Handling BF abort for prepared statement execution so that EXECUTE processing will continue
until parameter setup is complete, before BF abort bails out the statement execution.
THD class has new boolean member: wsrep_delayed_BF_abort, which is set if BF abort is observed
in do_command() right after reading client's packet, and if the client has sent PS execute command.
In such case, the deadlock error is not returned immediately back to client, but the PS execution
will be started. However, the PS execution loop, will now check if wsrep_delayed_BF_abort is set, and
stop the PS execution after the type information has been assigned for the PS.
With this, the PS protocol type information, which is present in the first PS EXECUTE command, is not lost
even if the first PS EXECUTE command was marked to abort.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
extra2_read_len resolved by keeping the implementation
in sql/table.cc by exposed it for use by ha_partition.cc
Remove identical implementation in unireg.h
(ref: bfed2c7d57)
Problem:
Parse-time conversion from binary to tricky character sets like utf32
produced ill-formed strings. So, later a chash happened in debug builds,
or a wrong SHOW CREATE TABLE was returned in release builds.
Fix:
1. Backporting a few methods from 10.3:
- THD::check_string_for_wellformedness()
- THD::convert_string() overloads
- THD::make_text_string_connection()
2. Adding a new method THD::reinterpret_string_from_binary(),
which makes sure to either returns a well-formed string
(optionally prepending with zero bytes), or returns an error.
The first step for deprecating innodb_autoinc_lock_mode(see MDEV-27844) is:
- to switch statement binlog format to ROW if binlog format is MIXED and
the statement changes autoincremented fields
- issue warnings if innodb_autoinc_lock_mode == 2 and binlog format is
STATEMENT
The warning out of OPTIMIZE
Statement is unsafe because it uses a system function
was indeed counterfactual and was resulted by checking an
insufficiently strict property of lex' sql_command_flags.
Fixed with deploying an additional checking of weather
the current sql command that modifes a share->non_determinstic_insert
table is capable of generating ROW format events.
The extra check rules out the unsafety to OPTIMIZE et al, while the
existing check continues to do so to CREATE TABLE (which is
perculiarly tagged as ROW-event generative sql command).
As a side effect sql_sequence.binlog test gets corrected and
binlog_stm_unsafe_warning.test is reinforced to add up
an unsafe CREATE..SELECT test.
GCC 12 complains if a reference to an uninitialized object is
being passed to a constructor. The mysql_mutex_t, mysql_cond_t
would be initialized in the constructor body, which is executed
after the initializer list. There is no problem passing a pointer
instead of a reference. The wrapper classes do not dereference
the pointers in the constructor or destructor, so there does not
appear to be any correctness issue.
This commit implements two phase binloggable ALTER.
When a new
@@session.binlog_alter_two_phase = YES
ALTER query gets logged in two parts, the START ALTER and the COMMIT
or ROLLBACK ALTER. START Alter is written in binlog as soon as
necessary locks have been acquired for the table. The timing is
such that any concurrent DML:s that update the same table are either
committed, thus logged into binary log having done work on the old
version of the table, or will be queued for execution on its new
version.
The "COMPLETE" COMMIT or ROLLBACK ALTER are written at the very point
of a normal "single-piece" ALTER that is after the most of
the query work is done. When its result is positive COMMIT ALTER is
written, otherwise ROLLBACK ALTER is written with specific error
happened after START ALTER phase.
Replication of two-phase binloggable ALTER is
cross-version safe. Specifically the OLD slave merely does not
recognized the start alter part, still being able to process and
memorize its gtid.
Two phase logged ALTER is read from binlog by mysqlbinlog to produce
BINLOG 'string', where 'string' contains base64 encoded
Query_log_event containing either the start part of ALTER, or a
completion part. The Query details can be displayed with `-v` flag,
similarly to ROW format events. Notice, mysqlbinlog output containing
parts of two-phase binloggable ALTER is processable correctly only by
binlog_alter_two_phase server.
@@log_warnings > 2 can reveal details of binlogging and slave side
processing of the ALTER parts.
The current commit also carries fixes to the following list of
reported bugs:
MDEV-27511, MDEV-27471, MDEV-27349, MDEV-27628, MDEV-27528.
Thanks to all people involved into early discussion of the feature
including Kristian Nielsen, those who helped to design, implement and
test: Sergei Golubchik, Andrei Elkin who took the burden of the
implemenation completion, Sujatha Sivakumar, Brandon
Nesterenko, Alice Sherepa, Ramesh Sivaraman, Jan Lindstrom.
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Dead code cleanup:
part_info->num_parts usage was wrong and working incorrectly in
mysql_drop_partitions() because num_parts is already updated in
prep_alter_part_table(). We don't have to update part_info->partitions
because part_info is destroyed at alter_partition_lock_handling().
Cleanups:
- DBUG_EVALUATE_IF() macro replaced by shorter form DBUG_IF();
- Typo in ER_KEY_COLUMN_DOES_NOT_EXITS.
Refactorings:
- Splitted write_log_replace_delete_frm() into write_log_delete_frm()
and write_log_replace_frm();
- partition_info via DDL_LOG_STATE;
- set_part_info_exec_log_entry() removed.
DBUG_EVALUATE removed
DBUG_EVALUTATE was only added for consistency together with
DBUG_EVALUATE_IF. It is not used anywhere in the code.
DBUG_SUICIDE() fix on release build
On release DBUG_SUICIDE() was statement. It was wrong as
DBUG_SUICIDE() is used in expression context.
procedure
Analysis: m_current_row_for_warning is reset to 1 during cleanup phase of
stored procedure. When we perform a copy because some statement of procedure
created warning, this reset value is passed to push_warning().
Hence the output is always 1.
Fix: Add a parameter in relevant functions to pass correct value of
row_number and don't use m_current_row_for_warning directly.
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This patch also fixes mutex locking order and unprotected
THD member accesses on bf aborting case. We try to hold
THD::LOCK_thd_data during bf aborting. Only case where it
is not possible is at wsrep_abort_transaction before
call wsrep_innobase_kill_one_trx where we take InnoDB
mutexes first and then THD::LOCK_thd_data.
This will also fix possible race condition during
close_connection and while wsrep is disconnecting
connections.
Added wsrep_bf_kill_debug test case
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Avoid reading uninitialized memory by thd_get_error_context_description().
Note, that THD::real_id can't be initialized at this stage, so it will be zeroed.
use existing Warning_info::m_current_row_for_warning instead
of a newly introduced counter.
But use m_current_row_for_warning to count rows also in the parser
and during prepare.