Item_func_spatial_collection::val_str
When the concatenation function for geometry data collections
reads the binary data it was not rigorous in checking that there
is data available, leading to invalid reads and crashes.
Fixed by making checking stricter.
the Point() and Linestring() functions create WKB representation of an
object instead of an real geometry object.
That produced bugs when these were inserted into tables.
GIS tests fixed accordingly.
per-file messages:
mysql-test/r/gis-rtree.result
Bug#38990 Arbitrary data input plus GIS functions causes mysql server crash
test result
mysql-test/r/gis.result
Bug#38990 Arbitrary data input plus GIS functions causes mysql server crash
test result
mysql-test/t/gis-rtree.test
Bug#38990 Arbitrary data input plus GIS functions causes mysql server crash
test fixed - GeomFromWKB invocations removed
mysql-test/t/gis.test
Bug#38990 Arbitrary data input plus GIS functions causes mysql server crash
test fixed - AsWKB invocations added
sql/item_geofunc.cc
Bug#38990 Arbitrary data input plus GIS functions causes mysql server crash
Point() and similar functions to create a proper object
Various parts of code used different 'precision' arguments for sprintf("%g") when converting
floating point numbers to a string. This led to differences in results in some cases
depending on whether the text-based or prepared statements protocol is used for a query.
Fixed by changing arguments to sprintf("%g") to always be 15 (DBL_DIG) so that results are
consistent regardless of the protocol.
This patch will be null-merged to 6.0 as the problem does not exists there (fixed by the
patch for WL#2934).
but not collation.
The problem here was that text literals in a view were always
dumped with character set introducer. That lead to loosing
collation information.
The fix is to dump character set introducer only if it was
in the original query. That is now possible because there
is no problem any more of loss of character set of string
literals in views -- after WL#4052 the view is dumped
in the original character set.
SPATIAL key is fine actually, but the chk_key() function
mistakenly returns error. It tries to compare checksums
of btree and SPATIAL keys while the checksum for the SPATIAL isn't
calculated (always 0). Same thing with FULLTEXT keys is handled
using full_text_keys counter, so fixed by counting both
SPATIAL and FULLTEXT keys in that counter.
max_length parameter for BLOB-returning functions must be big enough
for any possible content. Otherwise the field created for a table
will be too small.
Fixed the usage of spatial data (and Point in specific) with
non-spatial indexes.
Several problems :
- The length of the Point class was not updated to include the
spatial reference system identifier. Fixed by increasing with 4
bytes.
- The storage length of the spatial columns was not accounting for
the length that is prepended to it. Fixed by treating the
spatial data columns as blobs (and thus increasing the storage
length)
- When creating the key image for comparison in index read wrong
key image was created (the one needed for and r-tree search,
not the one for b-tree/other search). Fixed by treating the
spatial data columns as blobs (and creating the correct kind of
image based on the index type).
added get_field_default_value() function which obtains default value from the field
(used in store_create_info() & get_schema_column_record() functions)
AsText() needs to know the maximum number of
characters a IEEE double precision value can
occupy to make sure there's enough buffer space.
The number was too small to hold all possible
values and this caused buffer overruns.
Fixed by correcting the calculation of the
maximum digits in a string representation of an
IEEE double precision value as printed by
String::qs_append(double).
- BUG#11986: Stored routines and triggers can fail if the code
has a non-ascii symbol
- BUG#16291: mysqldump corrupts string-constants with non-ascii-chars
- BUG#19443: INFORMATION_SCHEMA does not support charsets properly
- BUG#21249: Character set of SP-var can be ignored
- BUG#25212: Character set of string constant is ignored (stored routines)
- BUG#25221: Character set of string constant is ignored (triggers)
There were a few general problems that caused these bugs:
1. Character set information of the original (definition) query for views,
triggers, stored routines and events was lost.
2. mysqldump output query in client character set, which can be
inappropriate to encode definition-query.
3. INFORMATION_SCHEMA used strings with mixed encodings to display object
definition;
1. No query-definition-character set.
In order to compile query into execution code, some extra data (such as
environment variables or the database character set) is used. The problem
here was that this context was not preserved. So, on the next load it can
differ from the original one, thus the result will be different.
The context contains the following data:
- client character set;
- connection collation (character set and collation);
- collation of the owner database;
The fix is to store this context and use it each time we parse (compile)
and execute the object (stored routine, trigger, ...).
2. Wrong mysqldump-output.
The original query can contain several encodings (by means of character set
introducers). The problem here was that we tried to convert original query
to the mysqldump-client character set.
Moreover, we stored queries in different character sets for different
objects (views, for one, used UTF8, triggers used original character set).
The solution is
- to store definition queries in the original character set;
- to change SHOW CREATE statement to output definition query in the
binary character set (i.e. without any conversion);
- introduce SHOW CREATE TRIGGER statement;
- to dump special statements to switch the context to the original one
before dumping and restore it afterwards.
Note, in order to preserve the database collation at the creation time,
additional ALTER DATABASE might be used (to temporary switch the database
collation back to the original value). In this case, ALTER DATABASE
privilege will be required. This is a backward-incompatible change.
3. INFORMATION_SCHEMA showed non-UTF8 strings
The fix is to generate UTF8-query during the parsing, store it in the object
and show it in the INFORMATION_SCHEMA.
Basically, the idea is to create a copy of the original query convert it to
UTF8. Character set introducers are removed and all text literals are
converted to UTF8.
This UTF8 query is intended to provide user-readable output. It must not be
used to recreate the object. Specialized SHOW CREATE statements should be
used for this.
The reason for this limitation is the following: the original query can
contain symbols from several character sets (by means of character set
introducers).
Example:
- original query:
CREATE VIEW v1 AS SELECT _cp1251 'Hello' AS c1;
- UTF8 query (for INFORMATION_SCHEMA):
CREATE VIEW v1 AS SELECT 'Hello' AS c1;
This bug was introduced by the fix for the bug#27300. In this fix a section
of code was added to the Item::tmp_table_field_from_field_type method.
This section intended to create Field_geom fields for the Item_geometry_func
class and its descendants. In order to get the geometry type of the current
item it casted "this" to the Item_geometry_func* type. But the
Item::tmp_table_field_from_field_type method is also used for creation of
fields for UNION and in this case this method is called for an object of the
Item_type_holder class and the cast to the Item_geometry_func* type causes
a server crash.
Now the Item::tmp_table_field_from_field_type method correctly works when it's
called for both the Item_type_holder and the Item_geometry_func classes.
The new geometry_type variable is added to the Item_type_holder class.
The new method called get_geometry_type is added to the Item_field
and the Field classes. It returns geometry type from the field for the
Item_field and the Field_geom classes and fails an assert for other Field
descendants.
- added join cache indication in EXPLAIN (Extra column).
- prefer filesort over full scan over
index for ORDER BY (because it's faster).
- when switching from REF to RANGE because
RANGE uses longer key turn off sort on
the head table only as the resulting
RANGE access is a candidate for join cache
and we don't want to disable it by sorting
on the first table only.
Geometry fields have a result type string and a
special subclass to cater for the differences
between them and the base class (just like
DATE/TIME).
When creating temporary tables for results of
functions that return results of type GEOMETRY
we must construct fields of the derived class
instead of the base class.
Fixed by creating a GEOMETRY field (Field_geom)
instead of a generic BLOB (Field_blob) in temp
tables for the results of GIS functions that
have GEOMETRY return type (Item_geometry_func).
to 0 causes wrong (large) length to be read
from the row in _mi_calc_blob_length() when
storing NULL values in (e.g) POINT columns.
This large length is then used to allocate
a block of memory that (on some OSes) causes
trouble.
Fixed by calling the base class's
Field_blob::reset() from Field_geom::reset()
that is called when storing a NULL value into
the column.
Fix is to rewrite the MBR::overlaps() function, to compute the dimension of both
arguments, and the dimension of the intersection; test that all three dimensions are the
same (e.g., all are Polygons).
Add tests for all MBR* functions for various combinations of shapes, lines and points.
Having maybe_null flag unset for geometry/spatial functions leads to
wrong Item_func_isnull::val_int()'s results.
Fix: set maybe_null flag and add is_null() methods.