Corrected spelling in copyright text
Makefile.am:
Don't update the files from BitKeeper
Many files:
Removed "MySQL Finland AB & TCX DataKonsult AB" from copyright header
Adjusted year(s) in copyright header
Many files:
Added GPL copyright text
Removed files:
Docs/Support/colspec-fix.pl
Docs/Support/docbook-fixup.pl
Docs/Support/docbook-prefix.pl
Docs/Support/docbook-split
Docs/Support/make-docbook
Docs/Support/make-makefile
Docs/Support/test-make-manual
Docs/Support/test-make-manual-de
Docs/Support/xwf
When implicitly converting string fields to numbers the
string-to-number conversion error was not sent to the client.
Added code to send the conversion error as warning.
We also need to prevent generation of warnings from the places
where val_xxx() methods are called for the sole purpose of updating
the Item::null_value flag.
To achieve that a special function is added (and called) :
update_null_value(). This function will set the no_errors flag and
will call val_xxx(). The warning generation in Field_string::val_xxx()
will use the flag when generating the conversion warnings.
The problem was that any VIEW columns had always implicit derivation.
Fix: derivation is now copied from the original expression
given in VIEW definition.
For example:
- a VIEW column which comes from a string constant
in CREATE VIEW definition have now coercible derivation.
- a VIEW column having COLLATE clause
in CREATE VIEW definition have now explicit derivation.
Evaluate "NULL IN (SELECT ...)" in a special way: Disable pushed-down
conditions and their "consequences":
= Do full table scans instead of unique_[index_subquery] lookups.
= Change appropriate "ref_or_null" accesses to full table scans in
subquery's joins.
Also cache value of NULL IN (SELECT ...) if the SELECT is not correlated
wrt any upper select.
VALUES() was considered a constant. This caused replacing
(or pre-calculating) it using uninitialized values before the actual
execution takes place.
Mark it as a non-constant (still not dependent of tables) to prevent
the pre-calculation.
equal constant under any circumstances.
In fact this substitution can be allowed if the field is
not of a type string or if the field reference serves as
an argument of a comparison predicate.
A date can be represented as an int (like 20060101) and as a string (like
"2006.01.01"). When a DATE/TIME field is compared in one SELECT against both
representations the constant propagation mechanism leads to comparison
of DATE as a string and DATE as an int. In this example it compares 2006 and
20060101 integers. Obviously it fails comparison although they represents the
same date.
Now the Item_bool_func2::fix_length_and_dec() function sets the comparison
context for items being compared. I.e. if items compared as strings the
comparison context is STRING.
The constant propagation mechanism now doesn't mix items used in different
comparison contexts. The context check is done in the
Item_field::equal_fields_propagator() and in the change_cond_ref_to_const()
functions.
Also the better fix for bug 21159 is introduced.
When there is no index defined filesort is used to sort the result of a
query. If there is a function in the select list and the result set should be
ordered by it's value then this function will be evaluated twice. First time to
get the value of the sort key and second time to send its value to a user.
This happens because filesort when sorts a table remembers only values of its
fields but not values of functions.
All functions are affected. But taking into account that SP and UDF functions
can be both expensive and non-deterministic a temporary table should be used
to store their results and then sort it to avoid twice SP evaluation and to
get a correct result.
If an expression referenced in an ORDER clause contains a SP or UDF
function, force the use of a temporary table.
A new Item_processor function called func_type_checker_processor is added
to check whether the expression contains a function of a particular type.
In some functions dealing with strings and character sets, the wrong
pointers were saved for restoration in THD::rollback_item_tree_changes().
This could potentially cause random corruption or crashes.
Fixed by passing the original Item ** locations, not local stack copies.
Also remove unnecessary use of default arguments.
After view onening real view db name and table name are placed
into table_list->view_db & table_list->view_name.
Item_field class does not handle these names properly during
intialization of Send_field.
The fix is to use new class 'Item_ident_for_show'
which sets correct view db name and table name for Send_field.
can lead to a wrong result.
All date/time functions has the STRING result type thus their results are
compared as strings. The string date representation allows a user to skip
some of leading zeros. This can lead to wrong comparison result if a date/time
function result is compared to such a string constant.
The idea behind this bug fix is to compare results of date/time functions
and data/time constants as ints, because that date/time representation is
more exact. To achieve this the agg_cmp_type() is changed to take in the
account that a date/time field or an date/time item should be compared
as ints.
This bug fix is partially back ported from 5.0.
The agg_cmp_type() function now accepts THD as one of parameters.
In addition, it now checks if a date/time field/function is present in the
list. If so, it tries to coerce all constants to INT to make date/time
comparison return correct result. The field for the constant coercion is
taken from the Item_field or constructed from the Item_func. In latter case
the constructed field will be freed after conversion of all constant items.
Otherwise the result is same as before - aggregated with help of the
item_cmp_type() function.
From the Item_func_between::fix_length_and_dec() function removed the part
which was converting date/time constants to int if possible. Now this is
done by the agg_cmp_type() function.
The new function result_as_longlong() is added to the Item class.
It indicates that the item is a date/time item and result of it can be
compared as int. Such items are date/time fields/functions.
Correct val_int() methods are implemented for classes Item_date_typecast,
Item_func_makedate, Item_time_typecast, Item_datetime_typecast. All these
classes are derived from Item_str_func and Item_str_func::val_int() converts
its string value to int without regard to the date/time type of these items.
Arg_comparator::set_compare_func() and Arg_comparator::set_cmp_func()
functions are changed to substitute result type of an item with the INT_RESULT
if the item is a date/time item and another item is a constant. This is done
to get a correct result of comparisons like date_time_function() = string_constant.
The convert_constant_item() function converts constant items to ints on
prepare phase to optimize execution speed. In this case it tries to evaluate
subselect which contains a derived table and is contained in a derived table.
All derived tables are filled only after all derived tables are prepared.
So evaluation of subselect with derived table at the prepare phase will
return a wrong result.
A new flag with_subselect is added to the Item class. It indicates that
expression which this item represents is a subselect or contains a subselect.
It is set to 0 by default. It is set to 1 in the Item_subselect constructor
for subselects.
For Item_func and Item_cond derived classes it is set after fixing any argument
in Item_func::fix_fields() and Item_cond::fix_fields accordingly.
The convert_constant_item() function now doesn't convert a constant item
if the with_subselect flag set in it.
from within triggers
Add support for passing NEW.x as INOUT and OUT parameters to stored
procedures. Passing NEW.x as INOUT parameter requires SELECT and
UPDATE privileges on that column, and passing it as OUT parameter
requires only UPDATE privilege.
In the code that converts IN predicates to EXISTS predicates it is changing
the select list elements to constant 1. Example :
SELECT ... FROM ... WHERE a IN (SELECT c FROM ...)
is transformed to :
SELECT ... FROM ... WHERE EXISTS (SELECT 1 FROM ... HAVING a = c)
However there can be no FROM clause in the IN subquery and it may not be
a simple select : SELECT ... FROM ... WHERE a IN (SELECT f(..) AS
c UNION SELECT ...) This query is transformed to : SELECT ... FROM ...
WHERE EXISTS (SELECT 1 FROM (SELECT f(..) AS c UNION SELECT ...)
x HAVING a = c) In the above query c in the HAVING clause is made to be
an Item_null_helper (a subclass of Item_ref) pointing to the real
Item_field (which is not referenced anywhere else in the query anymore).
This is done because Item_ref_null_helper collects information whether
there are NULL values in the result. This is OK for directly executed
statements, because the Item_field pointed by the Item_null_helper is
already fixed when the transformation is done. But when executed as
a prepared statement all the Item instances are "un-fixed" before the
recompilation of the prepared statement. So when the Item_null_helper
gets fixed it discovers that the Item_field it points to is not fixed
and issues an error. The remedy is to keep the original select list
references when there are no tables in the FROM clause. So the above
becomes : SELECT ... FROM ... WHERE EXISTS (SELECT c FROM (SELECT f(..)
AS c UNION SELECT ...) x HAVING a = c) In this way c is referenced
directly in the select list as well as by reference in the HAVING
clause. So it gets correctly fixed even with prepared statements. And
since the Item_null_helper subclass of Item_ref_null_helper is not used
anywhere else it's taken out.
too much memory. Instead, either create the equvalent SEL_TREE manually, or create only two ranges that
strictly include the area to scan
(Note: just to re-iterate: increasing NOT_IN_IGNORE_THRESHOLD will make optimization run slower for big
IN-lists, but the server will not run out of memory. O(N^2) memory use has been eliminated)
CONNECTION_ID() was implemented as a constant Item, i.e. an instance of
Item_static_int_func class holding value computed at creation time.
Since Items are created on parsing, and trigger statements are parsed
on table open, the first connection to open a particular table would
effectively set its own CONNECTION_ID() inside trigger statements for
that table.
Re-implement CONNECTION_ID() as a class derived from Item_int_func, and
compute connection_id on every call to fix_fields().
The bug was due to a missed case in the detection of whether an index
can be used for loose scan. More precisely, the range optimizer chose
to use loose index scan for queries for which the condition(s) over
an index key part could not be pushed to the index together with the
loose scan.
As a result, loose index scan was selecting the first row in the
index with a given GROUP BY prefix, and was applying the WHERE
clause after that, while it should have inspected all rows with
the given prefix, and apply the WHERE clause to all of them.
The fix detects and skips such cases.
time per connection
Removed const_string() method from Item_string (it was only used in one
place, in a bad way). Defer possible SP variable, and access data directly
instead, in date_format item.
- Added empty constructors and virtual destructors to many classes and structs
- Removed some usage of the offsetof() macro to instead use C++ class pointers
If item->cached_table is set, find_field_in_tables() returns found field
even if it doesn't belong to current select. Because Item_field::fix_fields
doesn't expect such behaviour, reported bug occurs.
Item_field::fix_fields() was modifed to detect when find_field_in_tables()
can return field from outer select and process such fields accordingly.
In order to ease this code which was searching and processing outed fields was
moved into separate function called Item_field::fix_outer_field().
- BUG#15166: Wrong update permissions required to execute triggers
- BUG#15196: Wrong select permission required to execute triggers
The idea of the fix is to check necessary privileges
in Item_trigger_field::fix_fields(), instead of having "special variables"
technique. To achieve this, we should pass to an Item_trigger_field instance
a flag, which will indicate the usage/access type of this trigger variable.