL_MAX; ha_rows cur_records; SEL_ARG *cur_index_tree= NULL; ha_rows cur_quick_prefix_records= 0; uint cur_param_idx=MAX_KEY; key_map cur_used_key_parts; uint pk= param->table->s->primary_key; for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ; cur_index_info++, cur_index++) { /* Check (B1) - if current index is covering. */ if (!table->used_keys.is_set(cur_index)) goto next_index; /* If the current storage manager is such that it appends the primary key to each index, then the above condition is insufficient to check if the index is covering. In such cases it may happen that some fields are covered by the PK index, but not by the current index. Since we can't use the concatenation of both indexes for index lookup, such an index does not qualify as covering in our case. If this is the case, below we check that all query fields are indeed covered by 'cur_index'. */ if (pk < MAX_KEY && cur_index != pk && (table->file->table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX)) { /* For each table field */ for (uint i= 0; i < table->s->fields; i++) { Field *cur_field= table->field[i]; /* If the field is used in the current query, check that the field is covered by some keypart of the current index. */ if (thd->query_id == cur_field->query_id) { KEY_PART_INFO *key_part= cur_index_info->key_part; KEY_PART_INFO *key_part_end= key_part + cur_index_info->key_parts; for (;;) { if (key_part->field == cur_field) break; if (++key_part == key_part_end) goto next_index; // Field was not part of key } } } } /* Check (GA1) for GROUP BY queries. */ if (join->group_list) { cur_part= cur_index_info->key_part; end_part= cur_part + cur_index_info->key_parts; /* Iterate in parallel over the GROUP list and the index parts. */ for (tmp_group= join->group_list; tmp_group && (cur_part != end_part); tmp_group= tmp_group->next, cur_part++) { /* TODO: tmp_group::item is an array of Item, is it OK to consider only the first Item? If so, then why? What is the array for? */ /* Above we already checked that all group items are fields. */ DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM); Item_field *group_field= (Item_field *) (*tmp_group->item); if (group_field->field->eq(cur_part->field)) { cur_group_prefix_len+= cur_part->store_length; ++cur_group_key_parts; } else goto next_index; } } /* Check (GA2) if this is a DISTINCT query. If GA2, then Store a new ORDER object in group_fields_array at the position of the key part of item_field->field. Thus we get the ORDER objects for each field ordered as the corresponding key parts. Later group_fields_array of ORDER objects is used to convert the query to a GROUP query. */ else if (join->select_distinct) { select_items_it.rewind(); cur_used_key_parts.clear_all(); uint max_key_part= 0; while ((item= select_items_it++)) { item_field= (Item_field*) item; /* (SA5) already checked above. */ /* Find the order of the key part in the index. */ key_part_nr= get_field_keypart(cur_index_info, item_field->field); /* Check if this attribute was already present in the select list. If it was present, then its corresponding key part was alredy used. */ if (cur_used_key_parts.is_set(key_part_nr)) continue; if (key_part_nr < 1 || key_part_nr > join->fields_list.elements) goto next_index; cur_part= cur_index_info->key_part + key_part_nr - 1; cur_group_prefix_len+= cur_part->store_length; cur_used_key_parts.set_bit(key_part_nr); ++cur_group_key_parts; max_key_part= max(max_key_part,key_part_nr); } /* Check that used key parts forms a prefix of the index. To check this we compare bits in all_parts and cur_parts. all_parts have all bits set from 0 to (max_key_part-1). cur_parts have bits set for only used keyparts. */ ulonglong all_parts, cur_parts; all_parts= (1<> 1; if (all_parts != cur_parts) goto next_index; } else DBUG_ASSERT(FALSE); /* Check (SA2). */ if (min_max_arg_item) { key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field); if (key_part_nr <= cur_group_key_parts) goto next_index; min_max_arg_part= cur_index_info->key_part + key_part_nr - 1; } /* Check (NGA1, NGA2) and extract a sequence of constants to be used as part of all search keys. */ /* If there is MIN/MAX, each keypart between the last group part and the MIN/MAX part must participate in one equality with constants, and all keyparts after the MIN/MAX part must not be referenced in the query. If there is no MIN/MAX, the keyparts after the last group part can be referenced only in equalities with constants, and the referenced keyparts must form a sequence without any gaps that starts immediately after the last group keypart. */ last_part= cur_index_info->key_part + cur_index_info->key_parts; first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ? cur_index_info->key_part + cur_group_key_parts : NULL; first_non_infix_part= min_max_arg_part ? (min_max_arg_part < last_part) ? min_max_arg_part + 1 : NULL : NULL; if (first_non_group_part && (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0))) { if (tree) { uint dummy; SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param, &dummy); if (!get_constant_key_infix(cur_index_info, index_range_tree, first_non_group_part, min_max_arg_part, last_part, thd, key_infix, &key_infix_len, &first_non_infix_part)) goto next_index; } else if (min_max_arg_part && (min_max_arg_part - first_non_group_part > 0)) { /* There is a gap but no range tree, thus no predicates at all for the non-group keyparts. */ goto next_index; } else if (first_non_group_part && join->conds) { /* If there is no MIN/MAX function in the query, but some index key part is referenced in the WHERE clause, then this index cannot be used because the WHERE condition over the keypart's field cannot be 'pushed' to the index (because there is no range 'tree'), and the WHERE clause must be evaluated before GROUP BY/DISTINCT. */ /* Store the first and last keyparts that need to be analyzed into one array that can be passed as parameter. */ KEY_PART_INFO *key_part_range[2]; key_part_range[0]= first_non_group_part; key_part_range[1]= last_part; /* Check if cur_part is referenced in the WHERE clause. */ if (join->conds->walk(&Item::find_item_in_field_list_processor, (byte*) key_part_range)) goto next_index; } } /* Test (WA1) partially - that no other keypart after the last infix part is referenced in the query. */ if (first_non_infix_part) { for (cur_part= first_non_infix_part; cur_part != last_part; cur_part++) { if (cur_part->field->query_id == thd->query_id) goto next_index; } } /* If we got to this point, cur_index_info passes the test. */ key_infix_parts= key_infix_len ? (first_non_infix_part - first_non_group_part) : 0; used_key_parts= cur_group_key_parts + key_infix_parts; /* Compute the cost of using this index. */ if (tree) { /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */ cur_index_tree= get_index_range_tree(cur_index, tree, param, &cur_param_idx); /* Check if this range tree can be used for prefix retrieval. */ cur_quick_prefix_records= check_quick_select(param, cur_param_idx, cur_index_tree); } cost_group_min_max(table, cur_index_info, used_key_parts, cur_group_key_parts, tree, cur_index_tree, cur_quick_prefix_records, have_min, have_max, &cur_read_cost, &cur_records); /* If cur_read_cost is lower than best_read_cost use cur_index. Do not compare doubles directly because they may have different representations (64 vs. 80 bits). */ if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost)) { DBUG_ASSERT(tree != 0 || cur_param_idx == MAX_KEY); index_info= cur_index_info; index= cur_index; best_read_cost= cur_read_cost; best_records= cur_records; best_index_tree= cur_index_tree; best_quick_prefix_records= cur_quick_prefix_records; best_param_idx= cur_param_idx; group_key_parts= cur_group_key_parts; group_prefix_len= cur_group_prefix_len; } next_index: cur_group_key_parts= 0; cur_group_prefix_len= 0; } if (!index_info) /* No usable index found. */ DBUG_RETURN(NULL); /* Check (SA3) for the where clause. */ if (join->conds && min_max_arg_item && !check_group_min_max_predicates(join->conds, min_max_arg_item, (index_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW)) DBUG_RETURN(NULL); /* The query passes all tests, so construct a new TRP object. */ read_plan= new (param->mem_root) TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part, group_prefix_len, used_key_parts, group_key_parts, index_info, index, key_infix_len, (key_infix_len > 0) ? key_infix : NULL, tree, best_index_tree, best_param_idx, best_quick_prefix_records); if (read_plan) { if (tree && read_plan->quick_prefix_records == 0) DBUG_RETURN(NULL); read_plan->read_cost= best_read_cost; read_plan->records= best_records; DBUG_PRINT("info", ("Returning group min/max plan: cost: %g, records: %lu", read_plan->read_cost, (ulong) read_plan->records)); } DBUG_RETURN(read_plan); } /* Check that the MIN/MAX attribute participates only in range predicates with constants. SYNOPSIS check_group_min_max_predicates() cond tree (or subtree) describing all or part of the WHERE clause being analyzed min_max_arg_item the field referenced by the MIN/MAX function(s) min_max_arg_part the keypart of the MIN/MAX argument if any DESCRIPTION The function walks recursively over the cond tree representing a WHERE clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX aggregate function, it is referenced only by one of the following predicates: {=, !=, <, <=, >, >=, between, is null, is not null}. RETURN TRUE if cond passes the test FALSE o/w */ static bool check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item, Field::imagetype image_type) { DBUG_ENTER("check_group_min_max_predicates"); DBUG_ASSERT(cond && min_max_arg_item); Item::Type cond_type= cond->type(); if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */ { DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name())); List_iterator_fast li(*((Item_cond*) cond)->argument_list()); Item *and_or_arg; while ((and_or_arg= li++)) { if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item, image_type)) DBUG_RETURN(FALSE); } DBUG_RETURN(TRUE); } /* TODO: This is a very crude fix to handle sub-selects in the WHERE clause (Item_subselect objects). With the test below we rule out from the optimization all queries with subselects in the WHERE clause. What has to be done, is that here we should analyze whether the subselect references the MIN/MAX argument field, and disallow the optimization only if this is so. */ if (cond_type == Item::SUBSELECT_ITEM) DBUG_RETURN(FALSE); /* We presume that at this point there are no other Items than functions. */ DBUG_ASSERT(cond_type == Item::FUNC_ITEM); /* Test if cond references only group-by or non-group fields. */ Item_func *pred= (Item_func*) cond; Item **arguments= pred->arguments(); Item *cur_arg; DBUG_PRINT("info", ("Analyzing: %s", pred->func_name())); for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++) { cur_arg= arguments[arg_idx]; DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name())); if (cur_arg->type() == Item::FIELD_ITEM) { if (min_max_arg_item->eq(cur_arg, 1)) { /* If pred references the MIN/MAX argument, check whether pred is a range condition that compares the MIN/MAX argument with a constant. */ Item_func::Functype pred_type= pred->functype(); if (pred_type != Item_func::EQUAL_FUNC && pred_type != Item_func::LT_FUNC && pred_type != Item_func::LE_FUNC && pred_type != Item_func::GT_FUNC && pred_type != Item_func::GE_FUNC && pred_type != Item_func::BETWEEN && pred_type != Item_func::ISNULL_FUNC && pred_type != Item_func::ISNOTNULL_FUNC && pred_type != Item_func::EQ_FUNC && pred_type != Item_func::NE_FUNC) DBUG_RETURN(FALSE); /* Check that pred compares min_max_arg_item with a constant. */ Item *args[3]; bzero(args, 3 * sizeof(Item*)); bool inv; /* Test if this is a comparison of a field and a constant. */ if (!simple_pred(pred, args, &inv)) DBUG_RETURN(FALSE); /* Check for compatible string comparisons - similar to get_mm_leaf. */ if (args[0] && args[1] && !args[2] && // this is a binary function min_max_arg_item->result_type() == STRING_RESULT && /* Don't use an index when comparing strings of different collations. */ ((args[1]->result_type() == STRING_RESULT && image_type == Field::itRAW && ((Field_str*) min_max_arg_item->field)->charset() != pred->compare_collation()) || /* We can't always use indexes when comparing a string index to a number. */ (args[1]->result_type() != STRING_RESULT && min_max_arg_item->field->cmp_type() != args[1]->result_type()))) DBUG_RETURN(FALSE); } } else if (cur_arg->type() == Item::FUNC_ITEM) { if (!check_group_min_max_predicates(cur_arg, min_max_arg_item, image_type)) DBUG_RETURN(FALSE); } else if (cur_arg->const_item()) { DBUG_RETURN(TRUE); } else DBUG_RETURN(FALSE); } DBUG_RETURN(TRUE); } /* Extract a sequence of constants from a conjunction of equality predicates. SYNOPSIS get_constant_key_infix() index_info [in] Descriptor of the chosen index. index_range_tree [in] Range tree for the chosen index first_non_group_part [in] First index part after group attribute parts min_max_arg_part [in] The keypart of the MIN/MAX argument if any last_part [in] Last keypart of the index thd [in] Current thread key_infix [out] Infix of constants to be used for index lookup key_infix_len [out] Lenghth of the infix first_non_infix_part [out] The first keypart after the infix (if any) DESCRIPTION Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely, for each keypart field NGF_i not in GROUP-BY, check that there is a constant equality predicate among conds with the form (NGF_i = const_ci) or (const_ci = NGF_i). Thus all the NGF_i attributes must fill the 'gap' between the last group-by attribute and the MIN/MAX attribute in the index (if present). If these conditions hold, copy each constant from its corresponding predicate into key_infix, in the order its NG_i attribute appears in the index, and update key_infix_len with the total length of the key parts in key_infix. RETURN TRUE if the index passes the test FALSE o/w */ static bool get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree, KEY_PART_INFO *first_non_group_part, KEY_PART_INFO *min_max_arg_part, KEY_PART_INFO *last_part, THD *thd, byte *key_infix, uint *key_infix_len, KEY_PART_INFO **first_non_infix_part) { SEL_ARG *cur_range; KEY_PART_INFO *cur_part; /* End part for the first loop below. */ KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part; *key_infix_len= 0; byte *key_ptr= key_infix; for (cur_part= first_non_group_part; cur_part != end_part; cur_part++) { /* Find the range tree for the current keypart. We assume that index_range_tree points to the leftmost keypart in the index. */ for (cur_range= index_range_tree; cur_range; cur_range= cur_range->next_key_part) { if (cur_range->field->eq(cur_part->field)) break; } if (!cur_range) { if (min_max_arg_part) return FALSE; /* The current keypart has no range predicates at all. */ else { *first_non_infix_part= cur_part; return TRUE; } } /* Check that the current range tree is a single point interval. */ if (cur_range->prev || cur_range->next) return FALSE; /* This is not the only range predicate for the field. */ if ((cur_range->min_flag & NO_MIN_RANGE) || (cur_range->max_flag & NO_MAX_RANGE) || (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX)) return FALSE; uint field_length= cur_part->store_length; if ((cur_range->maybe_null && cur_range->min_value[0] && cur_range->max_value[0]) || (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0)) { /* cur_range specifies 'IS NULL' or an equality condition. */ memcpy(key_ptr, cur_range->min_value, field_length); key_ptr+= field_length; *key_infix_len+= field_length; } else return FALSE; } if (!min_max_arg_part && (cur_part == last_part)) *first_non_infix_part= last_part; return TRUE; } /* Find the key part referenced by a field. SYNOPSIS get_field_keypart() index descriptor of an index field field that possibly references some key part in index NOTES The return value can be used to get a KEY_PART_INFO pointer by part= index->key_part + get_field_keypart(...) - 1; RETURN Positive number which is the consecutive number of the key part, or 0 if field does not reference any index field. */ static inline uint get_field_keypart(KEY *index, Field *field) { KEY_PART_INFO *part, *end; for (part= index->key_part, end= part + index->key_parts; part < end; part++) { if (field->eq(part->field)) return part - index->key_part + 1; } return 0; } /* Find the SEL_ARG sub-tree that corresponds to the chosen index. SYNOPSIS get_index_range_tree() index [in] The ID of the index being looked for range_tree[in] Tree of ranges being searched param [in] PARAM from SQL_SELECT::test_quick_select param_idx [out] Index in the array PARAM::key that corresponds to 'index' DESCRIPTION A SEL_TREE contains range trees for all usable indexes. This procedure finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are ordered in the same way as the members of PARAM::key, thus we first find the corresponding index in the array PARAM::key. This index is returned through the variable param_idx, to be used later as argument of check_quick_select(). RETURN Pointer to the SEL_ARG subtree that corresponds to index. */ SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param, uint *param_idx) { uint idx= 0; /* Index nr in param->key_parts */ while (idx < param->keys) { if (index == param->real_keynr[idx]) break; idx++; } *param_idx= idx; return(range_tree->keys[idx]); } /* Compute the cost of a quick_group_min_max_select for a particular index. SYNOPSIS cost_group_min_max() table [in] The table being accessed index_info [in] The index used to access the table used_key_parts [in] Number of key parts used to access the index group_key_parts [in] Number of index key parts in the group prefix range_tree [in] Tree of ranges for all indexes index_tree [in] The range tree for the current index quick_prefix_records [in] Number of records retrieved by the internally used quick range select if any have_min [in] True if there is a MIN function have_max [in] True if there is a MAX function read_cost [out] The cost to retrieve rows via this quick select records [out] The number of rows retrieved DESCRIPTION This method computes the access cost of a TRP_GROUP_MIN_MAX instance and the number of rows returned. It updates this->read_cost and this->records. NOTES The cost computation distinguishes several cases: 1) No equality predicates over non-group attributes (thus no key_infix). If groups are bigger than blocks on the average, then we assume that it is very unlikely that block ends are aligned with group ends, thus even if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX keys, except for the first MIN and the last MAX keys, will be in the same block. If groups are smaller than blocks, then we are going to read all blocks. 2) There are equality predicates over non-group attributes. In this case the group prefix is extended by additional constants, and as a result the min/max values are inside sub-groups of the original groups. The number of blocks that will be read depends on whether the ends of these sub-groups will be contained in the same or in different blocks. We compute the probability for the two ends of a subgroup to be in two different blocks as the ratio of: - the number of positions of the left-end of a subgroup inside a group, such that the right end of the subgroup is past the end of the buffer containing the left-end, and - the total number of possible positions for the left-end of the subgroup, which is the number of keys in the containing group. We assume it is very unlikely that two ends of subsequent subgroups are in the same block. 3) The are range predicates over the group attributes. Then some groups may be filtered by the range predicates. We use the selectivity of the range predicates to decide how many groups will be filtered. TODO - Take into account the optional range predicates over the MIN/MAX argument. - Check if we have a PK index and we use all cols - then each key is a group, and it will be better to use an index scan. RETURN None */ void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts, uint group_key_parts, SEL_TREE *range_tree, SEL_ARG *index_tree, ha_rows quick_prefix_records, bool have_min, bool have_max, double *read_cost, ha_rows *records) { uint table_records; uint num_groups; uint num_blocks; uint keys_per_block; uint keys_per_group; uint keys_per_subgroup; /* Average number of keys in sub-groups */ /* formed by a key infix. */ double p_overlap; /* Probability that a sub-group overlaps two blocks. */ double quick_prefix_selectivity; double io_cost; double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */ DBUG_ENTER("cost_group_min_max"); table_records= table->file->records; keys_per_block= (table->file->block_size / 2 / (index_info->key_length + table->file->ref_length) + 1); num_blocks= (table_records / keys_per_block) + 1; /* Compute the number of keys in a group. */ keys_per_group= index_info->rec_per_key[group_key_parts - 1]; if (keys_per_group == 0) /* If there is no statistics try to guess */ /* each group contains 10% of all records */ keys_per_group= (table_records / 10) + 1; num_groups= (table_records / keys_per_group) + 1; /* Apply the selectivity of the quick select for group prefixes. */ if (range_tree && (quick_prefix_records != HA_POS_ERROR)) { quick_prefix_selectivity= (double) quick_prefix_records / (double) table_records; num_groups= (uint) rint(num_groups * quick_prefix_selectivity); set_if_bigger(num_groups, 1); } if (used_key_parts > group_key_parts) { /* Compute the probability that two ends of a subgroup are inside different blocks. */ keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1]; if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */ p_overlap= 1.0; /* a block, it will overlap at least two blocks. */ else { double blocks_per_group= (double) num_blocks / (double) num_groups; p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group; p_overlap= min(p_overlap, 1.0); } io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks); } else io_cost= (keys_per_group > keys_per_block) ? (have_min && have_max) ? (double) (num_groups + 1) : (double) num_groups : (double) num_blocks; /* TODO: If there is no WHERE clause and no other expressions, there should be no CPU cost. We leave it here to make this cost comparable to that of index scan as computed in SQL_SELECT::test_quick_select(). */ cpu_cost= (double) num_groups / TIME_FOR_COMPARE; *read_cost= io_cost + cpu_cost; *records= num_groups; DBUG_PRINT("info", ("table rows=%u, keys/block=%u, keys/group=%u, result rows=%u, blocks=%u", table_records, keys_per_block, keys_per_group, *records, num_blocks)); DBUG_VOID_RETURN; } /* Construct a new quick select object for queries with group by with min/max. SYNOPSIS TRP_GROUP_MIN_MAX::make_quick() param Parameter from test_quick_select retrieve_full_rows ignored parent_alloc Memory pool to use, if any. NOTES Make_quick ignores the retrieve_full_rows parameter because QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans. The other parameter are ignored as well because all necessary data to create the QUICK object is computed at this TRP creation time. RETURN New QUICK_GROUP_MIN_MAX_SELECT object if successfully created, NULL o/w. */ QUICK_SELECT_I * TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows, MEM_ROOT *parent_alloc) { QUICK_GROUP_MIN_MAX_SELECT *quick; DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick"); quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table, param->thd->lex->select_lex.join, have_min, have_max, min_max_arg_part, group_prefix_len, used_key_parts, index_info, index, read_cost, records, key_infix_len, key_infix, parent_alloc); if (!quick) DBUG_RETURN(NULL); if (quick->init()) { delete quick; DBUG_RETURN(NULL); } if (range_tree) { DBUG_ASSERT(quick_prefix_records > 0); if (quick_prefix_records == HA_POS_ERROR) quick->quick_prefix_select= NULL; /* Can't construct a quick select. */ else /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */ quick->quick_prefix_select= get_quick_select(param, param_idx, index_tree, &quick->alloc); /* Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX attribute, and create an array of QUICK_RANGES to be used by the new quick select. */ if (min_max_arg_part) { SEL_ARG *min_max_range= index_tree; while (min_max_range) /* Find the tree for the MIN/MAX key part. */ { if (min_max_range->field->eq(min_max_arg_part->field)) break; min_max_range= min_max_range->next_key_part; } /* Scroll to the leftmost interval for the MIN/MAX argument. */ while (min_max_range && min_max_range->prev) min_max_range= min_max_range->prev; /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */ while (min_max_range) { if (quick->add_range(min_max_range)) { delete quick; quick= NULL; DBUG_RETURN(NULL); } min_max_range= min_max_range->next; } } } else quick->quick_prefix_select= NULL; quick->update_key_stat(); DBUG_RETURN(quick); } /* Construct new quick select for group queries with min/max. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT() table The table being accessed join Descriptor of the current query have_min TRUE if the query selects a MIN function have_max TRUE if the query selects a MAX function min_max_arg_part The only argument field of all MIN/MAX functions group_prefix_len Length of all key parts in the group prefix prefix_key_parts All key parts in the group prefix index_info The index chosen for data access use_index The id of index_info read_cost Cost of this access method records Number of records returned key_infix_len Length of the key infix appended to the group prefix key_infix Infix of constants from equality predicates parent_alloc Memory pool for this and quick_prefix_select data RETURN None */ QUICK_GROUP_MIN_MAX_SELECT:: QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg, bool have_max_arg, KEY_PART_INFO *min_max_arg_part_arg, uint group_prefix_len_arg, uint used_key_parts_arg, KEY *index_info_arg, uint use_index, double read_cost_arg, ha_rows records_arg, uint key_infix_len_arg, byte *key_infix_arg, MEM_ROOT *parent_alloc) :join(join_arg), index_info(index_info_arg), group_prefix_len(group_prefix_len_arg), have_min(have_min_arg), have_max(have_max_arg), seen_first_key(FALSE), min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg), key_infix_len(key_infix_len_arg), min_functions_it(NULL), max_functions_it(NULL) { head= table; file= head->file; index= use_index; record= head->record[0]; tmp_record= head->record[1]; read_time= read_cost_arg; records= records_arg; used_key_parts= used_key_parts_arg; real_prefix_len= group_prefix_len + key_infix_len; group_prefix= NULL; min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0; /* We can't have parent_alloc set as the init function can't handle this case yet. */ DBUG_ASSERT(!parent_alloc); if (!parent_alloc) { init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0); join->thd->mem_root= &alloc; } else bzero(&alloc, sizeof(MEM_ROOT)); // ensure that it's not used } /* Do post-constructor initialization. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::init() DESCRIPTION The method performs initialization that cannot be done in the constructor such as memory allocations that may fail. It allocates memory for the group prefix and inifix buffers, and for the lists of MIN/MAX item to be updated during execution. RETURN 0 OK other Error code */ int QUICK_GROUP_MIN_MAX_SELECT::init() { if (group_prefix) /* Already initialized. */ return 0; if (!(last_prefix= (byte*) alloc_root(&alloc, group_prefix_len))) return 1; /* We may use group_prefix to store keys with all select fields, so allocate enough space for it. */ if (!(group_prefix= (byte*) alloc_root(&alloc, real_prefix_len + min_max_arg_len))) return 1; if (key_infix_len > 0) { /* The memory location pointed to by key_infix will be deleted soon, so allocate a new buffer and copy the key_infix into it. */ byte *tmp_key_infix= (byte*) alloc_root(&alloc, key_infix_len); if (!tmp_key_infix) return 1; memcpy(tmp_key_infix, this->key_infix, key_infix_len); this->key_infix= tmp_key_infix; } if (min_max_arg_part) { if (my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16)) return 1; if (have_min) { if (!(min_functions= new List)) return 1; } else min_functions= NULL; if (have_max) { if (!(max_functions= new List)) return 1; } else max_functions= NULL; Item_sum *min_max_item; Item_sum **func_ptr= join->sum_funcs; while ((min_max_item= *(func_ptr++))) { if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC)) min_functions->push_back(min_max_item); else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC)) max_functions->push_back(min_max_item); } if (have_min) { if (!(min_functions_it= new List_iterator(*min_functions))) return 1; } if (have_max) { if (!(max_functions_it= new List_iterator(*max_functions))) return 1; } } else min_max_ranges.elements= 0; return 0; } QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT() { DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT"); if (file->inited != handler::NONE) file->ha_index_end(); if (min_max_arg_part) delete_dynamic(&min_max_ranges); free_root(&alloc,MYF(0)); delete min_functions_it; delete max_functions_it; delete quick_prefix_select; DBUG_VOID_RETURN; } /* Eventually create and add a new quick range object. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::add_range() sel_range Range object from which a NOTES Construct a new QUICK_RANGE object from a SEL_ARG object, and add it to the array min_max_ranges. If sel_arg is an infinite range, e.g. (x < 5 or x > 4), then skip it and do not construct a quick range. RETURN FALSE on success TRUE otherwise */ bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range) { QUICK_RANGE *range; uint range_flag= sel_range->min_flag | sel_range->max_flag; /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */ if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE)) return FALSE; if (!(sel_range->min_flag & NO_MIN_RANGE) && !(sel_range->max_flag & NO_MAX_RANGE)) { if (sel_range->maybe_null && sel_range->min_value[0] && sel_range->max_value[0]) range_flag|= NULL_RANGE; /* IS NULL condition */ else if (memcmp(sel_range->min_value, sel_range->max_value, min_max_arg_len) == 0) range_flag|= EQ_RANGE; /* equality condition */ } range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len, sel_range->max_value, min_max_arg_len, range_flag); if (!range) return TRUE; if (insert_dynamic(&min_max_ranges, (gptr)&range)) return TRUE; return FALSE; } /* Determine the total number and length of the keys that will be used for index lookup. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::update_key_stat() DESCRIPTION The total length of the keys used for index lookup depends on whether there are any predicates referencing the min/max argument, and/or if the min/max argument field can be NULL. This function does an optimistic analysis whether the search key might be extended by a constant for the min/max keypart. It is 'optimistic' because during actual execution it may happen that a particular range is skipped, and then a shorter key will be used. However this is data dependent and can't be easily estimated here. RETURN None */ void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat() { max_used_key_length= real_prefix_len; if (min_max_ranges.elements > 0) { QUICK_RANGE *cur_range; if (have_min) { /* Check if the right-most range has a lower boundary. */ get_dynamic(&min_max_ranges, (gptr)&cur_range, min_max_ranges.elements - 1); if (!(cur_range->flag & NO_MIN_RANGE)) { max_used_key_length+= min_max_arg_len; used_key_parts++; return; } } if (have_max) { /* Check if the left-most range has an upper boundary. */ get_dynamic(&min_max_ranges, (gptr)&cur_range, 0); if (!(cur_range->flag & NO_MAX_RANGE)) { max_used_key_length+= min_max_arg_len; used_key_parts++; return; } } } else if (have_min && min_max_arg_part && min_max_arg_part->field->real_maybe_null()) { /* If a MIN/MAX argument value is NULL, we can quickly determine that we're in the beginning of the next group, because NULLs are always < any other value. This allows us to quickly determine the end of the current group and jump to the next group (see next_min()) and thus effectively increases the usable key length. */ max_used_key_length+= min_max_arg_len; used_key_parts++; } } /* Initialize a quick group min/max select for key retrieval. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::reset() DESCRIPTION Initialize the index chosen for access and find and store the prefix of the last group. The method is expensive since it performs disk access. RETURN 0 OK other Error code */ int QUICK_GROUP_MIN_MAX_SELECT::reset(void) { int result; DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset"); file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */ result= file->ha_index_init(index); result= file->index_last(record); if (result == HA_ERR_END_OF_FILE) DBUG_RETURN(0); if (result) DBUG_RETURN(result); if (quick_prefix_select && quick_prefix_select->reset()) DBUG_RETURN(1); /* Save the prefix of the last group. */ key_copy(last_prefix, record, index_info, group_prefix_len); DBUG_RETURN(0); } /* Get the next key containing the MIN and/or MAX key for the next group. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::get_next() DESCRIPTION The method finds the next subsequent group of records that satisfies the query conditions and finds the keys that contain the MIN/MAX values for the key part referenced by the MIN/MAX function(s). Once a group and its MIN/MAX values are found, store these values in the Item_sum objects for the MIN/MAX functions. The rest of the values in the result row are stored in the Item_field::result_field of each select field. If the query does not contain MIN and/or MAX functions, then the function only finds the group prefix, which is a query answer itself. NOTES If both MIN and MAX are computed, then we use the fact that if there is no MIN key, there can't be a MAX key as well, so we can skip looking for a MAX key in this case. RETURN 0 on success HA_ERR_END_OF_FILE if returned all keys other if some error occurred */ int QUICK_GROUP_MIN_MAX_SELECT::get_next() { int min_res= 0; int max_res= 0; #ifdef HPUX11 /* volatile is required by a bug in the HP compiler due to which the last test of result fails. */ volatile int result; #else int result; #endif int is_last_prefix; DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next"); /* Loop until a group is found that satisfies all query conditions or the last group is reached. */ do { result= next_prefix(); /* Check if this is the last group prefix. Notice that at this point this->record contains the current prefix in record format. */ is_last_prefix= key_cmp(index_info->key_part, last_prefix, group_prefix_len); DBUG_ASSERT(is_last_prefix <= 0); if (result == HA_ERR_KEY_NOT_FOUND) continue; else if (result) break; if (have_min) { min_res= next_min(); if (min_res == 0) update_min_result(); } /* If there is no MIN in the group, there is no MAX either. */ if ((have_max && !have_min) || (have_max && have_min && (min_res == 0))) { max_res= next_max(); if (max_res == 0) update_max_result(); /* If a MIN was found, a MAX must have been found as well. */ DBUG_ASSERT((have_max && !have_min) || (have_max && have_min && (max_res == 0))); } /* If this is just a GROUP BY or DISTINCT without MIN or MAX and there are equality predicates for the key parts after the group, find the first sub-group with the extended prefix. */ if (!have_min && !have_max && key_infix_len > 0) result= file->index_read(record, group_prefix, real_prefix_len, HA_READ_KEY_EXACT); result= have_min ? min_res : have_max ? max_res : result; } while (result == HA_ERR_KEY_NOT_FOUND && is_last_prefix != 0); if (result == 0) /* Partially mimic the behavior of end_select_send. Copy the field data from Item_field::field into Item_field::result_field of each non-aggregated field (the group fields, and optionally other fields in non-ANSI SQL mode). */ copy_fields(&join->tmp_table_param); else if (result == HA_ERR_KEY_NOT_FOUND) result= HA_ERR_END_OF_FILE; DBUG_RETURN(result); } /* Retrieve the minimal key in the next group. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::next_min() DESCRIPTION Find the minimal key within this group such that the key satisfies the query conditions and NULL semantics. The found key is loaded into this->record. IMPLEMENTATION Depending on the values of min_max_ranges.elements, key_infix_len, and whether there is a NULL in the MIN field, this function may directly return without any data access. In this case we use the key loaded into this->record by the call to this->next_prefix() just before this call. RETURN 0 on success HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions. other if some error occurred */ int QUICK_GROUP_MIN_MAX_SELECT::next_min() { int result= 0; DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min"); /* Find the MIN key using the eventually extended group prefix. */ if (min_max_ranges.elements > 0) { if ((result= next_min_in_range())) DBUG_RETURN(result); } else { /* Apply the constant equality conditions to the non-group select fields */ if (key_infix_len > 0) { if ((result= file->index_read(record, group_prefix, real_prefix_len, HA_READ_KEY_EXACT))) DBUG_RETURN(result); } /* If the min/max argument field is NULL, skip subsequent rows in the same group with NULL in it. Notice that: - if the first row in a group doesn't have a NULL in the field, no row in the same group has (because NULL < any other value), - min_max_arg_part->field->ptr points to some place in 'record'. */ if (min_max_arg_part && min_max_arg_part->field->is_null()) { /* Find the first subsequent record without NULL in the MIN/MAX field. */ key_copy(tmp_record, record, index_info, 0); result= file->index_read(record, tmp_record, real_prefix_len + min_max_arg_len, HA_READ_AFTER_KEY); /* Check if the new record belongs to the current group by comparing its prefix with the group's prefix. If it is from the next group, then the whole group has NULLs in the MIN/MAX field, so use the first record in the group as a result. TODO: It is possible to reuse this new record as the result candidate for the next call to next_min(), and to save one lookup in the next call. For this add a new member 'this->next_group_prefix'. */ if (!result) { if (key_cmp(index_info->key_part, group_prefix, real_prefix_len)) key_restore(record, tmp_record, index_info, 0); } else if (result == HA_ERR_KEY_NOT_FOUND) result= 0; /* There is a result in any case. */ } } /* If the MIN attribute is non-nullable, this->record already contains the MIN key in the group, so just return. */ DBUG_RETURN(result); } /* Retrieve the maximal key in the next group. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::next_max() DESCRIPTION Lookup the maximal key of the group, and store it into this->record. RETURN 0 on success HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions. other if some error occurred */ int QUICK_GROUP_MIN_MAX_SELECT::next_max() { int result; DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max"); /* Get the last key in the (possibly extended) group. */ if (min_max_ranges.elements > 0) result= next_max_in_range(); else result= file->index_read(record, group_prefix, real_prefix_len, HA_READ_PREFIX_LAST); DBUG_RETURN(result); } /* Determine the prefix of the next group. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::next_prefix() DESCRIPTION Determine the prefix of the next group that satisfies the query conditions. If there is a range condition referencing the group attributes, use a QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the condition. If there is a key infix of constants, append this infix immediately after the group attributes. The possibly extended prefix is stored in this->group_prefix. The first key of the found group is stored in this->record, on which relies this->next_min(). RETURN 0 on success HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix HA_ERR_END_OF_FILE if there are no more keys other if some error occurred */ int QUICK_GROUP_MIN_MAX_SELECT::next_prefix() { int result; DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix"); if (quick_prefix_select) { byte *cur_prefix= seen_first_key ? group_prefix : NULL; if ((result= quick_prefix_select->get_next_prefix(group_prefix_len, cur_prefix))) DBUG_RETURN(result); seen_first_key= TRUE; } else { if (!seen_first_key) { result= file->index_first(record); if (result) DBUG_RETURN(result); seen_first_key= TRUE; } else { /* Load the first key in this group into record. */ result= file->index_read(record, group_prefix, group_prefix_len, HA_READ_AFTER_KEY); if (result) DBUG_RETURN(result); } } /* Save the prefix of this group for subsequent calls. */ key_copy(group_prefix, record, index_info, group_prefix_len); /* Append key_infix to group_prefix. */ if (key_infix_len > 0) memcpy(group_prefix + group_prefix_len, key_infix, key_infix_len); DBUG_RETURN(0); } /* Find the minimal key in a group that satisfies some range conditions for the min/max argument field. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range() DESCRIPTION Given the sequence of ranges min_max_ranges, find the minimal key that is in the left-most possible range. If there is no such key, then the current group does not have a MIN key that satisfies the WHERE clause. If a key is found, its value is stored in this->record. RETURN 0 on success HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of the ranges other if some error */ int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range() { ha_rkey_function find_flag; uint search_prefix_len; QUICK_RANGE *cur_range; bool found_null= FALSE; int result= HA_ERR_KEY_NOT_FOUND; DBUG_ASSERT(min_max_ranges.elements > 0); for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++) { /* Search from the left-most range to the right. */ get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx); /* If the current value for the min/max argument is bigger than the right boundary of cur_range, there is no need to check this range. */ if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) && (key_cmp(min_max_arg_part, (const byte*) cur_range->max_key, min_max_arg_len) == 1)) continue; if (cur_range->flag & NO_MIN_RANGE) { find_flag= HA_READ_KEY_EXACT; search_prefix_len= real_prefix_len; } else { /* Extend the search key with the lower boundary for this range. */ memcpy(group_prefix + real_prefix_len, cur_range->min_key, cur_range->min_length); search_prefix_len= real_prefix_len + min_max_arg_len; find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ? HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT; } result= file->index_read(record, group_prefix, search_prefix_len, find_flag); if ((result == HA_ERR_KEY_NOT_FOUND) && (cur_range->flag & (EQ_RANGE | NULL_RANGE))) continue; /* Check the next range. */ else if (result) { /* In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE, HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this range, it can't succeed for any other subsequent range. */ break; } /* A key was found. */ if (cur_range->flag & EQ_RANGE) break; /* No need to perform the checks below for equal keys. */ if (cur_range->flag & NULL_RANGE) { /* Remember this key, and continue looking for a non-NULL key that satisfies some other condition. */ memcpy(tmp_record, record, head->s->rec_buff_length); found_null= TRUE; continue; } /* Check if record belongs to the current group. */ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len)) { result = HA_ERR_KEY_NOT_FOUND; continue; } /* If there is an upper limit, check if the found key is in the range. */ if ( !(cur_range->flag & NO_MAX_RANGE) ) { /* Compose the MAX key for the range. */ byte *max_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len); memcpy(max_key, group_prefix, real_prefix_len); memcpy(max_key + real_prefix_len, cur_range->max_key, cur_range->max_length); /* Compare the found key with max_key. */ int cmp_res= key_cmp(index_info->key_part, max_key, real_prefix_len + min_max_arg_len); if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) || (cmp_res <= 0))) { result = HA_ERR_KEY_NOT_FOUND; continue; } } /* If we got to this point, the current key qualifies as MIN. */ DBUG_ASSERT(result == 0); break; } /* If there was a key with NULL in the MIN/MAX field, and there was no other key without NULL from the same group that satisfies some other condition, then use the key with the NULL. */ if (found_null && result) { memcpy(record, tmp_record, head->s->rec_buff_length); result= 0; } return result; } /* Find the maximal key in a group that satisfies some range conditions for the min/max argument field. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range() DESCRIPTION Given the sequence of ranges min_max_ranges, find the maximal key that is in the right-most possible range. If there is no such key, then the current group does not have a MAX key that satisfies the WHERE clause. If a key is found, its value is stored in this->record. RETURN 0 on success HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of the ranges other if some error */ int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range() { ha_rkey_function find_flag; uint search_prefix_len; QUICK_RANGE *cur_range; int result; DBUG_ASSERT(min_max_ranges.elements > 0); for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--) { /* Search from the right-most range to the left. */ get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx - 1); /* If the current value for the min/max argument is smaller than the left boundary of cur_range, there is no need to check this range. */ if (range_idx != min_max_ranges.elements && !(cur_range->flag & NO_MIN_RANGE) && (key_cmp(min_max_arg_part, (const byte*) cur_range->min_key, min_max_arg_len) == -1)) continue; if (cur_range->flag & NO_MAX_RANGE) { find_flag= HA_READ_PREFIX_LAST; search_prefix_len= real_prefix_len; } else { /* Extend the search key with the upper boundary for this range. */ memcpy(group_prefix + real_prefix_len, cur_range->max_key, cur_range->max_length); search_prefix_len= real_prefix_len + min_max_arg_len; find_flag= (cur_range->flag & EQ_RANGE) ? HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ? HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV; } result= file->index_read(record, group_prefix, search_prefix_len, find_flag); if ((result == HA_ERR_KEY_NOT_FOUND) && (cur_range->flag & EQ_RANGE)) continue; /* Check the next range. */ if (result) { /* In no key was found with this upper bound, there certainly are no keys in the ranges to the left. */ return result; } /* A key was found. */ if (cur_range->flag & EQ_RANGE) return 0; /* No need to perform the checks below for equal keys. */ /* Check if record belongs to the current group. */ if (key_cmp(index_info->key_part, group_prefix, real_prefix_len)) continue; // Row not found /* If there is a lower limit, check if the found key is in the range. */ if ( !(cur_range->flag & NO_MIN_RANGE) ) { /* Compose the MIN key for the range. */ byte *min_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len); memcpy(min_key, group_prefix, real_prefix_len); memcpy(min_key + real_prefix_len, cur_range->min_key, cur_range->min_length); /* Compare the found key with min_key. */ int cmp_res= key_cmp(index_info->key_part, min_key, real_prefix_len + min_max_arg_len); if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) || (cmp_res >= 0))) continue; } /* If we got to this point, the current key qualifies as MAX. */ return result; } return HA_ERR_KEY_NOT_FOUND; } /* Update all MIN function results with the newly found value. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::update_min_result() DESCRIPTION The method iterates through all MIN functions and updates the result value of each function by calling Item_sum::reset(), which in turn picks the new result value from this->head->record[0], previously updated by next_min(). The updated value is stored in a member variable of each of the Item_sum objects, depending on the value type. IMPLEMENTATION The update must be done separately for MIN and MAX, immediately after next_min() was called and before next_max() is called, because both MIN and MAX take their result value from the same buffer this->head->record[0] (i.e. this->record). RETURN None */ void QUICK_GROUP_MIN_MAX_SELECT::update_min_result() { Item_sum *min_func; min_functions_it->rewind(); while ((min_func= (*min_functions_it)++)) min_func->reset(); } /* Update all MAX function results with the newly found value. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::update_max_result() DESCRIPTION The method iterates through all MAX functions and updates the result value of each function by calling Item_sum::reset(), which in turn picks the new result value from this->head->record[0], previously updated by next_max(). The updated value is stored in a member variable of each of the Item_sum objects, depending on the value type. IMPLEMENTATION The update must be done separately for MIN and MAX, immediately after next_max() was called, because both MIN and MAX take their result value from the same buffer this->head->record[0] (i.e. this->record). RETURN None */ void QUICK_GROUP_MIN_MAX_SELECT::update_max_result() { Item_sum *max_func; max_functions_it->rewind(); while ((max_func= (*max_functions_it)++)) max_func->reset(); } /* Append comma-separated list of keys this quick select uses to key_names; append comma-separated list of corresponding used lengths to used_lengths. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths() key_names [out] Names of used indexes used_lengths [out] Corresponding lengths of the index names DESCRIPTION This method is used by select_describe to extract the names of the indexes used by a quick select. */ void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names, String *used_lengths) { char buf[64]; uint length; key_names->append(index_info->name); length= longlong2str(max_used_key_length, buf, 10) - buf; used_lengths->append(buf, length); } #ifndef DBUG_OFF static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map, const char *msg) { SEL_ARG **key,**end; int idx; char buff[1024]; DBUG_ENTER("print_sel_tree"); if (! _db_on_) DBUG_VOID_RETURN; String tmp(buff,sizeof(buff),&my_charset_bin); tmp.length(0); for (idx= 0,key=tree->keys, end=key+param->keys ; key != end ; key++,idx++) { if (tree_map->is_set(idx)) { uint keynr= param->real_keynr[idx]; if (tmp.length()) tmp.append(','); tmp.append(param->table->key_info[keynr].name); } } if (!tmp.length()) tmp.append(STRING_WITH_LEN("(empty)")); DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr())); DBUG_VOID_RETURN; } static void print_ror_scans_arr(TABLE *table, const char *msg, struct st_ror_scan_info **start, struct st_ror_scan_info **end) { DBUG_ENTER("print_ror_scans"); if (! _db_on_) DBUG_VOID_RETURN; char buff[1024]; String tmp(buff,sizeof(buff),&my_charset_bin); tmp.length(0); for (;start != end; start++) { if (tmp.length()) tmp.append(','); tmp.append(table->key_info[(*start)->keynr].name); } if (!tmp.length()) tmp.append(STRING_WITH_LEN("(empty)")); DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr())); DBUG_VOID_RETURN; } /***************************************************************************** ** Print a quick range for debugging ** TODO: ** This should be changed to use a String to store each row instead ** of locking the DEBUG stream ! *****************************************************************************/ static void print_key(KEY_PART *key_part,const char *key,uint used_length) { char buff[1024]; const char *key_end= key+used_length; String tmp(buff,sizeof(buff),&my_charset_bin); uint store_length; for (; key < key_end; key+=store_length, key_part++) { Field *field= key_part->field; store_length= key_part->store_length; if (field->real_maybe_null()) { if (*key) { fwrite("NULL",sizeof(char),4,DBUG_FILE); continue; } key++; // Skip null byte store_length--; } field->set_key_image((char*) key, key_part->length); if (field->type() == MYSQL_TYPE_BIT) (void) field->val_int_as_str(&tmp, 1); else field->val_str(&tmp); fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE); if (key+store_length < key_end) fputc('/',DBUG_FILE); } } static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg) { char buf[MAX_KEY/8+1]; DBUG_ENTER("print_quick"); if (! _db_on_ || !quick) DBUG_VOID_RETURN; DBUG_LOCK_FILE; quick->dbug_dump(0, TRUE); fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf)); DBUG_UNLOCK_FILE; DBUG_VOID_RETURN; } static void print_rowid(byte* val, int len) { byte *pb; DBUG_LOCK_FILE; fputc('\"', DBUG_FILE); for (pb= val; pb!= val + len; ++pb) fprintf(DBUG_FILE, "%c", *pb); fprintf(DBUG_FILE, "\", hex: "); for (pb= val; pb!= val + len; ++pb) fprintf(DBUG_FILE, "%x ", *pb); fputc('\n', DBUG_FILE); DBUG_UNLOCK_FILE; } void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose) { fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n", indent, "", head->key_info[index].name, max_used_key_length); if (verbose) { QUICK_RANGE *range; QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer; QUICK_RANGE **last_range= pr + ranges.elements; for (; pr!=last_range; ++pr) { fprintf(DBUG_FILE, "%*s", indent + 2, ""); range= *pr; if (!(range->flag & NO_MIN_RANGE)) { print_key(key_parts,range->min_key,range->min_length); if (range->flag & NEAR_MIN) fputs(" < ",DBUG_FILE); else fputs(" <= ",DBUG_FILE); } fputs("X",DBUG_FILE); if (!(range->flag & NO_MAX_RANGE)) { if (range->flag & NEAR_MAX) fputs(" < ",DBUG_FILE); else fputs(" <= ",DBUG_FILE); print_key(key_parts,range->max_key,range->max_length); } fputs("\n",DBUG_FILE); } } } void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose) { List_iterator_fast it(quick_selects); QUICK_RANGE_SELECT *quick; fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, ""); fprintf(DBUG_FILE, "%*smerged scans {\n", indent, ""); while ((quick= it++)) quick->dbug_dump(indent+2, verbose); if (pk_quick_select) { fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, ""); pk_quick_select->dbug_dump(indent+2, verbose); } fprintf(DBUG_FILE, "%*s}\n", indent, ""); } void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose) { List_iterator_fast it(quick_selects); QUICK_RANGE_SELECT *quick; fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n", indent, "", need_to_fetch_row? "":"non-"); fprintf(DBUG_FILE, "%*smerged scans {\n", indent, ""); while ((quick= it++)) quick->dbug_dump(indent+2, verbose); if (cpk_quick) { fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, ""); cpk_quick->dbug_dump(indent+2, verbose); } fprintf(DBUG_FILE, "%*s}\n", indent, ""); } void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose) { List_iterator_fast it(quick_selects); QUICK_SELECT_I *quick; fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, ""); fprintf(DBUG_FILE, "%*smerged scans {\n", indent, ""); while ((quick= it++)) quick->dbug_dump(indent+2, verbose); fprintf(DBUG_FILE, "%*s}\n", indent, ""); } /* Print quick select information to DBUG_FILE. SYNOPSIS QUICK_GROUP_MIN_MAX_SELECT::dbug_dump() indent Indentation offset verbose If TRUE show more detailed output. DESCRIPTION Print the contents of this quick select to DBUG_FILE. The method also calls dbug_dump() for the used quick select if any. IMPLEMENTATION Caller is responsible for locking DBUG_FILE before this call and unlocking it afterwards. RETURN None */ void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose) { fprintf(DBUG_FILE, "%*squick_group_min_max_select: index %s (%d), length: %d\n", indent, "", index_info->name, index, max_used_key_length); if (key_infix_len > 0) { fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n", indent, "", key_infix_len); } if (quick_prefix_select) { fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, ""); quick_prefix_select->dbug_dump(indent + 2, verbose); } if (min_max_ranges.elements > 0) { fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n", indent, "", min_max_ranges.elements); } } #endif /* NOT_USED */ /***************************************************************************** ** Instantiate templates *****************************************************************************/ #ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION template class List; template class List_iterator; #endif