This is a bug in the legacy code. It did not manifest itself because
it was masked by other bugs that were fixed by the patches for
mdev-4172 and mdev-4177.
The function remove_eq_cond removes the parts of a disjunction
for which it has been proved that they are always true. In the
result of this removal the disjunction may be converted into a
formula without OR that must be merged into the the AND formula
that contains the disjunction.
The merging of two AND conditions must take into account the
multiple equalities that may be part of each of them.
These multiple equality must be merged and become part of the
and object built as the result of the merge of the AND conditions.
Erroneously the function remove_eq_cond lacked the code that
would merge multiple equalities of the merged AND conditions.
This could lead to confusing situations when at the same AND
level there were two multiple equalities with common members
and the list of equal items contained only some of these
multiple equalities.
This, in its turn, could lead to an incorrect work of the
function substitute_for_best_equal_field when it tried to optimize
ref accesses. This resulted in forming invalid TABLE_REF objects
that were used to build look-up keys when materialized subqueries
were exploited.
This bug in the legacy code could manifest itself in queries with
semi-join materialized subqueries.
When a subquery is materialized all conditions that are imposed
only on the columns belonging to the tables from the subquery
are taken into account.The code responsible for subquery optimizations
that employes subquery materialization makes sure to remove these
conditions from the WHERE conditions of the query obtained after
it has transformed the original query into a query with a semi-join.
If the condition to be removed is an equality condition it could
be added to ON expressions and/or conditions from disjunctive branches
(parts of OR conditions) in an attempt to generate better access keys
to the tables of the query. Such equalities are supposed to be removed
later from all the formulas where they have been added to.
However, erroneously, this was not done in some cases when an ON
expression and/or a disjunctive part of the OR condition could
be converted into one multiple equality. As a result some equality
predicates over columns belonging to the tables of the materialized
subquery remained in the ON condition and/or the a disjunctive
part of the OR condition, and the excuter later, when trying to
evaluate them, returned wrong answers as the values of the fields
from these equalities were not valid.
This happened because any standalone multiple equality (a multiple
equality that are not ANDed with any other predicates) lacked
the information about equality predicates inherited from upper
levels (in particular, inherited from the WHERE condition).
The fix adds a reference to such information to any standalone
multiple equality.
The wrong result set returned by the left join query from
the bug test case happened due to several inconsistencies
and bugs of the legacy mysql code.
The bug test case uses an execution plan that employs a scan
of a materialized IN subquery from the WHERE condition.
When materializing such an IN- subquery the optimizer injects
additional equalities into the WHERE clause. These equalities
express the constraints imposed by the subquery predicate.
The injected equality of the query in the test case happens
to belong to the same equality class, and a new equality
imposing a condition on the rows of the materialized subquery
is inferred from this class. Simultaneously the multiple
equality is added to the ON expression of the LEFT JOIN
used in the main query.
The inferred equality of the form f1=f2 is taken into account
when optimizing the scan of the rows the temporary table
that is the result of the subquery materialization: only the
values of the field f1 are read from the table into the record
buffer. Meanwhile the inferred equality is removed from the
WHERE conditions altogether as a constraint on the fields
of the temporary table that has been used when filling this table.
This equality is supposed to be removed from the ON expression
when the multiple equalities of the ON expression are converted
into an optimal set of equality predicates. It supposed to be
removed from the ON expression as an equality inferred from only
equalities of the WHERE condition. Yet, it did not happened
due to the following bug in the code.
Erroneously the code tried to build multiple equality for ON
expression twice: the first time, when it called optimize_cond()
for the WHERE condition, the second time, when it called
this function for the HAVING condition. When executing
optimize_con() for the WHERE condition a reference
to the multiple equality of the WHERE condition is set
in the multiple equality of the ON expression. This reference
would allow later to convert multiple equalities of the
ON expression into equality predicates. However the
the second call of build_equal_items() for the ON expression
that happened when optimize_cond() was called for the
HAVING condition reset this reference to NULL.
This bug fix blocks calling build_equal_items() for ON
expressions for the second time. In general, it will be
beneficial for many queries as it removes from ON
expressions any equalities that are to be checked for the
WHERE condition.
The patch also fixes two bugs in the list manipulation
operations and a bug in the function
substitute_for_best_equal_field() that resulted
in passing wrong reference to the multiple equalities
of where conditions when processing multiple
equalities of ON expressions.
The code of substitute_for_best_equal_field() and
the code the helper function eliminate_item_equal()
were also streamlined and cleaned up.
Now the conversion of the multiple equalities into
an optimal set of equality predicates first produces
the sequence of the all equalities processing multiple
equalities one by one, and, only after this, it inserts
the equalities at the beginning of the other conditions.
The multiple changes in the output of EXPLAIN
EXTENDED are mainly the result of this streamlining,
but in some cases is the result of the removal of
unneeded equalities from ON expressions. In
some test cases this removal were reflected in the
output of EXPLAIN resulted in disappearance of
“Using where” in some rows of the execution plans.
This fixed failing test in group_by.test
mysql-test/r/join_outer.result:
Updated test case
mysql-test/r/join_outer_jcl6.result:
Updated test case
sql/item.cc:
Don't reset maybe_null in update_used_tables(); This breaks ROLLUP
sql/item.h:
Don't reset maybe_null in update_used_tables(); This breaks ROLLUP
sql/item_cmpfunc.h:
Don't reset maybe_null in update_used_tables(); This breaks ROLLUP
from a MERGE view.
The problem was in the lost ability to be null for the table of a left join if it
is a view/derived table.
It hapenned because setup_table_map(), was called earlier then we merged
the view or derived.
Fixed by propagating new maybe_null flag during Item::update_used_tables().
Change in join_outer.test and join_outer_jcl6.test appeared because
IS NULL reported no used tables (i.e. constant) for argument which could not be
NULL and new maybe_null flag was propagated for IS NULL argument (Item_field)
because table the Item_field belonged to changed its maybe_null status.
The patch enables back constant subquery execution during
query optimization after it was disabled during the development
of MWL#89 (cost-based choice of IN-TO-EXISTS vs MATERIALIZATION).
The main idea is that constant subqueries are allowed to be executed
during optimization if their execution is not expensive.
The approach is as follows:
- Constant subqueries are recursively optimized in the beginning of
JOIN::optimize of the outer query. This is done by the new method
JOIN::optimize_constant_subqueries(). This is done so that the cost
of executing these queries can be estimated.
- Optimization of the outer query proceeds normally. During this phase
the optimizer may request execution of non-expensive constant subqueries.
Each place where the optimizer may potentially execute an expensive
expression is guarded with the predicate Item::is_expensive().
- The implementation of Item_subselect::is_expensive has been extended
to use the number of examined rows (estimated by the optimizer) as a
way to determine whether the subquery is expensive or not.
- The new system variable "expensive_subquery_limit" controls how many
examined rows are considered to be not expensive. The default is 100.
In addition, multiple changes were needed to make this solution work
in the light of the changes made by MWL#89. These changes were needed
to fix various crashes and wrong results, and legacy bugs discovered
during development.
The not_null_tables() of Item_func_not_all and Item_in_optimizer was inherited from
Item_func by mistake. It made the optimizer think that subquery
predicates with ALL/ANY/IN were null-rejecting. This could trigger invalid
conversions of outer joins into inner joins.
The problem was in the code (update_const_equal_items()) which marked
index parts constant independently of the place where the equality was used.
In the test suite it marked t2_1.c part constant despite the fact that
it connected by OR with other expression.
Solution is to mark constant only top equalities connected with AND.
mysql-test/suite/innodb/t/group_commit_crash.test:
remove autoincrement to avoid rbr being used for insert ... select
mysql-test/suite/innodb/t/group_commit_crash_no_optimize_thread.test:
remove autoincrement to avoid rbr being used for insert ... select
mysys/my_addr_resolve.c:
a pointer to a buffer is returned to the caller -> the buffer cannot be on the stack
mysys/stacktrace.c:
my_vsnprintf() is ok here, in 5.5
- Fix equality propagation to work with SJM nests and OR clauses (full descirption of problem and
solution in the comment in the patch)
(The second commit with post-review fixes)
CHECK_SIMPLE_EQUALITY
PROBLEM:
Crash in "check_simple_equality" when using a subquery with "IN" and
"ALL" in prepare.
ANALYSIS:
Crash can be reproduced using a simplified query like this one:
prepare s from "select 1 from g1 where 1 < all (
select @:=(1 in (select 1 from g1)) from g1)";
This bug is currently present only on 5.5.and 5.1. Its fixed as part
of work log(#1110) in 5.6. We are taking one change to fix this
in 5.5 and 5.1.
Problem seems to be present because we are trying to evaluate "is_null"
on an argument which is part of a subquery
(In Item_is_not_null_test::update_used_tables()).
But the condition to evaluate is only when we do not have a sub query
present, which means to say that "with_subselect" is not set.
With respect to the above query, we create an object of type
"Item_in_optimizer" which by definition is always associated with a
subquery. While in 5.6 we set "with_subselect" to true for
"Item_in_optimizer" object, we do not do the same in 5.5. This results in
the evaluation for "is_null" resulting in a coredump.
So, we are now setting "with_subselect" to true for "Item_in_optimizer"
in 5.1 and 5.5.
mysql-test/r/func_in.result:
Result file changes for the test case added
mysql-test/t/func_in.test:
Test case added for Bug#13012483
sql/item_cmpfunc.h:
Changed Item_in_optimizer::Item_in_optimizer( ) to set "with_subselect"
to true
- equality substitution code was geared towards processing WHERE/ON clauses.
that is, it assumed that it was doing substitions on the code that
= wasn't attached to any particular join_tab yet
= was going to be fed to make_join_select() which would take the condition
apart and attach various parts of it to tables inside/outside semi-joins.
- However, somebody added equality substition for ref access. That is, if
we have a ref access on TBL.key=expr, they would do equality substition in
'expr'. This possibility wasn't accounted for.
- Fixed equality substition code by adding a mode that does equality
substition under assumption that the processed expression will be
attached to a certain particular table TBL.
sql/sql_insert.cc:
CREATE ... IF NOT EXISTS may do nothing, but
it is still not a failure. don't forget to my_ok it.
******
CREATE ... IF NOT EXISTS may do nothing, but
it is still not a failure. don't forget to my_ok it.
sql/sql_table.cc:
small cleanup
******
small cleanup
- Provide fix_after_pullout() function for Item_in_optimizer and other Item_XXX classes (basically, all of them
that have eval_not_null_tables, which means they have special rules for calculating not_null_tables_cache value)
ALL subquery should return TRUE if subquery rowa set is empty independently
of left part. The problem was that Item_func_(eq,ne,gt,ge,lt,le) do not
call execution of second argument if first is NULL no in this case subquery
will not be executed and when Item_func_not_all calls any_value() of the
subquery or aggregation function which report that there was rows. So for
NULL < ALL (SELECT...) result was FALSE instead of TRUE.
Fix is just swapping of arguments of Item_func_(eq,ne,gt,ge,lt,le) (with
changing the operation if it is needed) so that result will be the same
(for examole a < b is equal to b > a). This fix exploit the fact that
first argument will be executed in any case.
- The problem was that the code that made the check whether the subquery is an AND-part of the WHERE
clause didn't work correctly for nested subqueries. In particular, grand-child subquery in HAVING was
treated as if it was in the WHERE, which eventually caused an assert when replace_where_subcondition
looked for the subquery predicate in the WHERE and couldn't find it there.
- The fix: Removed implementation of "thd_marker approach". thd->thd_marker was used to determine the
location of subquery predicate: setup_conds() would set accordingly it when making the
{where|on_expr}->fix_fields(...)
call so that AND-parts of the WHERE/ON clauses can determine they are the AND-parts.
Item_cond_or::fix_fields(), Item_func::fix_fields(), Item_subselect::fix_fields (this one was missed),
and all other items-that-contain-items had to reset thd->thd_marker before calling fix_fields() for
their children items, so that the children can see they are not AND-parts of WHERE/ON.
- The "thd_marker approach" required that a lot of code in different locations maintains correct value of
thd->thd_marker, so it was replaced with:
- The new approach with mark_as_condition_AND_part does not keep context in thd->thd_marker. Instead,
setup_conds() now calls
{where|on_expr}->mark_as_condition_AND_part()
and implementations of that function make sure that:
- parts of AND-expressions get the mark_as_condition_AND_part() call
- Item_in_subselect objects record that they are AND-parts of WHERE/ON
The bug is a duplicate of MySQL's Bug#11764086,
however MySQL's fix is incomplete for MariaDB, so
this fix is slightly different.
In addition, this patch renames
Item_func_not_all::top_level() to is_top_level_item()
to make it in line with the analogous methods of
Item_in_optimizer, and Item_subselect.
Analysis:
It is possible to determine whether a predicate is
NULL-rejecting only if it is a top-level one. However,
this was not taken into account for Item_in_optimizer.
As a result, a NOT IN predicate was erroneously
considered as NULL-rejecting, and the NULL-complemented
rows generated by the outer join were rejected before
being checked by the NOT IN predicate.
Solution:
Change Item_in_optimizer to be considered as
NULL-rejecting only if it a top-level predicate.
The method Item_func_isnull::update_used_tables() erroneously did not
update cached values stored in the fields used_tables_cache and
const_item_cache of the Item_func_isnull objects. As a result the
Item_func_isnull::used_tables() returned wrong bitmaps and, as a
consequence, push-down predicates could be attached to wrong tables.
ALL subquery should return TRUE if subquery rowa set is empty independently
of left part. The problem was that Item_func_(eq,ne,gt,ge,lt,le) do not
call execution of second argument if first is NULL no in this case subquery
will not be executed and when Item_func_not_all calls any_value() of the
subquery or aggregation function which report that there was rows. So for
NULL < ALL (SELECT...) result was FALSE instead of TRUE.
Fix is just swapping of arguments of Item_func_(eq,ne,gt,ge,lt,le) (with
changing the operation if it is needed) so that result will be the same
(for examole a < b is equal to b > a). This fix exploit the fact that
first argument will be executed in any case.
mysql-test/r/subselect.result:
The test suite added.
mysql-test/r/subselect_no_mat.result:
The test suite added.
mysql-test/r/subselect_no_opts.result:
The test suite added.
mysql-test/r/subselect_no_semijoin.result:
The test suite added.
mysql-test/r/subselect_scache.result:
The test suite added.
mysql-test/t/subselect.test:
The test suite added.
sql/item_cmpfunc.cc:
Swap arguments creation methods added.
sql/item_cmpfunc.h:
Swap arguments creation methods added.
sql/item_subselect.cc:
Swap arguments of the comparison.
The problem was that optimizer removes some outer references (it they are
constant for example) and the list of outer items built during prepare phase is
not actual during execution phase when we need it as the cache parameters.
First solution was use pointer on pointer on outer reference Item and
initialize temporary table on demand. This solved most problem except case
when optimiser also reduce Item which contains outer references ('OR' in
this bug test suite).
The solution is to build the list of outer reference items on execution
phase (after optimization) on demand (just before temporary table creation)
by walking Item tree and finding outer references among Item_ident
(Item_field/Item_ref) and Item_sum items.
Removed depends_on list (because it is not neede any mnore for the cache, in the place where it was used it replaced with upper_refs).
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references (or other expression parameters in future).
mysql-test/r/subselect_cache.result:
A new test added.
mysql-test/r/subselect_scache.result:
Changes in creating the cache and its paremeters order or adding arguments of aggregate function (which is a parameter also, but this has no influence on the result).
mysql-test/t/subselect_cache.test:
Added a new test.
sql/item.cc:
depends_on removed.
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references.
Item_cache_wrapper collect parameters befor initialization of its cache.
sql/item.h:
depends_on removed.
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references.
sql/item_cmpfunc.cc:
depends_on removed.
Added processor (collect_outer_ref_processor) to collect outer references.
sql/item_cmpfunc.h:
Added processor (collect_outer_ref_processor) to collect outer references.
sql/item_subselect.cc:
depends_on removed.
Added processor get_cache_parameters() method to collect outer references.
sql/item_subselect.h:
depends_on removed.
Added processor get_cache_parameters() method to collect outer references.
sql/item_sum.cc:
Added processor (collect_outer_ref_processor) method to collect outer references.
sql/item_sum.h:
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references.
sql/opt_range.cc:
depends_on removed.
sql/sql_base.cc:
depends_on removed.
sql/sql_class.h:
New iterator added.
sql/sql_expression_cache.cc:
Build of list of items resolved in outer query done just before creating expression cache on the first execution of the subquery which removes influence of optimizer removing items (all optimization already done).
sql/sql_expression_cache.h:
Build of list of items resolved in outer query done just before creating expression cache on the first execution of the subquery which removes influence of optimizer removing items (all optimization already done).
sql/sql_lex.cc:
depends_on removed.
sql/sql_lex.h:
depends_on removed.
sql/sql_list.h:
Added add_unique method to add only unique elements to the list.
sql/sql_select.cc:
Support of new Item list added.
sql/sql_select.h:
Support of new Item list added.
class for Item_func_xor. Added the implementation of the
subst_argument_checker virtual method that the objects of this
class used to use before the patch.
Reverted the previous result changes in sunselect_sj and
subselect_sj_jcl6.
Bug#11766642: crash in Item_field::register_field_in_read_map
with view
(Former 59793)
Prior to the refactoring in this patch, Item_cond_xor behaved
partially as an Item_cond and partially as an Item_func. The
reasoning behind this was that XOR is currently not optimized
(thus should be Item_func instead of Item_cond), but it was
planned optimize it in the future (thus, made Item_cond anyway
to ease optimization later).
Even though Item_cond inherits from Item_func, there are
differences between these two. One difference is that the
arguments are stored differently. Item_cond stores them in a
list while Item_func store them in an args[].
BUG no 45221 was caused by Item_cond_xor storing arguments in
the list while users of the objects would look for them in
args[]. The fix back then was to store the arguments in both
locations.
In this bug, Item_cond_xor initially gets two Item_field
arguments. These are stored in the list inherited from
Item_cond and in args[] inherited from Item_func. During
resolution, find_field_in_view() replaces the Item_fields
stored in the list with Item_direct_view_refs, but args[]
still points to the unresolved Item_fields. This shows that
the fix for 45221 was incorrect.
The refactoring performed in this patch removes the confusion
by making the XOR item an Item_func period. A neg_transformer()
is also implemented for Item_func_xor to improve performance
when negating XOR expressions. An XOR is negated by negating
one of the operands.