- Removed files specific to compiling on OS/2
- Removed files specific to SCO Unix packaging
- Removed "libmysqld/copyright", text is included in documentation
- Removed LaTeX headers for NDB Doxygen documentation
- Removed obsolete NDB files
- Removed "mkisofs" binaries
- Removed the "cvs2cl.pl" script
- Changed a few GPL texts to use "program" instead of "library"
This is a regression from the fix for bug no 38999. A storage engine capable
of reading only a subset of a table's columns updates corresponding bits in
the read buffer to signal that it has read NULL values for the corresponding
columns. It cannot, and should not, update any other bits. Bug no 38999
occurred because the implementation of UPDATE statements compare the NULL bits
using memcmp, inadvertently comparing bits that were never requested from the
storage engine. The regression was caused by the storage engine trying to
alleviate the situation by writing to all NULL bits, even those that it had no
knowledge of. This has devastating effects for the index merge algorithm,
which relies on all NULL bits, except those explicitly requested, being left
unchanged.
The fix reverts the fix for bug no 38999 in both InnoDB and InnoDB plugin and
changes the server's method of comparing records. For engines that always read
entire rows, we proceed as usual. For engines capable of reading only select
columns, the record buffers are now compared on a column by column basis. An
assertion was also added so that non comparable buffers are never read. Some
relevant copy-pasted code was also consolidated in a new function.
INSERT IGNORE ... SELECT ... UNION SELECT ...
This assert was triggered by INSERT IGNORE ... SELECT. The assert checks that a
statement either sends OK or an error to the client. If the bug was triggered
on release builds, it caused OK to be sent to the client instead of the correct
error message (in this case ER_FIELD_SPECIFIED_TWICE).
The reason the assert was triggered, was that lex->no_error was set to TRUE
during JOIN::optimize() because of IGNORE. This causes all errors to be ignored.
However, not all errors can be ignored. Some, such as ER_FIELD_SPECIFIED_TWICE
will cause the INSERT to fail no matter what. But since lex->no_error was set,
the critical errors were ignored, the INSERT failed and neither OK nor the
error message was sent to the client.
This patch fixes the problem by temporarily turning off lex->no_error in
places where errors cannot be ignored during processing of INSERT ... SELECT.
Test case added to insert.test.
This assert checks that the server does not try to send OK to the
client if there has been some error during processing. This is done
to make sure that the error is in fact sent to the client.
The problem was that view errors during processing of WHERE conditions
in UPDATE statements where not detected by the update code. It therefore
tried to send OK to the client, triggering the assert.
The bug was only noticeable in debug builds.
This patch fixes the problem by making sure that the update code
checks for errors during condition processing and acts accordingly.
strict aliasing violations.
One somewhat major source of strict-aliasing violations and
related warnings is the SQL_LIST structure. For example,
consider its member function `link_in_list` which takes
a pointer to pointer of type T (any type) as a pointer to
pointer to unsigned char. Dereferencing this pointer, which
is done to reset the next field, violates strict-aliasing
rules and might cause problems for surrounding code that
uses the next field of the object being added to the list.
The solution is to use templates to parametrize the SQL_LIST
structure in order to deference the pointers with compatible
types. As a side bonus, it becomes possible to remove quite
a few casts related to acessing data members of SQL_LIST.
without FOR UPDATE is causing a lock".
SELECT statements with subqueries referencing InnoDB tables
were acquiring shared locks on rows in these tables when they
were executed in REPEATABLE-READ mode and with statement or
mixed mode binary logging turned on.
This was a regression which were introduced when fixing
bug 39843.
The problem was that for tables belonging to subqueries
parser set TL_READ_DEFAULT as a lock type. In cases when
statement/mixed binary logging at open_tables() time this
type of lock was converted to TL_READ_NO_INSERT lock at
open_tables() time and caused InnoDB engine to acquire
shared locks on reads from these tables. Although in some
cases such behavior was correct (e.g. for subqueries in
DELETE) in case of SELECT it has caused unnecessary locking.
This patch implements minimal version of the fix for the
specific problem described in the bug-report which supposed
to be not too risky for pushing into 5.1 tree.
The 5.5 tree already contains a more appropriate solution
which also addresses other related issues like bug 53921
"Wrong locks for SELECTs used stored functions may lead
to broken SBR".
This patch tries to solve the problem by ensuring that
TL_READ_DEFAULT lock which is set in the parser for
tables participating in subqueries at open_tables()
time is interpreted as TL_READ_NO_INSERT or TL_READ.
TL_READ is used only if we know that this is a SELECT
and that this particular table is not used by a stored
function.
Test coverage is added for both InnoDB and MyISAM.
This patch introduces an "incompatible" change in locking
scheme for subqueries used in SELECT ... FOR UPDATE and
SELECT .. IN SHARE MODE.
In 4.1 (as well as in 5.0 and 5.1 before fix for bug 39843)
the server would use a snapshot InnoDB read for subqueries
in SELECT FOR UPDATE and SELECT .. IN SHARE MODE statements,
regardless of whether the binary log is on or off.
If the user required a different type of read (i.e. locking
read), he/she could request so explicitly by providing FOR
UPDATE/IN SHARE MODE clause for each individual subquery.
The patch for bug 39843 broke this behaviour (which was not
documented or tested), and started to use locking reads for
all subqueries in SELECT ... FOR UPDATE/IN SHARE MODE.
This patch restores 4.1 behaviour.
This patch should be mostly null-merged into 5.5 tree.
bitmap_is_set(table->read_set, field_index))
UPDATE on an InnoDB table modifying the same index that is used
to satisfy the WHERE condition could trigger a debug assertion
under some circumstances.
Since for engines with the HA_PRIMARY_KEY_IN_READ_INDEX flag
set results of an index scan on a secondary index are appended
by the primary key value, if a query involves only columns from
the primary key and a secondary index, the latter is considered
to be covering.
That tricks mysql_update() to mark for reading only columns
from the secondary index when it does an index scan to retrieve
rows to update in case a part of that key is also being
updated. However, there may be other columns in WHERE that are
part of the primary key, but not the secondary one.
What we actually want to do in this case is to add index
columns to the existing WHERE columns bitmap rather than
replace it.
update statements
Only SELECT statements report any examined rows in the slow
log. Slow UPDATE, DELETE and INSERT statements report 0 rows
examined, unless the statement has a condition including a
SELECT substatement.
This patch adds counting of examined rows for the UPDATE and
DELETE statements. An INSERT ... VALUES statement will still
not report any rows as examined.
MySQL handles the join syntax "JOIN ... USING( field1,
... )" and natural joins by building the same parse tree as
a corresponding join with an "ON t1.field1 = t2.field1 ..."
expression would produce. This parse tree was not cleaned up
properly in the following scenario. If a thread tries to
lock some tables and finds that the tables were dropped and
re-created while waiting for the lock, it cleans up column
references in the statement by means a per-statement free
list. But if the statement was part of a stored procedure,
column references on the stored procedure's free list
weren't cleaned up and thus contained pointers to freed
objects.
Fixed by adding a call to clean up the current prepared
statement's free list.
This is a backport from MySQL 5.1
during an UPDATE
Extended the fix for bug 29310 to multi-table update:
When a table is being updated it has two set of fields - fields required for
checks of conditions and fields to be updated. A storage engine is allowed
not to retrieve columns marked for update. Due to this fact records can't
be compared to see whether the data has been changed or not. This makes the
server always update records independently of data change.
Now when an auto-updatable timestamp field is present and server sees that
a table handle isn't going to retrieve write-only fields then all of such
fields are marked as to be read to force the handler to retrieve them.
error causes debug assertion
The IGNORE option of the multiple-table UPDATE command was
not intended to suppress errors caused by the
sql_safe_updates mode. This flag will raise an error if the
execution of UPDATE does not use a key for row retrieval,
and should continue do so regardless of the IGNORE option.
However the implementation of IGNORE does not support
exceptions to the rule; it always converts errors to
warnings and cannot be extended. The Internal_error_handler
interface offers the infrastructure to handle individual
errors, making sure that the error raised by
sql_safe_updates is not silenced.
Fixed by implementing an Internal_error_handler and using it
for UPDATE IGNORE commands.
Queries optimized with GROUP_MIN_MAX didn't cleanup KEYREAD
optimization properly. As a result subsequent queries may
return incomplete rows (fields are initialized to default
values).
MySQL handles the join syntax "JOIN ... USING( field1,
... )" and natural joins by building the same parse tree as
a corresponding join with an "ON t1.field1 = t2.field1 ..."
expression would produce. This parse tree was not cleaned up
properly in the following scenario. If a thread tries to
lock some tables and finds that the tables were dropped and
re-created while waiting for the lock, it cleans up column
references in the statement by means a per-statement free
list. But if the statement was part of a stored procedure,
column references on the stored procedure's free list weren't
cleaned up and thus contained pointers to freed objects.
Fixed by adding a call to clean up the current prepared
statement's free list.
5.0 buffer overflow for ER_UPDATE_INFO, or truncated info message in 5.1
5.0.86 has a buffer overflow/crash, and 5.1.40 has a truncated message.
errmsg.txt contains this:
ER_UPDATE_INFO
rum "Linii identificate (matched): %ld Schimbate: %ld Atentionari
(warnings): %ld"
When that is sprintf'd into a buffer of STRING_BUFFER_USUAL_SIZE size,
a buffer overflow can happen.
The solution to this is to use MYSQL_ERRMSG_SIZE for the buffer size,
instead of STRING_BUFFER_USUAL_SIZE. This will allow longer strings.
To avoid potential crashes, we will also use my_snprintf instead of
sprintf.
This assertion would occur if UPDATE was used to update multiple
tables containing an AUTO_INCREMENT column and if the inserted
row had a user-supplied value for that column. The assertion
could then be triggered by the next statement.
The problem was only noticeable on debug builds of the server.
The cause of the problem was that the code for multi update did
not properly reset the TABLE->auto_increment_if_null flag after update.
The flag is used to indicate that a non-null value of an auto_increment field
has been provided by the user or retrieved from a current record.
Open_tables() contains an assertion that tests this flag, and this
was triggered in this case by ALTER TABLE.
This patch fixes the problem by resetting the auto_increment_if_null
field to FALSE once a row has been updated.
This bug is similar to Bug#47274, but for multi update rather
than INSERT DELAYED.
Test case added to update.test.
Implemented the server infrastructure for the fix:
1. Added a function LEX_STRING *thd_query_string(THD) to return
a LEX_STRING structure instead of char *.
This is the function that must be called in innodb instead of
thd_query()
2. Did some encapsulation in THD : aggregated thd_query and
thd_query_length into a LEX_STRING and made accessor and mutator
methods for easy code updating.
3. Updated the server code to use the new methods where applicable.
with gcc 4.3.2
This patch fixes a number of GCC warnings about variables used
before initialized. A new macro UNINIT_VAR() is introduced for
use in the variable declaration, and LINT_INIT() usage will be
gradually deprecated. (A workaround is used for g++, pending a
patch for a g++ bug.)
GCC warnings for unused results (attribute warn_unused_result)
for a number of system calls (present at least in later
Ubuntus, where the usual void cast trick doesn't work) are
also fixed.
without error
When using quick access methods for searching rows in UPDATE or
DELETE there was no check if a fatal error was not already sent
to the client while evaluating the quick condition.
As a result a false OK (following the error) was sent to the
client and the error was thus transformed into a warning.
Fixed by checking for errors sent to the client during
SQL_SELECT::check_quick() and treating them as real errors.
Fixed a wrong test case in group_min_max.test
Fixed a wrong return code in mysql_update() and mysql_delete()
Large transactions and statements may corrupt the binary log if the size of the
cache, which is set by the max_binlog_cache_size, is not enough to store the
the changes.
In a nutshell, to fix the bug, we save the position of the next character in the
cache before starting processing a statement. If there is a problem, we simply
restore the position thus removing any effect of the statement from the cache.
Unfortunately, to avoid corrupting the binary log, we may end up loosing changes
on non-transactional tables if they do not fit in the cache. In such cases, we
store an Incident_log_event in order to stop the slave and alert users that some
changes were not logged.
Precisely, for every non-transactional changes that do not fit into the cache,
we do the following:
a) the statement is *not* logged
b) an incident event is logged after committing/rolling back the transaction,
if any. Note that if a failure happens before writing the incident event to
the binary log, the slave will not stop and the master will not have reported
any error.
c) its respective statement gives an error
For transactional changes that do not fit into the cache, we do the following:
a) the statement is *not* logged
b) its respective statement gives an error
To work properly, this patch requires two additional things. Firstly, callers to
MYSQL_BIN_LOG::write and THD::binlog_query must handle any error returned and
take the appropriate actions such as undoing the effects of a statement. We
already changed some calls in the sql_insert.cc, sql_update.cc and sql_insert.cc
modules but the remaining calls spread all over the code should be handled in
BUG#37148. Secondly, statements must be either classified as DDL or DML because
DDLs that do not get into the cache must generate an incident event since they
cannot be rolled back.
with gcc 4.3.2
Compiling MySQL with gcc 4.3.2 and later produces a number of
warnings, many of which are new with the recent compiler
versions.
This bug will be resolved in more than one patch to limit the
size of changesets. This is the second patch, fixing more
of the warnings.
with gcc 4.3.2
Compiling MySQL with gcc 4.3.2 and later produces a number of
warnings, many of which are new with the recent compiler
versions.
This bug will be resolved in more than one patch to limit the
size of changesets. This is the second patch, fixing more
of the warnings.
Make the caller of Query_log_event, Execute_load_log_event
constructors and THD::binlog_query to provide the error code
instead of having the constructors to figure out the error code.
Certain multi-updates gave different results on InnoDB from
to MyISAM, due to on-the-fly updates being used on the former and
the update order matters.
Fixed by turning off on-the-fly updates when update order
dependencies are present.
When the thread executing a DDL was killed after finished its
execution but before writing the binlog event, the error code in
the binlog event could be set wrongly to ER_SERVER_SHUTDOWN or
ER_QUERY_INTERRUPTED.
This patch fixed the problem by ignoring the kill status when
constructing the event for DDL statements.
This patch also included the following changes in order to
provide the test case.
1) modified mysqltest to support variable for connection command
2) modified mysql-test-run.pl, add new variable MYSQL_SLAVE to
run mysql client against the slave mysqld.
Documented behaviour was broken by the patch for bug 33699
that actually is not a bug.
This fix reverts patch for bug 33699 and reverts the
UPDATE of NOT NULL field with NULL query to old
behavior.
leads to an assertion failure
Any run-time error in stored function (like recursive function
call or update of table that is already updating by statement
which invoked this stored function etc.) that was used in some
expression of the single-table UPDATE statement caused an
assertion failure.
Multiple-table UPDATE (as well as INSERT and both single- and
multiple-table DELETE) are not affected.
enable uncacheable flag if we update a view with check option
and check option has a subselect, otherwise, the check option
can be evaluated after the subselect was freed as independent
(See full_local in JOIN::join_free())
derived table cause crash
When a multi-UPDATE command fails to lock some table, and
subsequently succeeds, the tables need to be reopened if
they were altered. But the reopening procedure failed for
derived tables.
Extra cleanup has been added.