If a query contained a CTE whose name coincided with the name of one of
the base tables used in the specification of the CTE and the query had at
least two references to this CTE in the specifications of other CTEs then
processing of the query led to unlimited recursion that ultimately caused
a crash of the server.
Any secondary non-recursive reference to a CTE requires creation of a copy
of the CTE specification. All the references to CTEs in this copy must be
resolved. If the specification contains a reference to a base table whose
name coincides with the name of then CTE then it should be ensured that
this reference in no way can be resolved against the name of the CTE.
This bug affected only multi-table update statements and in very rare
cases: one of the tables used at the top level of the statement must be
a derived table containg a row construct with a subquery including hanging
CTE.
Before this patch was applied the function prepare_unreferenced() of the
class With_element when invoked for the the hangin CTE did not properly
restored the value of thd->lex->context_analysis_only. As a result it
became 0 after the call of this function.
For a query affected by the bug this function is called when
JOIN::prepare() is called for the subquery with a hanging CTE. This happens
when Item_row::fix_fields() calls fix_fields() for the subquery. Setting
the value of thd->lex->context_analysis_only forces the caller function
Item_row::fix_fields() to invoke the virtual method is_null() for the
subquery that leads to execution of it. It causes an assertion failure
because the call of Item_row::fix_fields() happens during the invocation
of Multiupdate_prelocking_strategy::handle_end() that calls the function
mysql_derived_prepare() for the derived table used by the UPDATE at the
time when proper locks for the statement tables has not been acquired yet.
With this patch the value of thd->lex->context_analysis_only is restored
to CONTEXT_ANALYSIS_ONLY_DERIVED that is set in the function
mysql_multi_update_prepare().
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This commit addresses column naming issues with CTEs in the use of prepared
statements and stored procedures. Usage of either prepared statements or
procedures with Common Table Expressions and column renaming may be affected.
There are three related but different issues addressed here.
1) First execution issue. Consider the following
prepare s from "with cte (col1, col2) as (select a as c1, b as c2 from t
order by c1) select col1, col2 from cte";
execute s;
After parsing, items in the select are named (c1,c2), order by (and group by)
resolution is performed, then item names are set to (col1, col2).
When the statement is executed, context analysis is again performed, but
resolution of elements in the order by statement will not be able to find c1,
because it was renamed to col1 and remains this way.
The solution is to save the names of these items during context resolution
before they have been renamed. We can then reset item names back to those after
parsing so first execution can resolve items referred to in order and group by
clauses.
2) Second Execution Issue
When the derived table contains more than one select 'unioned' together we could
reasonably think that dealing with only items in the first select (which
determines names in the resultant table) would be sufficient. This can lead to
a different problem. Consider
prepare st from "with cte (c1,c2) as
(select a as col1, sum(b) as col2 from t1 where a > 0 group by col1
union select a as col3, sum(b) as col4 from t2 where b > 2 group by col3)
select * from cte where c1=1";
When the optimizer (only run during the first execution) pushes the outside
condition "c1=1" into every select in the derived table union, it renames the
items to make the condition valid. In this example, this leaves the first item
in the second select named 'c1'. The second execution will now fail 'group by'
resolution.
Again, the solution is to save the names during context analysis, resetting
before subsequent resolution, but making sure that we save/reset the item
names in all the selects in this union.
3) Memory Leak
During parsing Item::set_name() is used to allocate memory in the statement
arena. We cannot use this call during statement execution as this represents
a memory leak. We directly set the item list names to those in the column list
of this CTE (also allocated during parsing).
Approved by Igor Babaev <igor@mariadb.com>
Tests with checking metadata or that cannot be run with
the view-protocol are excluded from --view-protocol.
For tests that do not allow the use of an additional connection,
the util connection is disabled with "--disable_service_connection".
Also cases with bugs for --view-protocol are disabled.
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
# Conflicts:
# sql/sql_cte.cc
# sql/sql_cte.h
# sql/sql_lex.cc
# sql/sql_lex.h
# sql/sql_view.cc
# sql/sql_yacc.yy
# sql/sql_yacc_ora.yy
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.
This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
In main.index_merge_myisam we remove the test that was added in
commit a2d24def8c because
it duplicates the test case that was added in
commit 5af12e4635.
This bug could happen only with a stored procedure containing queries with
more than one reference to a CTE that used local variables / parameters.
This bug was the result of an incomplete merge of the fix for the bug
MDEV-17154. The merge covered usage of parameter markers occurred in a CTE
that was referenced more than once, but missed coverage of local variables.
- multi_range_read_info_const now uses the new records_in_range interface
- Added handler::avg_io_cost()
- Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is
not 1.0. In this case we trust the avg_io_cost() from the handler.
- Changed test_quick_select to use TIME_FOR_COMPARE instead of
TIME_FOR_COMPARE_IDX to align this with the rest of the code.
- Fixed bug when using test_if_cheaper_ordering where we didn't use
keyread if index was changed
- Fixed a bug where we didn't use index only read when using order-by-index
- Added keyread_time() to HEAP.
The default keyread_time() was optimized for blocks and not suitable for
HEAP. The effect was the HEAP prefered table scans over ranges for btree
indexes.
- Fixed get_sweep_read_cost() for HEAP tables
- Ensure that range and ref have same cost for simple ranges
Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure
we favior ref for range for simple queries.
- Fixed that matching_candidates_in_table() uses same number of records
as the rest of the optimizer
- Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for
HEAP and temporary tables better. A few tests changed because of this.
- heap::read_time() and heap::keyread_time() adjusted to not add +1.
This was to ensure that handler::keyread_time() doesn't give
higher cost for heap tables than for normal tables. One effect of
this is that heap and derived tables stored in heap will prefer
key access as this is now regarded as cheap.
- Changed cost for index read in sql_select.cc to match
multi_range_read_info_const(). All index cost calculation is now
done trough one function.
- 'ref' will now use quick_cost for keys if it exists. This is done
so that for '=' ranges, 'ref' is prefered over 'range'.
- scan_time() now takes avg_io_costs() into account
- get_delayed_table_estimates() uses block_size and avg_io_cost()
- Removed default argument to test_if_order_by_key(); simplifies code