The problem was that when using clang + asan, we do not get a correct value
for the thread stack as some local variables are not allocated at the
normal stack.
It looks like that for example clang 18.1.3, when compiling with
-O2 -fsanitize=addressan it puts local variables and things allocated by
alloca() in other areas than on the stack.
The following code shows the issue
Thread 6 "mariadbd" hit Breakpoint 3, do_handle_one_connection
(connect=0x5080000027b8,
put_in_cache=<optimized out>) at sql/sql_connect.cc:1399
THD *thd;
1399 thd->thread_stack= (char*) &thd;
(gdb) p &thd
(THD **) 0x7fffedee7060
(gdb) p $sp
(void *) 0x7fffef4e7bc0
The address of thd is 24M away from the stack pointer
(gdb) info reg
...
rsp 0x7fffef4e7bc0 0x7fffef4e7bc0
...
r13 0x7fffedee7060 140737185214560
r13 is pointing to the address of the thd. Probably some kind of
"local stack" used by the sanitizer
I have verified this with gdb on a recursive call that calls alloca()
in a loop. In this case all objects was stored in a local heap,
not on the stack.
To solve this issue in a portable way, I have added two functions:
my_get_stack_pointer() returns the address of the current stack pointer.
The code is using asm instructions for intel 32/64 bit, powerpc,
arm 32/64 bit and sparc 32/64 bit.
Supported compilers are gcc, clang and MSVC.
For MSVC 64 bit we are using _AddressOfReturnAddress()
As a fallback for other compilers/arch we use the address of a local
variable.
my_get_stack_bounds() that will return the address of the base stack
and stack size using pthread_attr_getstack() or NtCurrentTed() with
fallback to using the address of a local variable and user provided
stack size.
Server changes are:
- Moving setting of thread_stack to THD::store_globals() using
my_get_stack_bounds().
- Removing setting of thd->thread_stack, except in functions that
allocates a lot on the stack before calling store_globals(). When
using estimates for stack start, we reduce stack_size with
MY_STACK_SAFE_MARGIN (8192) to take into account the stack used
before calling store_globals().
I also added a unittest, stack_allocation-t, to verify the new code.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Field_blob::store() has special code for GROUP_CONCAT temporary table
(to store blob values in Blob_mem_storage - this prevents them
from being freed/overwritten when a next row is read).
Field_geom and Field_blob_compressed inherit from Field_blob but they
have their own ::store() method without this special Blob_mem_storage
support.
Considering that non-grouping CONCAT() of such fields converts
them to plain BLOB, let's do the same for GROUP_CONCAT. To do it,
Item_func_group_concat::setup will signal that it's creating
a temporary table for GROUP_CONCAT, and Field_blog::make_new_field()
override will create base Field_blob when under group concat.
Hash index is vcol-based wrapper (MDEV-371). row_end is added to
unique index. So when row_end is updated unique hash index must be
recalculated via vcol_update_fields(). DELETE did not update virtual
fields, so DELETE HISTORY was getting wrong hash value.
The fix does update_virtual_fields() on vers_update_end() so in every
case row_end is updated virtual fields are updated as well.
work consistently on replication
Row-based replication does not execute CREATE .. SELECT but instead
CREATE TABLE. CREATE .. SELECT creates implict system fields on
unusual place: in-between declared fields and select fields. That was
done because select_field_pos logic requires select fields go last in
create_list.
So, CREATE .. SELECT on master and CREATE TABLE on slave create system
fields on different positions and replication gets field mismatch.
To fix this we've changed CREATE .. SELECT to create implicit system
fields on usual place in the end and updated select_field_pos for
handling this case.
my_b_encr_write(): Initialize also block_length, and at the same time
last_block_length, so that all 128 bits can be initialized with fewer
writes. This fixes an error that was caught in the test
encryption.tempfiles_encrypted.
test_my_safe_print_str(): Skip a test that would attempt to
display uninitialized data in the test unit.stacktrace.
Previously, our CI did not build unit tests with MemorySanitizer.
handle_delayed_insert(): Remove a redundant call to pthread_exit(0),
which would for some reason cause MemorySanitizer in clang-19 to
report a stack overflow in a RelWithDebInfo build. This fixes a
failure of several tests.
Reviewed by: Vladislav Vaintroub
The memory leak happened on second execution of a prepared statement
that runs UPDATE statement with correlated subquery in right hand side of
the SET clause. In this case, invocation of the method
table->stat_records()
could return the zero value that results in going into the 'if' branch
that handles impossible where condition. The issue is that this condition
branch missed saving of leaf tables that has to be performed as first
condition optimization activity. Later the PS statement memory root
is marked as read only on finishing first time execution of the prepared
statement. Next time the same statement is executed it hits the assertion
on attempt to allocate a memory on the PS memory root marked as read only.
This memory allocation takes place by the sequence of the following
invocations:
Prepared_statement::execute
mysql_execute_command
Sql_cmd_dml::execute
Sql_cmd_update::execute_inner
Sql_cmd_update::update_single_table
st_select_lex::save_leaf_tables
List<TABLE_LIST>::push_back
To fix the issue, add the flag SELECT_LEX::leaf_tables_saved to control
whether the method SELECT_LEX::save_leaf_tables() has to be called or
it has been already invoked and no more invocation required.
Similar issue could take place on running the DELETE statement with
the LIMIT clause in PS/SP mode. The reason of memory leak is the same as for
UPDATE case and be fixed in the same way.
Running an UPDATE statement in PS mode and having positional
parameter(s) bound with an array of actual values (that is
prepared to be run in bulk mode) results in incorrect behaviour
in presence of on update trigger that also executes an UPDATE
statement. The same is true for handling a DELETE statement in
presence of on delete trigger. Typically, the visible effect of
such incorrect behaviour is expressed in a wrong number of
updated/deleted rows of a target table. Additionally, in case UPDATE
statement, a number of modified rows and a state message returned
by a statement contains wrong information about a number of modified rows.
The reason for incorrect number of updated/deleted rows is that
a data structure used for binding positional argument with its
actual values is stored in THD (this is thd->bulk_param) and reused
on processing every INSERT/UPDATE/DELETE statement. It leads to
consuming actual values bound with top-level UPDATE/DELETE statement
by other DML statements used by triggers' body.
To fix the issue, reset the thd->bulk_param temporary to the value
nullptr before invoking triggers and restore its value on finishing
its execution.
The second part of the problem relating with wrong value of affected
rows reported by Connector/C API is caused by the fact that diagnostics
area is reused by an original DML statement and a statement invoked
by a trigger. This fact should be take into account on finalizing a
state of diagnostics area on completion running of a statement.
Important remark: in case the macros DBUG_OFF is on, call of the method
Diagnostics_area::reset_diagnostics_area()
results in reset of the data members
m_affected_rows, m_statement_warn_count.
Values of these data members of the class Diagnostics_area are used on
sending OK and EOF messages. In case DML statement is executed in PS bulk
mode such resetting results in sending wrong result values to a client
for affected rows in case the DML statement fires a triggers. So, reset
these data members only in case the current statement being processed
is not run in bulk mode.
Executing an INSERT statement in PS mode having positional parameter
bound with an array could result in incorrect number of inserted rows
in case there is a BEFORE INSERT trigger that executes yet another
INSERT statement to put a copy of row being inserted into some table.
The reason for incorrect number of inserted rows is that a data structure
used for binding positional argument with its actual values is stored
in THD (this is thd->bulk_param) and reused on processing every INSERT
statement. It leads to consuming actual values bound with top-level
INSERT statement by other INSERT statements used by triggers' body.
To fix the issue, reset the thd->bulk_param temporary to the value nullptr
before invoking triggers and restore its value on finishing its execution.
When HA_DUPLICATE_POS is not supported, the row to replace was navigated by
ha_index_read_idx_map, which uses only hash to navigate.
Suchwise, given a hash collision it may choose an incorrect row.
handler::position would be correct and very convenient to use here.
dup_ref is already set by handler independently of the engine
capabilities, when an extra lookup is made (for long unique or something else,
for example WITHOUT OVERLAPS) such error will be indicated by
file->lookup_errkey != -1.
write_record() when performing REPLACE has an optimization:
- if the unique violation happened in the last unique key, then do UPDATE
- otherwise, do DELETE+INSERT
This patch changes the way of detecting if this optimization
can be applied if the table has long (hash based) unique
(i.e. UNIQUE..USING HASH) constraints.
Problem:
The old condition did not take into account that
TABLE_SHARE and TABLE see long uniques differently:
- TABLE_SHARE sees as HA_KEY_ALG_LONG_HASH and HA_NOSAME
- TABLE sees as usual non-unique indexes
So the old condition could erroneously decide that the UPDATE optimization
is possible when there are still some unique hash constraints in the table.
Fix:
- If the current key is a long unique, it now works as follows:
UPDATE can be done if the current long unique is the last
long unique, and there are no in-engine (normal) uniques.
- For in-engine uniques nothing changes, it still works as before:
If the current key is an in-engine (normal) unique:
UPDATE can be done if it is the last normal unique.
The leaks are all 40 bytes and happens in this call stack when running
mtr vcol.vcol_syntax:
alloc_root()
...
Virtual_column_info::fix_and_check_exp()
...
Delayed_insert::get_local_table()
The problem was that one copied a MEM_ROOT from THD to a TABLE without
taking into account that new blocks would be allocated through the
TABLE memroot (and would thus be leaked).
In general, one should NEVER copy MEM_ROOT from one object to another
without clearing the copied memroot!
Fixed by, at end of get_local_table(), copy all new allocated objects
to client_thd->mem_root.
Other things:
- Removed references to MEM_ROOT::total_alloc that was wrongly left
after a previous commit
- Add selected tables as shared keys for CTAS certification
- Set proper security context on the replayer thread
- Disallow CTAS command retry
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
There are two TABLE objects in each thread: first one is created in
delayed thread by Delayed_insert::open_and_lock_table(), second one is
created in connection thread by Delayed_insert::get_local_table(). It
is copied from the delayed thread table.
When the second table is copied copy-assignment operator copies
vcol_refix_list which is already filled with an item from delayed
thread. Then get_local_table() adds its own item. Thus both tables
contains the same list with two items which is wrong. Then connection
thread finishes and its item freed. Then delayed thread tries to
access it in vcol_cleanup_expr().
The fix just clears vcol_refix_list in the copied table.
Another problem is that copied table contains the same mem_root, any
allocations on it will be invalid if the original table is freed (and
that is indeterministic as it is done in another thread). Since copied
table is allocated in connection THD and lives not longer than
thd->mem_root we may assign its mem_root from thd->mem_root.
Third, it doesn't make sense to do open_and_lock_tables() on NULL
pointer.
At the moment we cannot support
wsrep_forced_binlog_format=[MIXED|STATEMENT]
during CREATE TABLE AS SELECT.
Statement will use ROW instead and give
a warning.
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
Restore code to make InnoDB choose the second transaction as a deadlock
victim if two transactions deadlock that need to commit in-order for
parallel replication. This code was erroneously removed when VATS was
implemented in InnoDB.
Also add a test case for InnoDB choosing the right deadlock victim.
Also fixes this bug, with testcase that reliably reproduces:
MDEV-28776: rpl.rpl_mark_optimize_tbl_ddl fails with timeout on sync_with_master
Note: This should be null-merged to 10.6, as a different fix is needed
there due to InnoDB locking code changes.
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
select_insert::store_values() must reset
has_value_set bitmap before every row, just like mysql_insert() does.
because ON DUPLICATE KEY UPDATE and triggers modify it
EXPLAIN EXTENDED for an UPDATE/DELETE/INSERT/REPLACE statement did not
produce the warning containing the text representation of the query
obtained after the optimization phase. Such warning was produced for
SELECT statements, but not for DML statements.
The patch fixes this defect of EXPLAIN EXTENDED for DML statements.
disable bulk insert optimization if long uniques are used, because they
need to read the table (index_read) after every inserted now. And bulk
insert optimization might disable indexes.
bulk insert is already disabled in other cases when there are chances
that the table will be read duing the bulk insert.
node->is_delete was incorrectly set to NO_DELETE for a set of operations.
In general we shouldn't rely on sql_command and look for more abstract ways
to control the behavior.
trg_event_map seems to be a suitable way. To mind replica nodes, it is ORed
with slave_fk_event_map, which stores trg_event_map when replica has
triggers disabled.
regression from MDEV-29540 / 8c38939369.
INSERT SELECT errors needed to be unconditionally ignored.
As this touches the CREATE .. SELECT functionality, show
the equalivent test there.
When a range rowid filter was used with an index ref access the cost of
accessing the index entries for the records rejected by the filter was not
taken into account. For a ref access by an index with big average number
of records per key this led to poor execution plans if selectivity of the
used filter was high.
The patch resolves this problem. It also introduces a minor optimization
that skips look-ups into a filter that turns out to be empty.
With this patch the output of ANALYZE stmt reports the number of look-ups
into used rowid filters.
The patch also back-ports from 10.5 the code that properly sets the field
TABLE::file::table for opened temporary tables.
The test cases that were supposed to use rowid filters have been adjusted
in order to use similar execution plans after this fix.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The ALTER related code cannot do at the same time both:
- modify partitions
- change column data types
Explicit changing of a column data type together with a partition change is
prohibited by the parter, so this is not allowed and returns a syntax error:
ALTER TABLE t MODIFY ts BIGINT, DROP PARTITION p1;
This fix additionally disables implicit data type upgrade
(e.g. from "MariaDB 5.3 TIME" to "MySQL 5.6 TIME", or the other way
around according to the current mysql56_temporal_format) in case of
an ALTER modifying partitions, e.g.:
ALTER TABLE t DROP PARTITION p1;
In such commands now only the partition change happens, while
the data types stay unchanged.
One can additionally run:
ALTER TABLE t FORCE;
either before or after the ALTER modifying partitions to
upgrade data types according to mysql56_temporal_format.
The population of default values in INSERT SELECT was being
performed twice. With sequences, this resulted in every
second sequence value being used.
With SELECT INSERT we remove the second invokation of
table->update_default_fields(). This was already performed
in store_values() invoking fill_record_n_invoke_before_triggers()
which invoked update_default_fields() previously.
We do need to return an error on duplicate values, so the
::store_values is extended to take the ignore option.
Not the SPIDER issue - happens to INSERT DELAYED.
the field::make_new_field does't copy the LONG_UNIQUE_HASH_FIELD
flag to the new field. Though the Delayed_insert::get_local_table
copies the field->vcol_info for this field. Ad a result
the parse_vcol_defs doesn't create the expression for that column
so the field->vcol_info->expr is NULL. Which leads to crash.
Backported fix for this from 10.5 - the flagg added in the
Delayed_insert::get_local_table.
Another problem with the USING HASH key is thst the
parse_vcol_defs modifies the table->keys content. Then the same
parse_vcol_defs is called on the table copy that has keys already
modified. Backported fix for that from 10.5 - key copying added
tot the Delayed_insert::get_local_table.
Finally - the created copy has to clear the expr_arena as
this table is not in the thd->open_tables list so won't be
cleared automatically.
1. For INSERT..SELECT statements: don't include table/view the data
is inserted into in the list of leaf tables
2. Remove duplicated and dead code related to table_count