Problem & Analysis: If DML invokes a trigger or a
stored function that inserts into an AUTO_INCREMENT column,
that DML has to be marked as 'unsafe' statement. If the
tables are locked in the transaction prior to DML statement
(using LOCK TABLES), then the same statement is not marked as
'unsafe' statement. The logic of checking whether unsafeness
is protected with if (!thd->locked_tables_mode). Hence if
we lock the tables prior to DML statement, it is *not* entering
into this if condition. Hence the statement is not marked
as unsafe statement.
Fix: Irrespective of locked_tables_mode value, the unsafeness
check should be done. Now with this patch, the code is moved
out to 'decide_logging_format()' function where all these checks
are happening and also with out 'if(!thd->locked_tables_mode)'.
Along with the specified test case in the bug scenario
(BINLOG_STMT_UNSAFE_AUTOINC_COLUMNS), we also identified that
other cases BINLOG_STMT_UNSAFE_AUTOINC_NOT_FIRST,
BINLOG_STMT_UNSAFE_WRITE_AUTOINC_SELECT, BINLOG_STMT_UNSAFE_INSERT_TWO_KEYS
are also protected with thd->locked_tables_mode which is not right. All
of those checks also moved to 'decide_logging_format()' function.
When CHANGE MASTER was executed as a PS, its attributes were wrongly
getting reset toward the end of PREPARE. As a result, the subsequent
executions had no effect. Fixed by making sure that the CHANGE MASTER
attributes are preserved during the lifetime of the PS.
This is MDEV-7601, including it's sub tasks MDEV-7594, MDEV-7555, MDEV-7590, MDEV-7581, MDEV-7589
The problem was that select_lex->non_agg_fields was not properly reset for re-execution and this caused an overwrite of a random memory position.
The fix was move non_agg_fields from select_lext to JOIN, which is properly reset.
When parsing a field declaration, grab type information from LEX before it's overwritten
by further rules. Pass type information through the parser stack to the rule that needs it.
~40% bugfixed(*) applied
~40$ bugfixed reverted (incorrect or we're not buggy)
~20% bugfixed applied, despite us being not buggy
(*) only changes in the server code, e.g. not cmakefiles
Backport of the fix:
: Bug 18017820: BISON 3 BREAKS MYSQL BUILD
: ========================================
:
: The source of the reported problem is a removal of a few deprecated
: things from Bison 3.x:
: * YYPARSE_PARAM macro (use the %parse-param bison directive instead),
: * YYLEX_PARAM macro (use %lex-param instead),
:
: The fix removes obsolete macro calls and introduces use of
: %parse-param and %lex-param directives.
Backport of the fix:
: Bug 18017820: BISON 3 BREAKS MYSQL BUILD
: ========================================
:
: The source of the reported problem is a removal of a few deprecated
: things from Bison 3.x:
: * YYPARSE_PARAM macro (use the %parse-param bison directive instead),
: * YYLEX_PARAM macro (use %lex-param instead),
:
: The fix removes obsolete macro calls and introduces use of
: %parse-param and %lex-param directives.
Materialization forced in case if rand() used in view or derived table to avoud several calls of rand for gting value of a field.
Fixed set variable uncachable flag from - it shouldbe a side effect not a random value.
- YYPARSE_PARAM and YYLEX_PARAM are removed in Bison 3.0. Deprecated
since Bison 1.875 in favor of %lex-param, %parse-param.
- %parse-param adds an argument to yyerror() as well, updated
MYSQLerror() accordingly.
- %parse-param allows to declare proper type for argument. That's
what 99% of this patch is about.
LOAD DATA CAN CAUSE SQL INJECTION
Problem:
=======
A long SET expression in LOAD DATA is incorrectly truncated
when written to the binary log.
Analysis:
========
LOAD DATA statements are reconstructed once again before
they are written to the binary log. When SET clauses are
specified as part of LOAD DATA statement, these SET clause
user command strings need to be stored as it is inorder to
reconstruct the original user command. At present these
strings are stored as part of SET clause item tree's
top most Item node's name itself which is incorrect. As an
Item::name can be of MAX_ALIAS_NAME (256) size. Hence the
name will get truncated to "255".
Because of this the rewritten LOAD DATA statement will be
terminated incorrectly. When this statment is read back by
the mysqlbinlog tool it reads a starting single quote and
continuos to read till it finds an ending quote. Hence any
statement written post ending quote will be considered as
a new statement.
Fix:
===
As name field has length restriction the string value
should not be stored in Item::name. A new String list is
maintained to store the SET expression values and this list
is read during reconstrution.
sql/sql_lex.cc:
Clear the load data set string list during each query
execution.
sql/sql_lex.h:
Added a new String list to store the load data operation's
SET clause user command strings.
sql/sql_load.cc:
Read the SET clause user command strings from load data
set string list.
sql/sql_yacc.yy:
Store the SET caluse user command string as part of load
data set string list.
LOAD DATA CAN CAUSE SQL INJECTION
Problem:
=======
A long SET expression in LOAD DATA is incorrectly truncated
when written to the binary log.
Analysis:
========
LOAD DATA statements are reconstructed once again before
they are written to the binary log. When SET clauses are
specified as part of LOAD DATA statement, these SET clause
user command strings need to be stored as it is inorder to
reconstruct the original user command. At present these
strings are stored as part of SET clause item tree's
top most Item node's name itself which is incorrect. As an
Item::name can be of MAX_ALIAS_NAME (256) size. Hence the
name will get truncated to "255".
Because of this the rewritten LOAD DATA statement will be
terminated incorrectly. When this statment is read back by
the mysqlbinlog tool it reads a starting single quote and
continuos to read till it finds an ending quote. Hence any
statement written post ending quote will be considered as
a new statement.
Fix:
===
As name field has length restriction the string value
should not be stored in Item::name. A new String list is
maintained to store the SET expression values and this list
is read during reconstrution.
!TABLES->NEXT_NAME_RESOLUTION_TABLE) || !TAB
Problem:
The context info of select query gets corrupted when a query
with group_concat having order by is present in an order by
clause of the select query. As a result, server crashes with
an assert.
Analysis:
While parsing order by for group_concat, it is presumed that
it is always present before the actual order by for the
select query.
As a result, parser uses select->order_list to populate the
order by items of group_concat and creates a select->gorder_list
to which select->order_list is copied onto. Once this is done,
it empties the select->order_list.
In the case presented in the bugpage, as order by is already
parsed when group_concat's order by is encountered, parser
presumes that it is the second order by in the select query
and creates fake_lex_unit which results in the change of
context info.
Solution:
Make group_concat's order by parsing independent of the select
sql/item_sum.cc:
Change the argument as, select->gorder_list is not pointer anymore
sql/item_sum.h:
Change the argument as, select->gorder_list is not pointer anymore
sql/mysql_priv.h:
Parsing for group_concat's order by is made independent.
As a result, add_order_to_list cannot be used anymore.
sql/sql_lex.cc:
Parsing for group_concat's order by is made independent.
As a result, add_order_to_list cannot be used anymore.
sql/sql_lex.h:
Parsing for group_concat's order by is made independent.
As a result, add_order_to_list cannot be used anymore.
sql/sql_yacc.yy:
Make group_concat's order by parsing independent of the select
queries order by.
!TABLES->NEXT_NAME_RESOLUTION_TABLE) || !TAB
Problem:
The context info of select query gets corrupted when a query
with group_concat having order by is present in an order by
clause of the select query. As a result, server crashes with
an assert.
Analysis:
While parsing order by for group_concat, it is presumed that
it is always present before the actual order by for the
select query.
As a result, parser uses select->order_list to populate the
order by items of group_concat and creates a select->gorder_list
to which select->order_list is copied onto. Once this is done,
it empties the select->order_list.
In the case presented in the bugpage, as order by is already
parsed when group_concat's order by is encountered, parser
presumes that it is the second order by in the select query
and creates fake_lex_unit which results in the change of
context info.
Solution:
Make group_concat's order by parsing independent of the select
mysys/errors.c:
revert upstream's fix. use a much simpler one
mysys/my_write.c:
revert upstream's fix. use a simpler one
sql/item_xmlfunc.cc:
useless, but ok
sql/mysqld.cc:
simplify upstream's fix
storage/heap/hp_delete.c:
remove upstream's fix.
we'll use a much less expensive approach.
two tests still fail:
main.innodb_icp and main.range_vs_index_merge_innodb
call records_in_range() with both range ends being open
(which triggers an assert)
Analysis:
The fix for lp:944706 introduces early subquery optimization.
While a subquery is being optimized some of its predicates may be
removed. In the test case, the EXISTS subquery is constant, and is
evaluated to TRUE. As a result the whole OR is TRUE, and thus the
correlated condition "b = alias1.b" is optimized away. The subquery
becomes non-correlated.
The subquery cache is designed to work only for correlated subqueries.
If constant subquery optimization is disallowed, then the constant
subquery is not evaluated, the subquery remains correlated, and its
execution is cached. As a result execution is fast.
However, when the constant subquery was optimized away, it was neither
cached by the subquery cache, nor it was cached by the internal subquery
caching. The latter was due to the fact that the subquery still appeared
as correlated to the subselect_XYZ_engine::exec methods, and they
re-executed the subquery on each call to Item_subselect::exec.
Solution:
The solution is to update the correlated status of the subquery after it has
been optimized. This status consists of:
- st_select_lex::is_correlated
- Item_subselect::is_correlated
- SELECT_LEX::uncacheable
- SELECT_LEX_UNIT::uncacheable
The status is updated by st_select_lex::update_correlated_cache(), and its
caller st_select_lex::optimize_unflattened_subqueries. The solution relies
on the fact that the optimizer already called
st_select_lex::update_used_tables() for each subquery. This allows to
efficiently update the correlated status of each subquery without walking
the whole subquery tree.
Notice that his patch is an improvement over MySQL 5.6 and older, where
subqueries are not pre-optimized, and the above analysis is not possible.
The patch enables back constant subquery execution during
query optimization after it was disabled during the development
of MWL#89 (cost-based choice of IN-TO-EXISTS vs MATERIALIZATION).
The main idea is that constant subqueries are allowed to be executed
during optimization if their execution is not expensive.
The approach is as follows:
- Constant subqueries are recursively optimized in the beginning of
JOIN::optimize of the outer query. This is done by the new method
JOIN::optimize_constant_subqueries(). This is done so that the cost
of executing these queries can be estimated.
- Optimization of the outer query proceeds normally. During this phase
the optimizer may request execution of non-expensive constant subqueries.
Each place where the optimizer may potentially execute an expensive
expression is guarded with the predicate Item::is_expensive().
- The implementation of Item_subselect::is_expensive has been extended
to use the number of examined rows (estimated by the optimizer) as a
way to determine whether the subquery is expensive or not.
- The new system variable "expensive_subquery_limit" controls how many
examined rows are considered to be not expensive. The default is 100.
In addition, multiple changes were needed to make this solution work
in the light of the changes made by MWL#89. These changes were needed
to fix various crashes and wrong results, and legacy bugs discovered
during development.