This issue was originally reported by Fungo Wang, along with a fix, as
MySQL Bug #98990.
His suggested fix was applied as part of
mysql/mysql-server@a003fc373d
and released in MySQL 5.7.31.
i_s_metrics_fill(): Add the missing call to Field::set_notnull(),
and simplify some code.
For no good reason, innodb_encryption_threads was limited to
4,294,967,295. Expectedly, the server would crash if such an
insane value was specified. Let us limit the maximum to 255.
The encryption threads are not doing much useful work.
They are basically only dirtying pages by performing
dummy writes via the redo log. The encryption key rotation
or the in-place addition or removal of encryption
will take place in the page cleaner.
In a quick test on a 20-core CPU (40 threads in total),
the sweet spot on an otherwise idle server seemed to be
innodb_encryption_threads=16 for the test
encryption.encrypt_and_grep. The new limit 255 should be
more than enough for even bigger servers.
Let us limit the maximum value of the debug parameter
innodb_data_file_size to 256 MiB. It is only being used
in the test innodb.log_data_file_size, and the size
of the system tablespace should never exceed some 70 MiB
in ./mtr. Thus, 256 MiB should be a reasonable limit.
The fact that negative values that are passed to unsigned parameters
wrap around to the maximum value appears to be a regression due to
commit 18ef02b04d
and has been filed as bug MDEV-22219.
Several MYSQL_SYSVAR_STR parameters that employ both a validate
function callback fail to copy the string for saving the
validated value. The affected variables include the following:
innodb_ft_aux_table
innodb_ft_server_stopword_table
innodb_ft_user_stopword_table
innodb_buffer_pool_filename
The test case is an enhanced version of
mysql/mysql-server@0b0c30641f
and the code changes are inspired by their fixes.
We are also importing and adjusting the test innodb_fts.stopword
to get coverage for the variable innodb_ft_user_stopword_table.
buf_dump(), buf_load(): Protect srv_buf_dump_filename with
LOCK_global_system_variables.
fts_load_user_stopword(): Minor cleanup
fts_load_stopword(): Remove the parameter global_stopword_table.
innobase_fts_load_stopword(): Protect innodb_server_stopword_table
against concurrent SET GLOBAL.
The function wsrep_on() was being called rather frequently
in InnoDB and XtraDB. Let us cache it in trx_t and invoke
trx_t::is_wsrep() instead.
innobase_trx_init(): Cache trx->wsrep = wsrep_on(thd).
ha_innobase::write_row(): Replace many repeated calls to current_thd,
and test the cheapest condition first.
Apply the changes to InnoDB and XtraDB that had been
inadvertently skipped in the merge
commit ae476868a5
That merge failure sabotaged part of MDEV-20127:
>Revert a problematic auto_increment_increment 'fix' from 2014.
>This involves replacing the MDEV-8827 fix and in 10.1,
>removing some WSREP instrumentation.
The code changes were re-merged manually by executing the following:
# Get the parent of the problematic merge.
git checkout ae476868a5394041a00e75a29c7d45917e8dfae8^
# Perform the merge again.
git merge ae476868a5394041a00e75a29c7d45917e8dfae8^2
# Get the conflict resolution from that merge.
git checkout ae476868a5 .
# Note: Any changes to these files were removed (empty diff)!
git diff HEAD storage/{innobase,xtradb}/handler/ha_innodb.cc
# Apply the code changes:
git diff cf40393471b10ca68cc1d2804c22ab9203900978^2..MERGE_HEAD \
storage/{innobase,xtradb}/handler/ha_innodb.cc|
patch -p1
Problem:
=======
During dropping of fts index, InnoDB waits for fts_optimize_remove_table()
and it holds dict_sys->mutex and dict_operaiton_lock even though the
table id is not present in the queue. But fts_optimize_thread does wait
for dict_sys->mutex to process the unrelated table id from the slot.
Solution:
========
Whenever table is added to fts_optimize_wq, update the fts_status
of in-memory fts subsystem to TABLE_IN_QUEUE. Whenever drop index
wants to remove table from the queue, it can check the fts_status
to decide whether it should send the MSG_DELETE_TABLE to the queue.
Removed the following functions because these are all deadcode.
dict_table_wait_for_bg_threads_to_exit(),
fts_wait_for_background_thread_to_start(),fts_start_shutdown(), fts_shudown().
- The commit ab6dd77408 wrongly sets the
condition inside innobase_srv_conc_enter_innodb(). Problem is that
InnoDB makes the thread to sleep indefinitely if it is a replication
slave thread.
Thanks to Sujatha Sivakumar for contributing the replication test case.
The function pointer ut_timer() was only used by the
InnoDB defragmenting thread. Let InnoDB use a single monotonic
high-precision timer, my_interval_timer() [in nanoseconds],
occasionally wrapped by microsecond_interval_timer().
srv_defragment_interval: Change from "timer" units to nanoseconds.
This concludes the InnoDB time function cleanup that was
motivated by MDEV-14154. Only ut_time_ms() will remain for now,
wrapping my_interval_timer().
Replace ut_usectime() with my_interval_timer(),
which is equivalent, but monotonically counting nanoseconds
instead of counting the microseconds of real time.
os_event_wait_time_low(): Use my_hrtime() instead of ut_usectime().
FIXME: Set a clock attribute on the condition variable that allows
a monotonic clock to be chosen as the time base, so that the wait
is immune to adjustments of the system clock.
This is a regression due to MDEV-16515 that affects some versions in
the MariaDB 10.1 server series starting with 10.1.35, and possibly
all versions starting with 10.2.17, 10.3.8, and 10.4.0.
The idea of MDEV-16515 is to allow DROP TABLE to be interrupted,
in case it was stuck due to some concurrent activity. We already
made some cases of internal DROP TABLE immune to kill in MDEV-18237,
MDEV-16647, MDEV-17470. We must include the cleanup of
CREATE TABLE...SELECT in the list of such internal DROP TABLE.
ha_innobase::delete_table(): Pass create_failed=true if the current
SQL statement is CREATE, so that the table will be dropped.
row_drop_table_for_mysql(): If create_failed=true, do not allow
the operation to be interrupted.
The update callback functions for several settable global InnoDB variables
are acquiring InnoDB latches while holding LOCK_global_system_variables.
On the other hand, some InnoDB code is invoking THDVAR() while holding
InnoDB latches. An example of this is thd_lock_wait_timeout() that is
called by lock_rec_enqueue_waiting(). In some cases, the
intern_sys_var_ptr() that is invoked by THDVAR() may acquire
LOCK_global_system_variables, via sync_dynamic_session_variables().
In lock_rec_enqueue_waiting(), we really must be holding some InnoDB
latch while invoking THDVAR(). This implies that
LOCK_global_system_variables must conceptually reside below any InnoDB
latch in the latching order. That in turns implies that the various
update callback functions must release LOCK_global_system_variables
before acquiring any InnoDB mutexes or rw-locks, and reacquire
LOCK_global_system_variables later. The validate functions are being
invoked while not holding LOCK_global_system_variables and thus they
do not need any changes.
The following statements are affected by this:
SET GLOBAL innodb_adaptive_hash_index = …;
SET GLOBAL innodb_cmp_per_index_enabled = 1;
SET GLOBAL innodb_old_blocks_pct = …;
SET GLOBAL innodb_fil_make_page_dirty_debug = …; -- debug builds only
SET GLOBAL innodb_buffer_pool_evict = uncompressed; -- debug builds only
SET GLOBAL innodb_purge_run_now = 1; -- debug builds only
SET GLOBAL innodb_purge_stop_now = 1; -- debug builds only
SET GLOBAL innodb_log_checkpoint_now = 1; -- debug builds only
SET GLOBAL innodb_buf_flush_list_now = 1; -- debug builds only
SET GLOBAL innodb_buffer_pool_dump_now = 1;
SET GLOBAL innodb_buffer_pool_load_now = 1;
SET GLOBAL innodb_buffer_pool_load_abort = 1;
SET GLOBAL innodb_status_output = …;
SET GLOBAL innodb_status_output_locks = …;
SET GLOBAL innodb_encryption_threads = …;
SET GLOBAL innodb_encryption_rotate_key_age = …;
SET GLOBAL innodb_encryption_rotation_iops = …;
SET GLOBAL innodb_encrypt_tables = …;
SET GLOBAL innodb_disallow_writes = …;
buf_LRU_old_ratio_update(): Correct the return type.
Try to fix the race conditions between
SET GLOBAL innodb_ft_aux_table = ...;
and access to the INFORMATION_SCHEMA tables that depend on
this variable.
innodb_ft_aux_table: Replaces
fts_internal_tbl_name,fts_internal_tbl_name2. Just store the
user-specified parameter as is.
innodb_ft_aux_table_id: The table_id corresponding to
SET GLOBAL innodb_ft_aux_table, or 0 if the table does not exist
or does not contain FULLTEXT INDEX. If the table is renamed later,
the INFORMATION_SCHEMA tables will continue to refer to the table.
If the table is dropped or rebuilt, the INFORMATION_SCHEMA tables
will not find the table.
Some places didn't match the previous rules, making the Floor
address wrong.
Additional sed rules:
sed -i -e 's/Place.*Suite .*, Boston/Street, Fifth Floor, Boston/g'
sed -i -e 's/Suite .*, Boston/Fifth Floor, Boston/g'
fts_get_table_name(): Output to a caller-allocated buffer.
fts_get_table_name_prefix(): Use the lower-overhead allocation
ut_malloc() instead of mem_alloc().
This is based on mysql/mysql-server@d1584b9f38
in MySQL 5.7.4.
A sequel to 9180e86 and 149b754.
ALTER TABLE ... ADD FOREIGN KEY may crash if parent table is updated
concurrently.
Block FK parent table updates even earlier, before intermediate child
table is created.
Use proper charset info for my_casedn_str() and don't update original
identifiers so that lower_cast_table_names == 2 is honoured.
For partitioned table, ensure that the AUTO_INCREMENT values will
be assigned from the same sequence. This is based on the following
change in MySQL 5.6.44:
commit aaba359c13d9200747a609730dafafc3b63cd4d6
Author: Rahul Malik <rahul.m.malik@oracle.com>
Date: Mon Feb 4 13:31:41 2019 +0530
Bug#28573894 ALTER PARTITIONED TABLE ADD AUTO_INCREMENT DIFF RESULT DEPENDING ON ALGORITHM
Problem:
When a partition table is in-place altered to add an auto-increment column,
then its values are starting over for each partition.
Analysis:
In the case of in-place alter, InnoDB is creating a new sequence object
for each partition. It is default initialized. So auto-increment columns
start over for each partition.
Fix:
Assign old sequence of the partition to the sequence of next partition
so it won't start over.
RB#21148
Reviewed by Bin Su <bin.x.su@oracle.com>
Correctly document the usage of m_max_value. Remove the const
qualifier, so that the implicit assignment operator can be used.
Make all members of ib_sequence private, and add an accessor
member function max_value().
In debug builds, this setting is allowed to be turned off temporarily after it was
turned on during startup. Howewer memory garbage also caused it to be accidentally
turned on when it was disabled at startup.
This reverts commit 21b2fada7a
and commit 81d71ee6b2.
The MDEV-18464 change introduces a few data race issues. Contrary to
the documentation, the field trx_t::victim is not always being protected
by lock_sys_t::mutex and trx_t::mutex. Most importantly, it seems
that KILL QUERY could wrongly avoid acquiring both mutexes when
invoking lock_trx_handle_wait_low(), in case another thread had
already set trx->victim=true.
We also revert MDEV-12009, because it should depend on the MDEV-18464
fix being present.
Pushed the decision for innodb transaction and system
locking down to lock0lock.cc level. With this,
we can avoid releasing these mutexes for executions
where these mutexes were acquired upfront.
This patch will also fix BF aborting of native threads, e.g.
threads which have declared wsrep_on=OFF. Earlier, we have
used, for innodb trx locks, was_chosen_as_deadlock_victim
flag, for marking inodb transactions, which are victims for
wsrep BF abort. With native threads (wsrep_on==OFF), re-using
was_chosen_as_deadlock_victim flag may lead to inteference
with real deadlock, and to deal with this, the patch has added new
flag for marking wsrep BF aborts only: victim=true
Similar way if replication decides to abort one of the threads
we mark victim by: victim=true
innobase_kill_query
Remove lock sys and trx mutex handling.
wsrep_innobase_kill_one_trx
Mark victim trx with victim=true
trx0trx.h
Remove trx_abort_t type and abort type variable from
trx struct. Add victim variable to trx.
wsrep_kill_victim
Remove abort_type
lock_report_waiters_to_mysql
Take also trx mutex and mark trx as a victim for
replication abort.
lock_trx_handle_wait_low
New low level function to check whether the transaction
has already been rolled back because it was selected as
a deadlock victim, or if it has to wait then cancel
the wait lock.
lock_trx_handle_wait
If transaction is not marked as victim take lock sys
and trx mutex before calling lock_trx_handle_wait_low
and release them after that.
row_search_for_mysql
Remove lock sys and trx mutex taking and releasing.
trx_rollback_to_savepoint_for_mysql_low
trx_commit_in_memory
Clean up victim variable.
now we can afford it. Fix -Werror errors. Note:
* old gcc is bad at detecting uninit variables, disable it.
* time_t is int or long, cast it for printf's