Binlogging of the statement with a side effect like a modified non-trans table did not happen.
The artifact involved all binloggable dml queries.
Fixed with changing the binlogging conditions all over the code to exploit thd->transaction.stmt.modified_non_trans_table
introduced by the patch for bug@27417.
Multi-delete case has own specific addressed by another bug@29136. Multi-update case has been addressed by bug#27716 and
patch and will need merging.
Bug #27417 thd->no_trans_update.stmt lost value inside of SF-exec-stack
Once had been set the flag might later got reset inside of a stored routine
execution stack.
The reason was in that there was no check if a new statement started at time
of resetting.
The artifact affects most of binlogable DML queries. Notice, that multi-update
is wrapped up within
bug@27716 fix, multi-delete bug@29136.
Fixed with saving parent's statement flag of whether the statement modified
non-transactional table, and unioning (merging) the value with that was gained
in mysql_execute_command.
Resettling thd->no_trans_update members into thd->transaction.`member`;
Asserting code;
Effectively the following properties are held.
1. At the end of a substatement thd->transaction.stmt.modified_non_trans_table
reflects the fact if such a table got modified by the substatement.
That also respects THD::really_abort_on_warnin() requirements.
2. Eventually thd->transaction.stmt.modified_non_trans_table will be computed as
the union of the values of all invoked sub-statements.
That fixes this bug#27417;
Computing of thd->transaction.all.modified_non_trans_table is refined to base to
the stmt's value for all the case including insert .. select statement which
before the patch had an extra issue bug@28960.
Minor issues are covered with mysql_load, mysql_delete, and binloggin of insert in
to temp_table select.
The supplied test verifies limitely, mostly asserts. The ultimate testing is defered
for bug@13270, bug@23333.
causing wrong error message in Falcon
An error message about a duplicate key could show a wrong key
value when not all columns of the key were used to select the
rows for update.
Some storage engines return a record with only the selected
columns filled.
This is fixed by re-reading the record with a read_set which
includes all columns of the duplicate key after a duplicate key
error happens and before the error message is printed.
When a table is being updated it has two set of fields - fields required for
checks of conditions and fields to be updated. A storage engine is allowed
not to retrieve columns marked for update. Due to this fact records can't
be compared to see whether the data has been changed or not. This makes the
server always update records independently of data change.
Now when an auto-updatable timestamp field is present and server sees that
a table handle isn't going to retrieve write-only fields then all of such
fields are marked as to be read to force the handler to retrieve them.
Sometimes the number of really updated rows (with changed
column values) cannot be determined at the server level
alone (e.g. if the storage engine does not return enough
column values to verify that). So the only dependable way
in such cases is to let the storage engine return that
information if possible.
Fixed the bug at server level by providing a way for the
storage engine to return information about wether it
actually updated the row or the old and the new column
values are the same. It can do that by returning
HA_ERR_RECORD_IS_THE_SAME in ha_update_row().
Note that each storage engine may choose not to try to
return this status code, so this behaviour remains
storage engine specific.
Implementation of mysql_multi_update did not call multi_update::send_error method in some cases
(see the test reported on bug page and test cases in changeset).
Fixed with deploying the method, ::send_error() is refined to get binlogging code which works whenever
there is modified non-transactional table.
thd->no_trans_update.stmt flag is set in to TRUE to ease testing though being the beginning of relative
bug#27417 fix (addresses a part of those issues).
Eliminating two minor issues (small bugs) in multi_update methods.
This patch for multi-update also addresses a part of the issues reported in bug#13270,bug#23333.
The result of the CHECK OPTION condition evaluation over an
updated record and records of merged tables was arbitrary and
dependant on the order of records in the merged tables during
the execution of SELECT statement.
The CHECK OPTION expression was evaluated over expired record
buffers (with arbitrary data in the fields).
Rowids of tables used in the CHECK OPTION expression were
added to temporary table rows. The multi_update::do_updates()
method was modified to restore necessary record buffers
before evaluation of the CHECK OPTION condition.
The reason for the bug was that replaying of a query on slave could not be possible since its event
was recorded with the killed error. Due to the specific of handling INSERT, which per-row-while-loop is
unbreakable to killing, the query on transactional table should have not appeared in binlog unless
there was a call to a stored routine that got interrupted with killing (and then there must be an error
returned out of the loop).
The offered solution added the following rule for binlogging of INSERT that accounts the above
specifics:
For INSERT on transactional-table if the error was not set the only raised flag
is harmless and is ignored via masking out on time of creation of binlog event.
For both table types the combination of raised error and KILLED flag indicates that there
was potentially partial execution on master and consistency is under the question.
In that case the code continues to binlog an event with an appropriate killed error.
The fix relies on the specified behaviour of stored routine that must propagate the error
to the top level query handling if the thd->killed flag was raised in the routine execution.
The patch adds an arg with the default killed-status-unset value to Query_log_event::Query_log_event.
- A race condition caused brief unavailablility when trying to acccess
a table.
- The variable 'grant_option' was removed to resolve the race condition and
to simplify the design pattern. This flag was originally intended to optimize
grant checks.
database.
If a user has a right to update anything in the current database then the
access was granted and further checks of access rights for underlying tables
wasn't done correctly. The check is done before a view is opened and thus no
check of access rights for underlying tables can be carried out.
This allows a user to update through a view a table from another database for
which he hasn't enough rights.
Now the mysql_update() and the mysql_test_update() functions are forces
re-checking of access rights after a view is opened.
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
In multi_update::send_data(), the counter of matched rows was not correctly incremented, when during insertion of a new row to a temporay table it had to be converted from HEAP to MyISAM.
This fix changes the logic to increment the counter of matched rows in the following cases:
1. If the error returned from write_row() is zero.
2. If the error returned from write_row() is non-zero, is neither HA_ERR_FOUND_DUPP_KEY nor HA_ERR_FOUND_DUPP_UNIQUE, and a call to create_myisam_from_heap() succeeds.
In certain cases AFTER UPDATE/DELETE triggers on NDB tables that referenced
subject table didn't see the results of operation which caused invocation
of those triggers. In other words AFTER trigger invoked as result of update
(or deletion) of particular row saw version of this row before update (or
deletion).
The problem occured because NDB handler in those cases postponed actual
update/delete operations to be able to perform them later as one batch.
This fix solves the problem by disabling this optimization for particular
operation if subject table has AFTER trigger for this operation defined.
To achieve this we introduce two new flags for handler::extra() method:
HA_EXTRA_DELETE_CANNOT_BATCH and HA_EXTRA_UPDATE_CANNOT_BATCH.
These are called if there exists AFTER DELETE/UPDATE triggers during a
statement that potentially can generate calls to delete_row()/update_row().
This includes multi_delete/multi_update statements as well as insert statements
that do delete/update as part of an ON DUPLICATE statement.
thd->options' OPTION_STATUS_NO_TRANS_UPDATE bit was not restored at the end of SF() invocation, where
SF() modified non-ta table.
As the result of this artifact it was not possible to detect whether there were any side-effects when
top-level query ends.
If the top level query table was not modified and the bit is lost there would be no binlogging.
Fixed with preserving the bit inside of thd->no_trans_update struct. The struct agregates two bool flags
telling whether the current query and the current transaction modified any non-ta table.
The flags stmt, all are dropped at the end of the query and the transaction.
correct the bitmap_set_bit when a field is timestamp and described
with default CURRENT_TIMESTAMP or on update CURRENT_TIMESTAMP,
then it will reduce a little time cost when the field doesnot need
to write.
Bug 18914 (Calling certain SPs from triggers fail)
Bug 20713 (Functions will not not continue for SQLSTATE VALUE '42S02')
Bug 21825 (Incorrect message error deleting records in a table with a
trigger for inserting)
Bug 22580 (DROP TABLE in nested stored procedure causes strange dependency
error)
Bug 25345 (Cursors from Functions)
This fix resolves a long standing issue originally reported with bug 8407,
which affect the behavior of Stored Procedures, Stored Functions and Trigger
in many different ways, causing symptoms reported by all the bugs listed.
In all cases, the root cause of the problem traces back to 8407 and how the
server locks tables involved with sub statements.
Prior to this fix, the implementation of stored routines would:
- compute the transitive closure of all the tables referenced by a top level
statement
- open and lock all the tables involved
- execute the top level statement
"transitive closure of tables" means collecting:
- all the tables,
- all the stored functions,
- all the views,
- all the table triggers
- all the stored procedures
involved, and recursively inspect these objects definition to find more
references to more objects, until the list of every object referenced does
not grow any more.
This mechanism is known as "pre-locking" tables before execution.
The motivation for locking all the tables (possibly) used at once is to
prevent dead locks.
One problem with this approach is that, if the execution path the code
really takes during runtime does not use a given table, and if the table is
missing, the server would not execute the statement.
This in particular has a major impact on triggers, since a missing table
referenced by an update/delete trigger would prevent an insert trigger to run.
Another problem is that stored routines might define SQL exception handlers
to deal with missing tables, but the server implementation would never give
user code a chance to execute this logic, since the routine is never
executed when a missing table cause the pre-locking code to fail.
With this fix, the internal implementation of the pre-locking code has been
relaxed of some constraints, so that failure to open a table does not
necessarily prevent execution of a stored routine.
In particular, the pre-locking mechanism is now behaving as follows:
1) the first step, to compute the transitive closure of all the tables
possibly referenced by a statement, is unchanged.
2) the next step, which is to open all the tables involved, only attempts
to open the tables added by the pre-locking code, but silently fails without
reporting any error or invoking any exception handler is the table is not
present. This is achieved by trapping internal errors with
Prelock_error_handler
3) the locking step only locks tables that were successfully opened.
4) when executing sub statements, the list of tables used by each statements
is evaluated as before. The tables needed by the sub statement are expected
to be already opened and locked. Statement referencing tables that were not
opened in step 2) will fail to find the table in the open list, and only at
this point will execution of the user code fail.
5) when a runtime exception is raised at 4), the instruction continuation
destination (the next instruction to execute in case of SQL continue
handlers) is evaluated.
This is achieved with sp_instr::exec_open_and_lock_tables()
6) if a user exception handler is present in the stored routine, that
handler is invoked as usual, so that ER_NO_SUCH_TABLE exceptions can be
trapped by stored routines. If no handler exists, then the runtime execution
will fail as expected.
With all these changes, a side effect is that view security is impacted, in
two different ways.
First, a view defined as "select stored_function()", where the stored
function references a table that may not exist, is considered valid.
The rationale is that, because the stored function might trap exceptions
during execution and still return a valid result, there is no way to decide
when the view is created if a missing table really cause the view to be invalid.
Secondly, testing for existence of tables is now done later during
execution. View security, which consist of trapping errors and return a
generic ER_VIEW_INVALID (to prevent disclosing information) was only
implemented at very specific phases covering *opening* tables, but not
covering the runtime execution. Because of this existing limitation,
errors that were previously trapped and converted into ER_VIEW_INVALID are
not trapped, causing table names to be reported to the user.
This change is exposing an existing problem, which is independent and will
be resolved separately.
can be specified
Currently MySQL allows one to specify what indexes to ignore during
join optimization. The scope of the current USE/FORCE/IGNORE INDEX
statement is only the FROM clause, while all other clauses are not
affected.
However, in certain cases, the optimizer
may incorrectly choose an index for sorting and/or grouping, and
produce an inefficient query plan.
This task provides the means to specify what indexes are
ignored/used for what operation in a more fine-grained manner, thus
making it possible to manually force a better plan. We do this
by extending the current IGNORE/USE/FORCE INDEX syntax to:
IGNORE/USE/FORCE INDEX [FOR {JOIN | ORDER | GROUP BY}]
so that:
- if no FOR is specified, the index hint will apply everywhere.
- if MySQL is started with the compatibility option --old_mode then
an index hint without a FOR clause works as in 5.0 (i.e, the
index will only be ignored for JOINs, but can still be used to
compute ORDER BY).
See the WL#3527 for further details.
When INSERT is done over a view the table being inserted into is
checked to be unique among all views tables. But if the view contains
self-joined table an error will be thrown even if all tables are used under
different aliases.
The unique_table() function now also checks tables' aliases when needed.
to a single statement.
---
Bug#24795: SHOW PROFILE
Profiling is only partially functional on some architectures. Where
there is no getrusage() system call, presently Null values are
returned where it would be required. Notably, Windows needs some love
applied to make it as useful.
Syntax this adds:
SHOW PROFILES
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
where "n" is an integer
and "types" is zero or many (comma-separated) of
"CPU"
"MEMORY" (not presently supported)
"BLOCK IO"
"CONTEXT SWITCHES"
"PAGE FAULTS"
"IPC"
"SWAPS"
"SOURCE"
"ALL"
It also adds a session variable (boolean) "profiling", set to "no"
by default, and (integer) profiling_history_size, set to 15 by
default.
This patch abstracts setting THDs' "proc_info" behind a macro that
can be used as a hook into the profiling code when profiling
support is compiled in. All future code in this line should use
that mechanism for setting thd->proc_info.
---
Tests are now set to omit the statistics.
---
Adds an Information_schema table, "profiling" for access to
"show profile" data.
---
Merge zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community-3--bug24795
into zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community
---
Fix merge problems.
---
Fixed one bug in the query_source being NULL.
Updated test results.
---
Include more thorough profiling tests.
Improve support for prepared statements.
Use session-specific query IDs, starting at zero.
---
Selecting from I_S.profiling is no longer quashed in profiling, as
requested by Giuseppe.
Limit the size of captured query text.
No longer log queries that are zero length.
created for sorting.
Any outer reference in a subquery was represented by an Item_field object.
If the outer select employs a temporary table all such fields should be
replaced with fields from that temporary table in order to point to the
actual data. This replacement wasn't done and that resulted in a wrong
subquery evaluation and a wrong result of the whole query.
Now any outer field is represented by two objects - Item_field placed in the
outer select and Item_outer_ref in the subquery. Item_field object is
processed as a normal field and the reference to it is saved in the
ref_pointer_array. Thus the Item_outer_ref is always references the correct
field. The original field is substituted for a reference in the
Item_field::fix_outer_field() function.
New function called fix_inner_refs() is added to fix fields referenced from
inner selects and to fix references (Item_ref objects) to these fields.
The new Item_outer_ref class is a descendant of the Item_direct_ref class.
It additionally stores a reference to the original field and designed to
behave more like a field.
View check option clauses were ignored for updates of multi-table
views when the updates could not be performed on fly and the rows
to update had to be put into temporary tables first.
updated.
INSERT ... ON DUPLICATE KEY UPDATE reports that a record was updated when
the duplicate key occurs even if the record wasn't actually changed
because the update values are the same as those in the record.
Now the compare_record() function is used to check whether the record was
changed and the update of a record reported only if the record differs
from the original one.
After fix for bug#21798 JOIN stores the pointer to the buffer for sorting
fields. It is used while sorting for grouping and for ordering. If ORDER BY
clause has more elements then the GROUP BY clause then a memory overrun occurs.
Now the length of the ORDER BY list is always passed to the
make_unireg_sortorder() function and it allocates buffer big enough to be
used for bigger list.
Corrected spelling in copyright text
Makefile.am:
Don't update the files from BitKeeper
Many files:
Removed "MySQL Finland AB & TCX DataKonsult AB" from copyright header
Adjusted year(s) in copyright header
Many files:
Added GPL copyright text
Removed files:
Docs/Support/colspec-fix.pl
Docs/Support/docbook-fixup.pl
Docs/Support/docbook-prefix.pl
Docs/Support/docbook-split
Docs/Support/make-docbook
Docs/Support/make-makefile
Docs/Support/test-make-manual
Docs/Support/test-make-manual-de
Docs/Support/xwf
An update that used a join of a table to itself and modified the
table on one side of the join reported the table as crashed or
updated wrong rows.
Fixed by creating temporary table for self-joined multi update statement.
- Removed not used variables and functions
- Added #ifdef around code that is not used
- Renamed variables and functions to avoid conflicts
- Removed some not used arguments
Fixed some class/struct warnings in ndb
Added define IS_LONGDATA() to simplify code in libmysql.c
I did run gcov on the changes and added 'purecov' comments on almost all lines that was not just variable name changes
Fixed compiler warnings (detected by VC++):
- Removed not used variables
- Added casts
- Fixed wrong assignments to bool
- Fixed wrong calls with bool arguments
- Added missing argument to store(longlong), which caused wrong store method to be called.
- Removed not used variables
- Changed some ulong parameters/variables to ulonglong (possible serious bug)
- Added casts to get rid of safe assignment from longlong to long (and similar)
- Added casts to function parameters
- Fixed signed/unsigned compares
- Added some constructores to structures
- Removed some not portable constructs
Better fix for bug Bug #21428 "skipped 9 bytes from file: socket (3)" on "mysqladmin shutdown"
(Added new parameter to net_clear() to define when we want the communication buffer to be emptied)
(Mostly in DBUG_PRINT() and unused arguments)
Fixed bug in query cache when used with traceing (--with-debug)
Fixed memory leak in mysqldump
Removed warnings from mysqltest scripts (replaced -- with #)
list using a function
When executing dependent subqueries they are re-inited and re-exec() for
each row of the outer context.
The cause for the bug is that during subquery reinitialization/re-execution,
the optimizer reallocates JOIN::join_tab, JOIN::table in make_simple_join()
and the local variable in 'sortorder' in create_sort_index(), which is
allocated by make_unireg_sortorder().
Care must be taken not to allocate anything into the thread's memory pool
while re-initializing query plan structures between subquery re-executions.
All such items mush be cached and reused because the thread's memory pool
is freed at the end of the whole query.
Note that they must be cached and reused even for queries that are not
otherwise cacheable because otherwise it will grow the thread's memory
pool every time a cacheable query is re-executed.
We provide additional members to the JOIN structure to store references
to the items that need to be cached.
Note: bug#21726 does not directly apply to 4.1, as it doesn't have stored
procedures. However, 4.1 had some bugs that were fixed in 5.0 by the
patch for bug#21726, and this patch is a backport of those fixes.
Namely, in 4.1 it fixes:
- LAST_INSERT_ID(expr) didn't return value of expr (4.1 specific).
- LAST_INSERT_ID() could return the value generated by current
statement if the call happens after the generation, like in
CREATE TABLE t1 (i INT AUTO_INCREMENT PRIMARY KEY, j INT);
INSERT INTO t1 VALUES (NULL, 0), (NULL, LAST_INSERT_ID());
- Redundant binary log LAST_INSERT_ID_EVENTs could be generated.
Though this is not storage engine specific problem, I was able to
repeat this problem with BDB and NDB engines only. That was the
reason to add a test case into ndb_update.test. As a result
different bad things could happen.
BDB has removed duplicate rows which is not expected.
NDB returns an error.
For multi table update notify storage engine about UPDATE IGNORE
as it is done in single table UPDATE.
Non-upper-level INSERTs (the ones in the body of stored procedure,
stored function, or trigger) into a table that have AUTO_INCREMENT
column didn't affected the result of LAST_INSERT_ID() on this level.
The problem was introduced with the fix of bug 6880, which in turn was
introduced with the fix of bug 3117, where current insert_id value was
remembered on the first call to LAST_INSERT_ID() (bug 3117) and was
returned from that function until it was reset before the next
_upper-level_ statement (bug 6880).
The fix for bug#21726 brings back the behaviour of version 4.0, and
implements the following: remember insert_id value at the beginning
of the statement or expression (which at that point equals to
the first insert_id value generated by the previous statement), and
return that remembered value from LAST_INSERT_ID() or @@LAST_INSERT_ID.
Thus, the value returned by LAST_INSERT_ID() is not affected by values
generated by current statement, nor by LAST_INSERT_ID(expr) calls in
this statement.
Version 5.1 does not have this bug (it was fixed by WL 3146).
this key does not stop" (5.1 version).
UPDATE statement which WHERE clause used key and which invoked trigger
that modified field in this key worked indefinetely.
This problem occured because in cases when UPDATE statement was
executed in update-on-the-fly mode (in which row is updated right
during evaluation of select for WHERE clause) the new version of
the row became visible to select representing WHERE clause and was
updated again and again.
We already solve this problem for UPDATE statements which does not
invoke triggers by detecting the fact that we are going to update
field in key used for scanning and performing update in two steps,
during the first step we gather information about the rows to be
updated and then doing actual updates. We also do this for
MULTI-UPDATE and in its case we even detect situation when such
fields are updated in triggers (actually we simply assume that
we always update fields used in key if we have before update
trigger).
The fix simply extends this check which is done with help of
check_if_key_used()/QUICK_SELECT_I::check_if_keys_used()
routine/method in such way that it also detects cases when
field used in key is updated in trigger. We do this by
changing check_if_key_used() to take field bitmap instead
field list as argument and passing TABLE::write_set
to it (we also have to add info about fields used in
triggers to this bitmap a bit earlier).
As nice side-effect we have more precise and thus more optimal
perfomance-wise check for the MULTI-UPDATE.
Also check_if_key_used() routine and similar method were renamed
to is_key_used()/is_keys_used() in order to better reflect that
it is simple boolean predicate.
Finally, partition_key_modified() routine now also takes field
bitmap instead of field list as argument.
this key does not stop" (version for 5.0 only).
UPDATE statement which WHERE clause used key and which invoked trigger
that modified field in this key worked indefinetely.
This problem occured because in cases when UPDATE statement was
executed in update-on-the-fly mode (in which row is updated right
during evaluation of select for WHERE clause) the new version of
the row became visible to select representing WHERE clause and was
updated again and again.
We already solve this problem for UPDATE statements which does not
invoke triggers by detecting the fact that we are going to update
field in key used for scanning and performing update in two steps,
during the first step we gather information about the rows to be
updated and then doing actual updates. We also do this for
MULTI-UPDATE and in its case we even detect situation when such
fields are updated in triggers (actually we simply assume that
we always update fields used in key if we have before update
trigger).
The fix simply extends this check which is done in check_if_key_used()/
QUICK_SELECT_I::check_if_keys_used() routine/method in such way that
it also detects cases when field used in key is updated in trigger.
As nice side-effect we have more precise and thus more optimal
perfomance-wise check for the MULTI-UPDATE.
Also check_if_key_used()/QUICK_SELECT_I::check_if_keys_used() were
renamed to is_key_used()/QUICK_SELECT_I::is_keys_used() in order to
better reflect that boolean predicate.
Note that this check is implemented in much more elegant way in 5.1
containing a select statement that uses an aggregating IN subquery.
Added a parameter to the function fix_prepare_information
to restore correctly the having clause for the second execution.
Saved andor structure of the having conditions at the proper moment
before any calls of split_sum_func2 that could modify the having structure
adding new Item_ref objects. (These additions, are produced not with
the statement mem_root, but rather with the execution mem_root.)
SELECT right instead of INSERT right was required for an insert into to a view.
This wrong behaviour appeared after the fix for bug #20989. Its intention was
to ask only SELECT right for all tables except the very first for a complex
INSERT query. But that patch has done it in a wrong way and lead to asking
a wrong access right for an insert into a view.
The setup_tables_and_check_access() function now accepts two want_access
parameters. One will be used for the first table and the second for other
tables.
privileges
This problem is 4.1 specific. It doesn't affect 4.0 and was fixed
in 5.x before.
Having any mysql user who is allowed to issue multi table update
statement and any column/table grants, allows this user to update
any table on a server (mysql grant tables are not exception).
check_grant() accepts number of tables (in table list) to be checked
in 5-th param. While checking grants for multi table update, number
of tables must be 1. It must never be 0 (actually we have
DBUG_ASSERT(number > 0) in 5.x in grant_check() function).
this is a cleanup patch for our current auto_increment handling:
new names for auto_increment variables in THD, new methods to manipulate them
(see sql_class.h), some move into handler::, causing less backup/restore
work when executing substatements.
This makes the logic hopefully clearer, less work is is needed in
mysql_insert().
By cleaning up, using different variables for different purposes (instead
of one for 3 things...), we fix those bugs, which someone may want to fix
in 5.0 too:
BUG#20339 "stored procedure using LAST_INSERT_ID() does not replicate
statement-based"
BUG#20341 "stored function inserting into one auto_increment puts bad
data in slave"
BUG#19243 "wrong LAST_INSERT_ID() after ON DUPLICATE KEY UPDATE"
(now if a row is updated, LAST_INSERT_ID() will return its id)
and re-fixes:
BUG#6880 "LAST_INSERT_ID() value changes during multi-row INSERT"
(already fixed differently by Ramil in 4.1)
Test of documented behaviour of mysql_insert_id() (there was no test).
The behaviour changes introduced are:
- LAST_INSERT_ID() now returns "the first autogenerated auto_increment value
successfully inserted", instead of "the first autogenerated auto_increment
value if any row was successfully inserted", see auto_increment.test.
Same for mysql_insert_id(), see mysql_client_test.c.
- LAST_INSERT_ID() returns the id of the updated row if ON DUPLICATE KEY
UPDATE, see auto_increment.test. Same for mysql_insert_id(), see
mysql_client_test.c.
- LAST_INSERT_ID() does not change if no autogenerated value was successfully
inserted (it used to then be 0), see auto_increment.test.
- if in INSERT SELECT no autogenerated value was successfully inserted,
mysql_insert_id() now returns the id of the last inserted row (it already
did this for INSERT VALUES), see mysql_client_test.c.
- if INSERT SELECT uses LAST_INSERT_ID(X), mysql_insert_id() now returns X
(it already did this for INSERT VALUES), see mysql_client_test.c.
- NDB now behaves like other engines wrt SET INSERT_ID: with INSERT IGNORE,
the id passed in SET INSERT_ID is re-used until a row succeeds; SET INSERT_ID
influences not only the first row now.
Additionally, when unlocking a table we check that the thread is not keeping
a next_insert_id (as the table is unlocked that id is potentially out-of-date);
forgetting about this next_insert_id is done in a new
handler::ha_release_auto_increment().
Finally we prepare for engines capable of reserving finite-length intervals
of auto_increment values: we store such intervals in THD. The next step
(to be done by the replication team in 5.1) is to read those intervals from
THD and actually store them in the statement-based binary log. NDB
will be a good engine to test that.
NDB table".
SQL-layer was not marking fields which were used in triggers as such. As
result these fields were not always properly retrieved/stored by handler
layer. So one might got wrong values or lost changes in triggers for NDB,
Federated and possibly InnoDB tables.
This fix solves the problem by marking fields used in triggers
appropriately.
Also this patch contains the following cleanup of ha_ndbcluster code:
We no longer rely on reading LEX::sql_command value in handler in order
to determine if we can enable optimization which allows us to handle REPLACE
statement in more efficient way by doing replaces directly in write_row()
method without reporting error to SQL-layer.
Instead we rely on SQL-layer informing us whether this optimization
applicable by calling handler::extra() method with
HA_EXTRA_WRITE_CAN_REPLACE flag.
As result we no longer apply this optimzation in cases when it should not
be used (e.g. if we have on delete triggers on table) and use in some
additional cases when it is applicable (e.g. for LOAD DATA REPLACE).
Finally this patch includes fix for bug#20728 "REPLACE does not work
correctly for NDB table with PK and unique index".
This was yet another problem which was caused by improper field mark-up.
During row replacement fields which weren't explicity used in REPLACE
statement were not marked as fields to be saved (updated) so they have
retained values from old row version. The fix is to mark all table
fields as set for REPLACE statement. Note that in 5.1 we already solve
this problem by notifying handler that it should save values from all
fields only in case when real replacement happens.
BUG#18036 - update of table joined to self reports table as crashed
Set exclude_from_table_unique_test value back to FALSE. It is needed for
further check in multi_update::prepare whether to use record cache.
Certain updates of table joined to self results in unexpected
behavior.
The problem was that record cache was mistakenly enabled for
self-joined table updates. Normally record cache must be disabled
for such updates.
Fixed wrong condition in code that determines whether to use
record cache for self-joined table updates.
Only MyISAM tables were affected.
Changes that requires code changes in other code of other storage engines.
(Note that all changes are very straightforward and one should find all issues
by compiling a --debug build and fixing all compiler errors and all
asserts in field.cc while running the test suite),
- New optional handler function introduced: reset()
This is called after every DML statement to make it easy for a handler to
statement specific cleanups.
(The only case it's not called is if force the file to be closed)
- handler::extra(HA_EXTRA_RESET) is removed. Code that was there before
should be moved to handler::reset()
- table->read_set contains a bitmap over all columns that are needed
in the query. read_row() and similar functions only needs to read these
columns
- table->write_set contains a bitmap over all columns that will be updated
in the query. write_row() and update_row() only needs to update these
columns.
The above bitmaps should now be up to date in all context
(including ALTER TABLE, filesort()).
The handler is informed of any changes to the bitmap after
fix_fields() by calling the virtual function
handler::column_bitmaps_signal(). If the handler does caching of
these bitmaps (instead of using table->read_set, table->write_set),
it should redo the caching in this code. as the signal() may be sent
several times, it's probably best to set a variable in the signal
and redo the caching on read_row() / write_row() if the variable was
set.
- Removed the read_set and write_set bitmap objects from the handler class
- Removed all column bit handling functions from the handler class.
(Now one instead uses the normal bitmap functions in my_bitmap.c instead
of handler dedicated bitmap functions)
- field->query_id is removed. One should instead instead check
table->read_set and table->write_set if a field is used in the query.
- handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and
handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now
instead use table->read_set to check for which columns to retrieve.
- If a handler needs to call Field->val() or Field->store() on columns
that are not used in the query, one should install a temporary
all-columns-used map while doing so. For this, we provide the following
functions:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
field->val();
dbug_tmp_restore_column_map(table->read_set, old_map);
and similar for the write map:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
field->val();
dbug_tmp_restore_column_map(table->write_set, old_map);
If this is not done, you will sooner or later hit a DBUG_ASSERT
in the field store() / val() functions.
(For not DBUG binaries, the dbug_tmp_restore_column_map() and
dbug_tmp_restore_column_map() are inline dummy functions and should
be optimized away be the compiler).
- If one needs to temporary set the column map for all binaries (and not
just to avoid the DBUG_ASSERT() in the Field::store() / Field::val()
methods) one should use the functions tmp_use_all_columns() and
tmp_restore_column_map() instead of the above dbug_ variants.
- All 'status' fields in the handler base class (like records,
data_file_length etc) are now stored in a 'stats' struct. This makes
it easier to know what status variables are provided by the base
handler. This requires some trivial variable names in the extra()
function.
- New virtual function handler::records(). This is called to optimize
COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true.
(stats.records is not supposed to be an exact value. It's only has to
be 'reasonable enough' for the optimizer to be able to choose a good
optimization path).
- Non virtual handler::init() function added for caching of virtual
constants from engine.
- Removed has_transactions() virtual method. Now one should instead return
HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support
transactions.
- The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument
that is to be used with 'new handler_name()' to allocate the handler
in the right area. The xxxx_create_handler() function is also
responsible for any initialization of the object before returning.
For example, one should change:
static handler *myisam_create_handler(TABLE_SHARE *table)
{
return new ha_myisam(table);
}
->
static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root)
{
return new (mem_root) ha_myisam(table);
}
- New optional virtual function: use_hidden_primary_key().
This is called in case of an update/delete when
(table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined
but we don't have a primary key. This allows the handler to take precisions
in remembering any hidden primary key to able to update/delete any
found row. The default handler marks all columns to be read.
- handler::table_flags() now returns a ulonglong (to allow for more flags).
- New/changed table_flags()
- HA_HAS_RECORDS Set if ::records() is supported
- HA_NO_TRANSACTIONS Set if engine doesn't support transactions
- HA_PRIMARY_KEY_REQUIRED_FOR_DELETE
Set if we should mark all primary key columns for
read when reading rows as part of a DELETE
statement. If there is no primary key,
all columns are marked for read.
- HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some
cases (based on table->read_set)
- HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS
Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION.
- HA_DUPP_POS Renamed to HA_DUPLICATE_POS
- HA_REQUIRES_KEY_COLUMNS_FOR_DELETE
Set this if we should mark ALL key columns for
read when when reading rows as part of a DELETE
statement. In case of an update we will mark
all keys for read for which key part changed
value.
- HA_STATS_RECORDS_IS_EXACT
Set this if stats.records is exact.
(This saves us some extra records() calls
when optimizing COUNT(*))
- Removed table_flags()
- HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if
handler::records() gives an exact count() and
HA_STATS_RECORDS_IS_EXACT if stats.records is exact.
- HA_READ_RND_SAME Removed (no one supported this one)
- Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk()
- Renamed handler::dupp_pos to handler::dup_pos
- Removed not used variable handler::sortkey
Upper level handler changes:
- ha_reset() now does some overall checks and calls ::reset()
- ha_table_flags() added. This is a cached version of table_flags(). The
cache is updated on engine creation time and updated on open.
MySQL level changes (not obvious from the above):
- DBUG_ASSERT() added to check that column usage matches what is set
in the column usage bit maps. (This found a LOT of bugs in current
column marking code).
- In 5.1 before, all used columns was marked in read_set and only updated
columns was marked in write_set. Now we only mark columns for which we
need a value in read_set.
- Column bitmaps are created in open_binary_frm() and open_table_from_share().
(Before this was in table.cc)
- handler::table_flags() calls are replaced with handler::ha_table_flags()
- For calling field->val() you must have the corresponding bit set in
table->read_set. For calling field->store() you must have the
corresponding bit set in table->write_set. (There are asserts in
all store()/val() functions to catch wrong usage)
- thd->set_query_id is renamed to thd->mark_used_columns and instead
of setting this to an integer value, this has now the values:
MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE
Changed also all variables named 'set_query_id' to mark_used_columns.
- In filesort() we now inform the handler of exactly which columns are needed
doing the sort and choosing the rows.
- The TABLE_SHARE object has a 'all_set' column bitmap one can use
when one needs a column bitmap with all columns set.
(This is used for table->use_all_columns() and other places)
- The TABLE object has 3 column bitmaps:
- def_read_set Default bitmap for columns to be read
- def_write_set Default bitmap for columns to be written
- tmp_set Can be used as a temporary bitmap when needed.
The table object has also two pointer to bitmaps read_set and write_set
that the handler should use to find out which columns are used in which way.
- count() optimization now calls handler::records() instead of using
handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true).
- Added extra argument to Item::walk() to indicate if we should also
traverse sub queries.
- Added TABLE parameter to cp_buffer_from_ref()
- Don't close tables created with CREATE ... SELECT but keep them in
the table cache. (Faster usage of newly created tables).
New interfaces:
- table->clear_column_bitmaps() to initialize the bitmaps for tables
at start of new statements.
- table->column_bitmaps_set() to set up new column bitmaps and signal
the handler about this.
- table->column_bitmaps_set_no_signal() for some few cases where we need
to setup new column bitmaps but don't signal the handler (as the handler
has already been signaled about these before). Used for the momement
only in opt_range.cc when doing ROR scans.
- table->use_all_columns() to install a bitmap where all columns are marked
as use in the read and the write set.
- table->default_column_bitmaps() to install the normal read and write
column bitmaps, but not signaling the handler about this.
This is mainly used when creating TABLE instances.
- table->mark_columns_needed_for_delete(),
table->mark_columns_needed_for_delete() and
table->mark_columns_needed_for_insert() to allow us to put additional
columns in column usage maps if handler so requires.
(The handler indicates what it neads in handler->table_flags())
- table->prepare_for_position() to allow us to tell handler that it
needs to read primary key parts to be able to store them in
future table->position() calls.
(This replaces the table->file->ha_retrieve_all_pk function)
- table->mark_auto_increment_column() to tell handler are going to update
columns part of any auto_increment key.
- table->mark_columns_used_by_index() to mark all columns that is part of
an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow
it to quickly know that it only needs to read colums that are part
of the key. (The handler can also use the column map for detecting this,
but simpler/faster handler can just monitor the extra() call).
- table->mark_columns_used_by_index_no_reset() to in addition to other columns,
also mark all columns that is used by the given key.
- table->restore_column_maps_after_mark_index() to restore to default
column maps after a call to table->mark_columns_used_by_index().
- New item function register_field_in_read_map(), for marking used columns
in table->read_map. Used by filesort() to mark all used columns
- Maintain in TABLE->merge_keys set of all keys that are used in query.
(Simplices some optimization loops)
- Maintain Field->part_of_key_not_clustered which is like Field->part_of_key
but the field in the clustered key is not assumed to be part of all index.
(used in opt_range.cc for faster loops)
- dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map()
tmp_use_all_columns() and tmp_restore_column_map() functions to temporally
mark all columns as usable. The 'dbug_' version is primarily intended
inside a handler when it wants to just call Field:store() & Field::val()
functions, but don't need the column maps set for any other usage.
(ie:: bitmap_is_set() is never called)
- We can't use compare_records() to skip updates for handlers that returns
a partial column set and the read_set doesn't cover all columns in the
write set. The reason for this is that if we have a column marked only for
write we can't in the MySQL level know if the value changed or not.
The reason this worked before was that MySQL marked all to be written
columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden
bug'.
- open_table_from_share() does not anymore setup temporary MEM_ROOT
object as a thread specific variable for the handler. Instead we
send the to-be-used MEMROOT to get_new_handler().
(Simpler, faster code)
Bugs fixed:
- Column marking was not done correctly in a lot of cases.
(ALTER TABLE, when using triggers, auto_increment fields etc)
(Could potentially result in wrong values inserted in table handlers
relying on that the old column maps or field->set_query_id was correct)
Especially when it comes to triggers, there may be cases where the
old code would cause lost/wrong values for NDB and/or InnoDB tables.
- Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags:
OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG.
This allowed me to remove some wrong warnings about:
"Some non-transactional changed tables couldn't be rolled back"
- Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset
(thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose
some warnings about
"Some non-transactional changed tables couldn't be rolled back")
- Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table()
which could cause delete_table to report random failures.
- Fixed core dumps for some tests when running with --debug
- Added missing FN_LIBCHAR in mysql_rm_tmp_tables()
(This has probably caused us to not properly remove temporary files after
crash)
- slow_logs was not properly initialized, which could maybe cause
extra/lost entries in slow log.
- If we get an duplicate row on insert, change column map to read and
write all columns while retrying the operation. This is required by
the definition of REPLACE and also ensures that fields that are only
part of UPDATE are properly handled. This fixed a bug in NDB and
REPLACE where REPLACE wrongly copied some column values from the replaced
row.
- For table handler that doesn't support NULL in keys, we would give an error
when creating a primary key with NULL fields, even after the fields has been
automaticly converted to NOT NULL.
- Creating a primary key on a SPATIAL key, would fail if field was not
declared as NOT NULL.
Cleanups:
- Removed not used condition argument to setup_tables
- Removed not needed item function reset_query_id_processor().
- Field->add_index is removed. Now this is instead maintained in
(field->flags & FIELD_IN_ADD_INDEX)
- Field->fieldnr is removed (use field->field_index instead)
- New argument to filesort() to indicate that it should return a set of
row pointers (not used columns). This allowed me to remove some references
to sql_command in filesort and should also enable us to return column
results in some cases where we couldn't before.
- Changed column bitmap handling in opt_range.cc to be aligned with TABLE
bitmap, which allowed me to use bitmap functions instead of looping over
all fields to create some needed bitmaps. (Faster and smaller code)
- Broke up found too long lines
- Moved some variable declaration at start of function for better code
readability.
- Removed some not used arguments from functions.
(setup_fields(), mysql_prepare_insert_check_table())
- setup_fields() now takes an enum instead of an int for marking columns
usage.
- For internal temporary tables, use handler::write_row(),
handler::delete_row() and handler::update_row() instead of
handler::ha_xxxx() for faster execution.
- Changed some constants to enum's and define's.
- Using separate column read and write sets allows for easier checking
of timestamp field was set by statement.
- Remove calls to free_io_cache() as this is now done automaticly in ha_reset()
- Don't build table->normalized_path as this is now identical to table->path
(after bar's fixes to convert filenames)
- Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to
do comparision with the 'convert-dbug-for-diff' tool.
Things left to do in 5.1:
- We wrongly log failed CREATE TABLE ... SELECT in some cases when using
row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result)
Mats has promised to look into this.
- Test that my fix for CREATE TABLE ... SELECT is indeed correct.
(I added several test cases for this, but in this case it's better that
someone else also tests this throughly).
Lars has promosed to do this.
The check for view security was lacking several points :
1. Check with the right set of permissions : for each table ref that
participates in a view there were the right credentials to use in it's
security_ctx member, but these weren't used for checking the credentials.
This makes hard enforcing the SQL SECURITY DEFINER|INVOKER property
consistently.
2. Because of the above the security checking for views was just ruled out
in explicit ways in several places.
3. The security was checked only for the columns of the tables that are
brought into the query from a view. So if there is no column reference
outside of the view definition it was not detecting the lack of access to
the tables in the view in SQL SECURITY INVOKER mode.
The fix below tries to fix the above 3 points.
Mutli-table uses temporary table to store new values for fields. With the
new values the rowid of the record to be updated is stored in a Field_string
field. Table to be updated is set as source table of the rowid field.
But when the temporary table creates the tmp field for the rowid field it
converts it to a varstring field because the table to be updated was created by
the v4.1. Due to this the stored rowids were broken and no records for
update were found.
The flag can_alter_field_type is added to Field_string class. When it is set to
0 the field won't be converted to varstring. The Field_string::type() function
now always returns MYSQL_TYPE_STRING if can_alter_field_type is set to 0.
The multi_update::initialize_tables() function now sets can_alter_field_type
flag to 0 for the rowid fields denying conversion of the field to a varstring
field.
- Added empty constructors and virtual destructors to many classes and structs
- Removed some usage of the offsetof() macro to instead use C++ class pointers
trigger starts trigger".
In short, the deadlock/crash happened when execution of statement, which used
stored functions or activated triggers, coincided with alteration of the
tables used by these functions or triggers (in highly concurrent environment).
Bug was caused by the incorrect handling of tables from prelocked set in
open_tables() functions in situations when refresh happened. This fix replaces
old smart but not very robust way of handling tables after refresh (which was
closing only old tables), with new one which simply closes all tables opened so
far and restarts open_tables().
Also fixed handling of temporary tables in close_tables_for_reopen().
No test case present since bug manifests itself only in concurrent environment.
Problem #1: INSERT...SELECT, Version for 5.1.
Extended the unique table check by a check of lock data.
Merge sub-tables cannot be detected by doing name checks only.
Problem #1: INSERT...SELECT, Version for 5.0.
Extended the unique table check by a check of lock data.
Merge sub-tables cannot be detected by doing name checks only.
Problem #1: INSERT...SELECT, Version for 4.1.
INSERT ... SELECT with the same table on both sides (hidden
below a MERGE table) does now work by buffering the select result.
The duplicate detection works now after open_and_lock_tables()
on the locks.
I did not find a test case that failed without the change in
sql_update.cc. I made the change anyway as it should in theory
fix a possible MERGE table problem with multi-table update.
depending on table order
multi_update::send_data() was counting updates, not updated rows. Thus if one
record have several updates it will be counted several times in 'rows matched'
but updated only once.
multi_update::send_data() now counts only unique rows.
The table opening process now works the following way:
- Create common TABLE_SHARE object
- Read the .frm file and unpack it into the TABLE_SHARE object
- Create a TABLE object based on the information in the TABLE_SHARE
object and open a handler to the table object
Other noteworthy changes:
- In TABLE_SHARE the most common strings are now LEX_STRING's
- Better error message when table is not found
- Variable table_cache is now renamed 'table_open_cache'
- New variable 'table_definition_cache' that is the number of table defintions that will be cached
- strxnmov() calls are now fixed to avoid overflows
- strxnmov() will now always add one end \0 to result
- engine objects are now created with a TABLE_SHARE object instead of a TABLE object.
- After creating a field object one must call field->init(table) before using it
- For a busy system this change will give you:
- Less memory usage for table object
- Faster opening of tables (if it's has been in use or is in table definition cache)
- Allow you to cache many table definitions objects
- Faster drop of table
Date field was declared as not null, thus expression 'datefield is null'
was always false. For SELECT special handling of such cases is used.
There 'datefield is null' converted to 'datefield eq "0000-00-00"'.
In mysql_update() before creation of select added remove_eq_conds() call.
It makes some optimization of conds and in particular performs conversion
from 'is null' to 'eq'.
Also remove_eq_conds() makes some evaluation of conds and if it founds that
conds is always false then update statement is not processed further.
All this allows to perform some update statements process faster due to
optimized conds, and not wasting resources if conds known to be false.