with recursive reference in subquery
If a recursive CTE uses a subquery with recursive reference then
the virtual function reset() must be called after each iteration
performed at the execution of the CTE.
During the user-defined variable defined by the recursive CTE handling procedure
check_dependencies_in_with_clauses that checks dependencies between the tables
that are defined in the CTE and find recursive definitions wasn't called.
The support of embedded CTEs was not correct in the cases when
embedded CTEs were used multiple times. The problems occurred with
both non-recursive (bug mdev-13780) and recursive (bug mdev-14184)
embedded CTEs.
The bug happened when the specification of a recursive CTE had
no recursive references at the top level of the specification.
In this case the regular processing of derived table references
of the select containing a non-recursive reference to this
recursive CTE misses handling the specification unit.
At the preparation stage any non-recursive reference to a
recursive CTE must be handled after the preparation of the
specification unit for this CTE. So we have to force this
preparation when regular handling of derived tables does not
do it.
When the rows produced on the current iteration are sent to the
temporary table T of the UNION type created for CTE the rows
that were not there simultaneously are sent to the temporary
table D that contains rows for the next iteration. The test
whether a row was in T checks the return code of writing into T.
If just a HEAP table is used for T then the return code is
HA_ERR_FOUND_DUPP_KEY, but if an ARIA table is used for T then
the return code is HA_ERR_FOUND_DUPP_UNIQUE.
The implementation of select_union_recursive::send_data()
erroneously checked only for the first return code. So if an Aria
table was used for T then all rows produced by the current iteration
went to D and and in most cases D grew with each iteration.
Whether T has reached stabilization is detected by
checking whether D is empty. So as a result, the iterations were
never stopped unless a limit for them was set.
Fixed by checking for both HA_ERR_FOUND_DUPP_KEY and
HA_ERR_FOUND_DUPP_UNIQUE as return codes returned by
the function writing a row into the temporary table T.
This patch fixed some problems that occurred with subqueries that
contained directly or indirectly recursive references to recursive CTEs.
1. A [NOT] IN predicate with a constant left operand and a non-correlated
subquery as the right operand used in the specification of a recursive CTE
was considered as a constant predicate and was evaluated only once.
Now such a predicate is re-evaluated after every iteration of the process
that produces the records of the recursive CTE.
2. The Exists-To-IN transformation could be applied to [NOT] IN predicates
with recursive references. This opened a possibility of materialization
for the subqueries used as right operands. Yet, materialization
is prohibited for the subqueries if they contain a recursive reference.
Now the Exists-To-IN transformation cannot be applied for subquery
predicates with recursive references.
The function st_select_lex::check_subqueries_with_recursive_references()
is called now only for the first execution of the SELECT.
The function st_select_lex_unit::exec_recursive() incorrectly determined
that a CTE mutually recursive with some others was stabilized in the case
when the non-recursive part of the CTE returned an empty set. As a result
the server fell into an infinite loop when executing a query using
this CTE.
Mutually recursive CTE could cause a crash of the server in the case
when they were not Standard compliant. The crash happened in
mysql_derived_prepare(), because the destructor the derived_result
object created for a CTE that was mutually recursive with some others
was called twice. Yet this destructor should not be called for resursive
references.
The method With_element::check_unrestricted_recursive() icorrectly performed
the check that no recursive reference is not encountered in inner parts of
outer joins. As a result the server reported errors for valid specifications
with outer joins.
The temporary tables created for recursive table references
should be closed in close_thread_tables(), because they might
be used in the statements like ANALYZE WITH r AS (...) SELECT * from r
where r is defined through recursion.
1. The rows of a recursive CTE at some point may overflow
the HEAP temporary table containing them. At this point
the table is converted to a MyISAM temporary table and the
new added rows are placed into this MyISAM table.
A bug in the of select_union_recursive::send_data prevented
the server from writing the row that caused the overflow
into the temporary table used for the result of the iteration
steps. This could lead, in particular,to a premature end
of the iterations.
2. The method TABLE::insert_all_rows_into() that was used
to copy all rows of one temporary table into another
did not take into account that the destination temporary
table must be converted to a MyISAM table at some point.
This patch fixed this problem. It also renamed the method
into TABLE::insert_all_rows_into_tmp_table() and added
an extra parameter needed for the conversion.
The bug was in the code of the recursive method
With_element::check_unrestricted_recursive. For recursive
calls of this method sel->get_with_element()->owner != owner.
The server missed to call check_dependencies_in_with_clauses()
when processing PREPARE ... FROM CREATE ... SELECT / INSERT ... SELECT
with WITH clause before SELECT.
When a prepared statement uses a CTE definition with a column list
renaming of columns of the CTE expression must be performed
for every execution of the prepared statement.
This bug in st_select_lex_node::move_node could result
in invalid select lists in recursive units that could
cause falling into infinite loops when iterating over
selects in such units.
Added comments.
Added reaction for exceeding maximum number of elements in with clause.
Added a test case to check this reaction.
Added a test case where the specification of a recursive table
uses two non-recursive with tables.
Moved checking whether the limit set for the number of iterations
when executing a recursive query has been reached from
st_select_lex_unit::exec_recursive to TABLE_LIST::fill_recursive.
Changed the name of the system variable max_recursion_level for
max_recursive_iterations.
Adjusted test cases.
- Tabular EXPLAIN now prints "RECURSIVE UNION".
- There is a basic implementation of EXPLAIN FORMAT=JSON.
- it produces "recursive_union" JSON struct
- No other details or ANALYZE support, yet.
Temporary tables created for recursive CTE
were instantiated at the prepare phase. As
a result these temporary tables missed
indexes for look-ups and optimizer could not
use them.
Actually mutually recursive CTE were not functional. Now the code
for mutually recursive CTE looks like functional, but still needs
re-writing.
Added many new test cases for mutually recursive CTE.
Added test cases to check the fix.
Fixed the problem of wrong types of recursive tables when the type of anchor part does not coincide with the
type of recursive part.
Prevented usage of marerialization and subquery cache for subqueries with recursive references.
Introduced system variables 'max_recursion_level'.
Added a test case to test usage of this variable.
Added the check whether there are set functions in the specifications of recursive CTE.
Added the check whether there are recursive references in subqueries.
Introduced boolean system variable 'standards_compliant_cte'. By default it's set to 'on'.
When it's set to 'off' non-standard compliant CTE can be executed.