The issue here was that when the schema was changed the value for the THD::server_status
is ored with SERVER_SESSION_STATE_CHANGED.
For custom aggregate functions, currently we check if the server_status is equal to
SERVER_STATUS_LAST_ROW_SENT then we should terminate the execution of the custom
aggregate function as there are no more rows to fetch.
So the check should be that if the server status has the bit set for
SERVER_STATUS_LAST_ROW_SENT then we should terminate the execution of the
custom aggregate function.
Part#2 (final): rewritting the code to pass the correct enum_sp_aggregate_type
to the sp_head constructor, so sp_head never changes its aggregation type
later on. The grammar has been simplified and defragmented.
This allowed to check aggregate specific instructions right after
a routine body has been scanned, by calling new LEX methods:
sp_body_finalize_{procedure|function|trigger|event}()
Moving some C++ code from *.yy to a few new helper methods in LEX.
Queries involving rollup need all aggregate function to have copy_or_same function where we create a copy
of item_sum items for each sum level.
Implemented copy_or_same function for the custom aggregate function class (Item_sum_sp)
Problems:
1. Unlike Item_field::fix_fields(),
Item_sum_sp::fix_length_and_dec() and Item_func_sp::fix_length_and_dec()
did not run the code which resided in adjust_max_effective_column_length(),
therefore they did not extend max_length for the integer return data types
from the user-specified length to the maximum length according to
the data type capacity.
2. The code in adjust_max_effective_column_length() was not correct
for TEXT data, because Field_blob::max_display_length()
multiplies to mbmaxlen. So TEXT variants were unintentionally
promoted to the next longer data type for multi-byte character
sets: TINYTEXT->TEXT, TEXT->MEDIUMTEXT, MEDIUMTEXT->LONGTEXT.
3. Item_sum_sp::create_table_field_from_handler()
Item_func_sp::create_table_field_from_handler()
erroneously called tmp_table_field_from_field_type(),
which converted VARCHAR(>512) to TEXT variants.
So "CREATE..SELECT spfunc()" erroneously converted
VARCHAR to TEXT. This was wrong, because stored
functions have explicitly declared data types,
which should be preserved.
Solution:
- Removing Type_std_attributes(const Field *)
and using instead Type_std_attributes::set() in combination
with field->type_str_attributes() all around the code, e.g.:
Type_std_attributes::set(field->type_std_attributes())
These two ways of copying attributes from a Field
to an Item duplicated each other, and were slightly
different in how to mix max_length and mbmaxlen.
- Removing adjust_max_effective_column_length() and
fixing Field::type_std_attributes() to do all necessary
type-specific calculations , so no further adjustments
is needed.
Field::type_std_attributes() is now called from all affected methods:
Item_field::fix_fields()
Item_sum_sp::fix_length_and_dec()
Item_func_sp::fix_length_and_dec()
This fixes the problem N1.
- Making Field::type_std_attributes() virtual, to make
sure that type-specific adjustments a properly done
by individual Field_xxx classes. Implementing
Field_blob::type_std_attributes() in the way that
no TEXT promotion is done.
This fixes the problem N2.
- Fixing Item_sum_sp::create_table_field_from_handler()
Item_func_sp::create_table_field_from_handler() to
call create_table_field_from_handler() instead of
tmp_table_field_from_field_type() to avoid
VARCHAR->TEXT conversion on "CREATE..SELECT spfunc()".
- Recording mysql-test/suite/compat/oracle/r/sp-param.result
as "CREATE..SELECT spfunc()" now correctly
preserve the data type as specified in the RETURNS clause.
- Adding new tests