on duplicate key".
INSERT ... SELECT ... ON DUPLICATE KEY UPDATE which was used in
stored routine or as prepared statement and which in its ON DUPLICATE
KEY clause erroneously tried to assign value to a column mentioned only
in its SELECT part was properly emitting error on the first execution
but succeeded on the second and following executions.
Code which is responsible for name resolution of fields mentioned in
UPDATE clause (e.g. see select_insert::prepare()) modifies table list
and Name_resolution_context used in this process. It uses
Name_resolution_context_state::save_state/restore_state() to revert
these modifications. Unfortunately those two methods failed to revert
properly modifications to TABLE_LIST::next_name_resolution_table
and this broke name resolution process for successive executions.
This patch fixes Name_resolution_context_state::save_state/restore_state()
in such way that it properly handles TABLE_LIST::next_name_resolution_table.
Blocked evaluation of constant objects of the classes
Item_func_is_null and Item_is_not_null_test at the
prepare phase in the cases when the objects used subqueries.
Removed an assertion that was not valid for the cases where the query
in a prepared statement contained a single-row non-correlated
subquery that was used as an argument of the IS NULL predicate.
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
prepared statement and subquery.
When a field of a view from an outer select is resolved the find_field_in_view
function creates an Item_direct_view_ref object that references the
corresponding view underlying field. After that the view_ref is marked
as a dependent one. While resolving view underlying field it also get
marked as a dependent one due to current_select still points to the subselect.
Marking the view underlying field is wrong and lead to attaching conditions
to a wrong table and thus to the wrong result of the whole statement.
Now mark_select_range_as_dependent() function isn't called for fields from a
view underlying table.
When statement to be prepared contained CREATE PROCEDURE, CREATE FUNCTION
or CREATE TRIGGER statements with a syntax error in it, the preparation
would fail with syntax error message, but the memory could be corrupted.
The problem occurred because we switch memroot when parse stored
routine or trigger definitions, and on parse error we restored the
original memroot only after performing some memory operations. In more
detail:
- prepared statement would activate its own memory root to parse
the definition of the stored procedure.
- SP would reset this memory root with its own memory root to
parse SP statements
- a syntax error would happen
- prepared statement would restore the original memory root
- stored procedure would restore what it thinks was the original
memory root, but actually was the statement memory root.
That led to double free - in destruction of the statement and in
a next call to mysql_parse().
The solution is to restore memroot right after the failed parsing.
Do not consider SHOW commands slow queries, just because they don't use proper indexes.
This bug fix is not needed in 5.1, and the code changes will be null merged. However, the test cases will be propogated up to 5.1.
statement.
The problem was that during statement re-execution if the result was
empty the old result could be returned for group functions.
The solution is to implement proper cleanup() method in group
functions.
Re-execution of a parametrized prepared statement or a stored routine
with a SELECT that use LEFT JOIN with second table having only one row
could yield incorrect result.
The problem appeared only for left joins with second table having only
one row (aka const table) and equation conditions in ON or WHERE clauses
that depend on the argument passed. Once the condition was false for
second const table, a NULL row was created for it, and any field involved
got NULL-value flag, which then was never reset.
The cause of the problem was that Item_field::null_value could be set
without being reset for re-execution. The solution is to reset
Item_field::null_value in Item_field::cleanup().
statement that uses an aggregating IN subquery with
HAVING clause.
A wrong order of the call of split_sum_func2 for the HAVING
clause of the subquery and the transformation for the
subquery resulted in the creation of a andor structure
that could not be restored at an execution of the prepared
statement.
dropping/creating tables".
The bug could lead to a crash when multi-delete statements were
prepared and used with temporary tables.
The bug was caused by lack of clean-up of multi-delete tables before
re-execution of a prepared statement. In a statement like
DELETE t1 FROM t1, t2 WHERE ... the first table list (t1) is
moved to lex->auxilliary_table_list and excluded from lex->query_tables
or select_lex->tables. Thus it was unaccessible to reinit_stmt_before_use
and not cleaned up before re-execution of a prepared statement.
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
supported in SP but not in PS": just enable them in prepared
statements, the supporting functionality was implemented when
they were enabled in stored procedures.