Some fixes related to commit f838b2d799 and
Rows_log_event::do_apply_event() and Update_rows_log_event::do_exec_row()
for system-versioned tables were provided by Nikita Malyavin.
This was required by test versioning.rpl,trx_id,row.
This was caused by wrong allocation of variable on stack.
(Was allocating 4K of data instead of 512 bytes).
No test case as the original MDEV test cases is not usable for mtr.
This patch fixes the issue with passing the DEFAULT or IGNORE values to
positional parameters for some kind of SQL statements to be executed
as prepared statements.
The main idea of the patch is to associate an actual value being passed
by the USING clause with the positional parameter represented by
the Item_param class. Such association must be performed on execution of
UPDATE statement in PS/SP mode. Other corner cases that results in
server crash is on handling CREATE TABLE when positional parameter
placed after the DEFAULT clause or CALL statement and passing either
the value DEFAULT or IGNORE as an actual value for the positional parameter.
This case is fixed by checking whether an error is set in diagnostics
area at the function pack_vcols() on return from the function pack_expression()
Enable unusable key notes for non-equality predicates:
<, <=, =>, >, BETWEEN, IN, LIKE
Note, in some scenarios it displays duplicate notes, e.g.
for queries with ORDER BY:
SELECT * FROM t1
WHERE indexed_string_column >= 10
ORDER BY indexed_string_column
LIMIT 5;
This should be tolarable. Getting rid of the diplicate note
completely would need a much more complex patch, which is
not desiable in 10.6.
Details:
- Changing RANGE_OPT_PARAM::note_unusable_keys from bool
to a new data type Item_func::Bitmap, so the caller can
choose with a better granuality which predicates
should raise unusable key notes inside the range optimizer:
a. all predicates (=, <=>, <, <=, =>, >, BETWEEN, IN, LIKE)
b. all predicates except equality (=, <=>)
c. none of the predicates
"b." is needed because in some scenarios equality predicates (=, <=>)
send unusable key notes at an earlier stage, before the range optimizer,
during update_ref_and_keys(). Calling the range optimizer with
"all predicates" would produce duplicate notes for = and <=> in such cases.
- Fixing get_quick_record_count() to call the range optimizer
with "all predicates except equality" instead of "none of the predicates".
Before this change the range optimizer suppressed all notes for
non-equality predicates: <, <=, =>, >, BETWEEN, IN, LIKE.
This actually fixes the reported problem.
- Fixing JOIN::make_range_rowid_filters() to call the range optimizer
with "all predicates except equality" instead of "all predicates".
Before this change the range optimizer produced duplicate notes
for = and <=> during a rowid_filter optimization.
- Cleanup:
Adding the op_collation argument to Field::raise_note_cannot_use_key_part()
and displaying the operation collation rather than the argument collation
in the unusable key note. This is important for operations with more than
two arguments: BETWEEN and IN, e.g.:
SELECT * FROM t1
WHERE column_utf8mb3_general_ci
BETWEEN 'a' AND 'b' COLLATE utf8mb3_unicode_ci;
SELECT * FROM t1
WHERE column_utf8mb3_general_ci
IN ('a', 'b' COLLATE utf8mb3_unicode_ci);
The note for 'a' now prints utf8mb3_unicode_ci as the collation.
which is the collation of the entire operation:
Cannot use key key1 part[0] for lookup:
"`column_utf8mb3_general_ci`" of collation `utf8mb3_general_ci` >=
"'a'" of collation `utf8mb3_unicode_ci`
Before this change it printed the collation of 'a',
so the note was confusing:
Cannot use key key1 part[0] for lookup:
"`column_utf8mb3_general_ci`" of collation `utf8mb3_general_ci` >=
"'a'" of collation `utf8mb3_general_ci`"
This bug caused crashes of the server on the second execution of update
statements that used mergeable derived tables. The crashes happened in
the function multi_update_check_table_access() when the code tried to
dereference the pointer stored in field TABLE_LIST::TABLE for a mergeable
derived table. The fact is this field is set to NULL after the first
execution of the query. At the same any action performed by the function
is actually not needed for derived tables.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
First UPDATE under START TRANSACTION does nothing (nstate= nstate),
but anyway generates history. Since update vector is empty we get into
(!uvect->n_fields) branch which only adds history row, but does not do
update. After that we get current row with wrong (old) row_start value
and because of that second UPDATE tries to insert history row again
because it sees trx->id != row_start which is the guard to avoid
inserting multiple trx_id-based history rows under same transaction
(because we have same trx_id and we get duplicate error and this bug
demostrates that). But this try anyway fails because PK is based on
row_end which is constant under same transaction, so PK didn't change.
The fix moves vers_make_update() to an earlier stage of
calc_row_difference(). Therefore it prepares update vector before
(!uvect->n_fields) check and never gets into that branch, hence no
need to handle versioning inside that condition anymore.
Now trx->id and row_start are equal after first UPDATE and we don't
try to insert second history row.
== Cleanups and improvements ==
ha_innobase::update_row():
vers_set_fields and vers_ins_row are cleaned up into direct condition
check. SQLCOM_ALTER_TABLE check now is not used as this is dead code,
assertion is done instead.
upd_node->is_delete is set in calc_row_difference() just to keep
versioning code as much in one place as possible. vers_make_delete()
is still located in row_update_for_mysql() as this is required for
ha_innodbase::delete_row() as well.
row_ins_duplicate_error_in_clust():
Restrict DB_FOREIGN_DUPLICATE_KEY to the better conditions.
VERSIONED_DELETE is used specifically to help lower stack to
understand what caused current insert. Related to MDEV-29813.
The new statistics is enabled by adding the "engine", "innodb" or "full"
option to --log-slow-verbosity
Example output:
# Pages_accessed: 184 Pages_read: 95 Pages_updated: 0 Old_rows_read: 1
# Pages_read_time: 17.0204 Engine_time: 248.1297
Page_read_time is time doing physical reads inside a storage engine.
(Writes cannot be tracked as these are usually done in the background).
Engine_time is the time spent inside the storage engine for the full
duration of the read/write/update calls. It uses the same code as
'analyze statement' for calculating the time spent.
The engine statistics is done with a generic interface that should be
easy for any engine to use. It can also easily be extended to provide
even more statistics.
Currently only InnoDB has counters for Pages_% and Undo_% status.
Engine_time works for all engines.
Implementation details:
class ha_handler_stats holds all engine stats. This class is included
in handler and THD classes.
While a query is running, all statistics is updated in the handler. In
close_thread_tables() the statistics is added to the THD.
handler::handler_stats is a pointer to where statistics should be
collected. This is set to point to handler::active_handler_stats if
stats are requested. If not, it is set to 0.
handler_stats has also an element, 'active' that is 1 if stats are
requested. This is to allow engines to avoid doing any 'if's while
updating the statistics.
Cloned or partition tables have the pointer set to the base table if
status are requested.
There is a small performance impact when using --log-slow-verbosity=engine:
- All engine calls in 'select' will be timed.
- IO calls for InnoDB reads will be timed.
- Incrementation of counters are done on local variables and accesses
are inline, so these should have very little impact.
- Statistics has to be reset for each statement for the THD and each
used handler. This is only 40 bytes, which should be neglectable.
- For partition tables we have to loop over all partitions to update
the handler_status as part of table_init(). Can be optimized in the
future to only do this is log-slow-verbosity changes. For this to work
we have to update handler_status for all opened partitions and
also for all partitions opened in the future.
Other things:
- Added options 'engine' and 'full' to log-slow-verbosity.
- Some of the new files in the test suite comes from Percona server, which
has similar status information.
- buf_page_optimistic_get(): Do not increment any counter, since we are
only validating a pointer, not performing any buf_pool.page_hash lookup.
- Added THD argument to save_explain_data_intern().
- Switched arguments for save_explain_.*_data() to have
always THD first (generates better code as other functions also have THD
first).
EXPLAIN EXTENDED for an UPDATE/DELETE/INSERT/REPLACE statement did not
produce the warning containing the text representation of the query
obtained after the optimization phase. Such warning was produced for
SELECT statements, but not for DML statements.
The patch fixes this defect of EXPLAIN EXTENDED for DML statements.
This patch allows to use semi-join optimization at the top level of
single-table update and delete statements.
The problem of supporting such optimization became easy to resolve after
processing a single-table update/delete statement started using JOIN
structure. This allowed to use JOIN::prepare() not only for multi-table
updates/deletes but for single-table ones as well. This was done in the
patch for mdev-28883:
Re-design the upper level of handling UPDATE and DELETE statements.
Note that JOIN::prepare() detects all subqueries that can be considered
as candidates for semi-join optimization. The code added by this patch
looks for such candidates at the top level and if such candidates are found
in the processed single-table update/delete the statement is handled in
the same way as a multi-table update/delete.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This patch fixes not only the assertion failure in the function
Field_iterator_table_ref::set_field_iterator() but also:
- fixes the problem of forced materialization of derived tables used
in subqueries contained in WHERE clauses of single-table and multi-table
UPDATE and DELETE statements
- fixes the problem of MDEV-17954 that prevented execution of multi-table
DELETE statements if they use in their WHERE clauses references to
the tables that are updated.
The patch must be considered a complement to the patch for MDEV-28883.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This patch introduces a new way of handling UPDATE and DELETE commands at
the top level after the parsing phase. This new way of processing update
and delete statements can be seen in the implementation of the prepare()
and execute() methods from the new Sql_cmd_dml class. This class derived
from the Sql_cmd class can be considered as an interface class for processing
such commands as SELECT, INSERT, UPDATE, DELETE and other comands
manipulating data in tables.
With this patch processing of update and delete statements after parsing
proceeds by the following schema:
- precheck of the access rights is performed for the used tables
- the used tables are opened
- context analysis phase is performed for the statement
- the used tables are locked
- the statement is optimized and executed
- clean-up is performed for the statement
The implementation of the method Sql_cmd_dml::execute() adheres this schema.
The virtual functions of the class Sql_cmd_dml used for precheck of the
access rights, context analysis, optimization and execution allow to adjust
this schema for processing data manipulation statements of any types.
This schema of processing data manipulation statements is taken from the
current MySQL code. Moreover the definition the class Sql_cmd_dml introduced
in this patch is almost a full replica of such class in the existing MySQL.
However the implementation of the derived classes for update and delete
statements is quite different. This implementation employs the JOIN class
for all kinds of update and delete statements. It allows to perform main
bulk of context analysis actions by the function JOIN::prepare(). This
guarantees that characteristics and properties of the statement tree
discovered for optimization phase when doing context analysis are the same
for single-table and multi-table updates and deletes.
With this patch the following functions are gone:
mysql_prepare_update(), mysql_multi_update_prepare(),
mysql_update(), mysql_multi_update(),
mysql_prepare_delete(), mysql_multi_delete_prepare(), mysql_delete().
The code within these functions have been used as much as possible though.
The functions mysql_test_update() and mysql_test_delete() are also not
needed anymore. The method Sql_cmd_dml::prepare() serves processing
- update/delete statement
- PREPARE stmt FROM "<update/delete statement>"
- EXECUTE stmt when stmt is prepared from update/delete statement.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
The problem was an assignment in test_quick_select() that flagged empty
tables with "Impossible where". This test was however wrong as it
didn't work correctly for left join.
Removed the test, but added checking of empty tables in DELETE and UPDATE
to get similar EXPLAIN as before.
The new tests is a bit more strict (better) than before as it catches all
cases of empty tables in single table DELETE/UPDATE.
- table_after_join_selectivity() should use records_init (new bug)
- get_examined_rows() changed to double to get similar results
as in MariaDB 10.11
- Fixed bug where table_after_join_selectivity() did not correct
selectivity in the case where a RANGE is used instead of a REF.
This can happen if the range can use more key_parts than the REF.
WHERE key_part1=10 and key_part2 < 10
Other things:
- Use JT_RANGE instead of JT_ALL for RANGE access in all parts of the code.
Before we used JT_ALL for RANGE.
- Force RANGE be used in best_access_path() if the range used more key
parts than ref. In the original code, this was done much later in
make_join_select)(). However we need to know in
table_after_join_selectivity() if we have used RANGE or not.
- Added more information about filtering to optimizer_trace.
- Updated comments
- Added some extra DEBUG
- Indentation changes and break long lines
- Trivial code changes like:
- Combining 2 statements in one
- Reorder DBUG lines
- Use a variable to store a pointer that is used multiple times
- Moved declaration of variables to start of loop/function
- Removed dead or commented code
- Removed wrong DBUG_EXECUTE code in best_extension_by_limited_search()