sql/item_subselect.cc:
Added check of error condtions (safety)
sql/sql_join_cache.cc:
Added DBUG to some functions.
Added error checking for calls to check_match(); This fixed the bug.
sql/sql_select.cc:
Moved variable assignment to be close to where it's used (cleanup)
For ANY subqueries NULLs should be ignored (if there is other values) when finding max min.
For ALL subqueries NULLs should be saved if they found.
Optimisation for ALL suqbueries if NULL is possible in the SELECT list with max/min aggregate function switched off.
Some test changed where NULL is not used but optimization with max/min aggregate function important so NOT NULL added.
mysql-test/r/explain.result:
Forced old optimization.
mysql-test/r/subselect.result:
Forced old optimization.
New test suite.
mysql-test/t/explain.test:
Forced old optimization.
mysql-test/t/subselect.test:
Forced old optimization.
New test suite.
sql/item_subselect.cc:
Store converted subquery type.
Switch off aggregate function optimisation for ALL and nulls.
sql/sql_class.cc:
Fixed NULL comparison.
sql/sql_class.h:
Store converted subquery type.
- The problem was that the code that made the check whether the subquery is an AND-part of the WHERE
clause didn't work correctly for nested subqueries. In particular, grand-child subquery in HAVING was
treated as if it was in the WHERE, which eventually caused an assert when replace_where_subcondition
looked for the subquery predicate in the WHERE and couldn't find it there.
- The fix: Removed implementation of "thd_marker approach". thd->thd_marker was used to determine the
location of subquery predicate: setup_conds() would set accordingly it when making the
{where|on_expr}->fix_fields(...)
call so that AND-parts of the WHERE/ON clauses can determine they are the AND-parts.
Item_cond_or::fix_fields(), Item_func::fix_fields(), Item_subselect::fix_fields (this one was missed),
and all other items-that-contain-items had to reset thd->thd_marker before calling fix_fields() for
their children items, so that the children can see they are not AND-parts of WHERE/ON.
- The "thd_marker approach" required that a lot of code in different locations maintains correct value of
thd->thd_marker, so it was replaced with:
- The new approach with mark_as_condition_AND_part does not keep context in thd->thd_marker. Instead,
setup_conds() now calls
{where|on_expr}->mark_as_condition_AND_part()
and implementations of that function make sure that:
- parts of AND-expressions get the mark_as_condition_AND_part() call
- Item_in_subselect objects record that they are AND-parts of WHERE/ON
Analysis:
Partial matching is used even when there are no NULLs in
a materialized subquery, as long as the left NOT IN operand
may contain NULL values.
This case was not handled correctly in two different places.
First, the implementation of parital matching did not clear
the set of matching columns when the merge process advanced
to the next row.
Second, there is no need to perform partial matching at all
when the left operand has no NULLs.
Solution:
First fix subselect_rowid_merge_engine::partial_match() to
properly cleanup the bitmap of matching keys when advancing
to the next row.
Second, change subselect_partial_match_engine::exec() so
that when the materialized subquery doesn't contain any
NULLs, and the left operand of [NOT] IN doesn't contain
NULLs either, the method returns without doing any
unnecessary partial matching. The correct result in this
case is in Item::in_value.
The bug is a duplicate of MySQL's Bug#11764086,
however MySQL's fix is incomplete for MariaDB, so
this fix is slightly different.
In addition, this patch renames
Item_func_not_all::top_level() to is_top_level_item()
to make it in line with the analogous methods of
Item_in_optimizer, and Item_subselect.
Analysis:
It is possible to determine whether a predicate is
NULL-rejecting only if it is a top-level one. However,
this was not taken into account for Item_in_optimizer.
As a result, a NOT IN predicate was erroneously
considered as NULL-rejecting, and the NULL-complemented
rows generated by the outer join were rejected before
being checked by the NOT IN predicate.
Solution:
Change Item_in_optimizer to be considered as
NULL-rejecting only if it a top-level predicate.
ALL subquery should return TRUE if subquery rowa set is empty independently
of left part. The problem was that Item_func_(eq,ne,gt,ge,lt,le) do not
call execution of second argument if first is NULL no in this case subquery
will not be executed and when Item_func_not_all calls any_value() of the
subquery or aggregation function which report that there was rows. So for
NULL < ALL (SELECT...) result was FALSE instead of TRUE.
Fix is just swapping of arguments of Item_func_(eq,ne,gt,ge,lt,le) (with
changing the operation if it is needed) so that result will be the same
(for examole a < b is equal to b > a). This fix exploit the fact that
first argument will be executed in any case.
mysql-test/r/subselect.result:
The test suite added.
mysql-test/r/subselect_no_mat.result:
The test suite added.
mysql-test/r/subselect_no_opts.result:
The test suite added.
mysql-test/r/subselect_no_semijoin.result:
The test suite added.
mysql-test/r/subselect_scache.result:
The test suite added.
mysql-test/t/subselect.test:
The test suite added.
sql/item_cmpfunc.cc:
Swap arguments creation methods added.
sql/item_cmpfunc.h:
Swap arguments creation methods added.
sql/item_subselect.cc:
Swap arguments of the comparison.
The problem was that optimizer removes some outer references (it they are
constant for example) and the list of outer items built during prepare phase is
not actual during execution phase when we need it as the cache parameters.
First solution was use pointer on pointer on outer reference Item and
initialize temporary table on demand. This solved most problem except case
when optimiser also reduce Item which contains outer references ('OR' in
this bug test suite).
The solution is to build the list of outer reference items on execution
phase (after optimization) on demand (just before temporary table creation)
by walking Item tree and finding outer references among Item_ident
(Item_field/Item_ref) and Item_sum items.
Removed depends_on list (because it is not neede any mnore for the cache, in the place where it was used it replaced with upper_refs).
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references (or other expression parameters in future).
mysql-test/r/subselect_cache.result:
A new test added.
mysql-test/r/subselect_scache.result:
Changes in creating the cache and its paremeters order or adding arguments of aggregate function (which is a parameter also, but this has no influence on the result).
mysql-test/t/subselect_cache.test:
Added a new test.
sql/item.cc:
depends_on removed.
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references.
Item_cache_wrapper collect parameters befor initialization of its cache.
sql/item.h:
depends_on removed.
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references.
sql/item_cmpfunc.cc:
depends_on removed.
Added processor (collect_outer_ref_processor) to collect outer references.
sql/item_cmpfunc.h:
Added processor (collect_outer_ref_processor) to collect outer references.
sql/item_subselect.cc:
depends_on removed.
Added processor get_cache_parameters() method to collect outer references.
sql/item_subselect.h:
depends_on removed.
Added processor get_cache_parameters() method to collect outer references.
sql/item_sum.cc:
Added processor (collect_outer_ref_processor) method to collect outer references.
sql/item_sum.h:
Added processor (collect_outer_ref_processor) and get_cache_parameters() methods to collect outer references.
sql/opt_range.cc:
depends_on removed.
sql/sql_base.cc:
depends_on removed.
sql/sql_class.h:
New iterator added.
sql/sql_expression_cache.cc:
Build of list of items resolved in outer query done just before creating expression cache on the first execution of the subquery which removes influence of optimizer removing items (all optimization already done).
sql/sql_expression_cache.h:
Build of list of items resolved in outer query done just before creating expression cache on the first execution of the subquery which removes influence of optimizer removing items (all optimization already done).
sql/sql_lex.cc:
depends_on removed.
sql/sql_lex.h:
depends_on removed.
sql/sql_list.h:
Added add_unique method to add only unique elements to the list.
sql/sql_select.cc:
Support of new Item list added.
sql/sql_select.h:
Support of new Item list added.
Analysis:
Both the wrong result and the valgrind warning were a result
of incomplete cleanup of the MIN/MAX subquery rewrite. At the
first execution of the query, the non-aggregate subquery is
transformed into an aggregate MIN/MAX subquery. During the
fix_fields phase of the MIN/MAX function, it sets the property
st_select_lex::with_sum_func to true.
The second execution of the query finds this flag to be ON.
When optimization reaches the same MIN/MAX subquery
transformation, it tests if the subquery is an aggregate or not.
Since select_lex->with_sum_func == true from the previous
execution, the transformation executes the second branch that
handles aggregate subqueries. This substitutes the subquery
Item into a Item_maxmin_subselect. At the same time elsewhere
it is assumed that the subquery Item is of type
Item_allany_subselect. Ultimately this results in casting the
actual object to the wrong class, and calling the wrong
any_value() method from empty_underlying_subquery().
Solution:
Cleanup the st_select_lex::with_sum_func property in the case
when the MIN/MAX transformation was performed for a non-aggregate
subquery, so that the transformation can be repeated.
Also:
1. simplified the code of the function mysql_derived_merge_for_insert.
2. moved merge of views/dt for multi-update/delete to the prepare stage.
3. the list of the references to the candidates for semi-join now is
allocated in the statement memory.
- Added an initial set of feature-specific test cases
- Handled the special case where the materialized subquery of an
IN predicates consists of only NULL values.
- Fixed a bug where making Item_in_subselect a constant,
didn't respect its null_value value.
Analysis:
This is a bug in MWL#68, where it was incorrectly assumed
that if there is a match in the only non-null key, then
if there is a covering NULL row on all remaining NULL-able
columns there is a partial match. However, this is not the case,
because even if there is such a null-only sub-row, it is not
guaranteed to be part of the matched sub-row. The matched sub-row
and the NULL-only sub-row may be parts of different rows.
In fact there are two cases:
- there is a complete row with only NULL values, and
- all nullable columns contain only NULL values.
These two cases were incorrectly mixed up in the class member
subselect_partial_match_engine::covering_null_row_width.
Solution:
The solution is to:
- split covering_null_row_width into two members:
has_covering_null_row, and has_covering_null_columns, and
- take into account each state during initialization and
execution.
In addition to the bug fix explained below, the patch performs
few renames, and adds some comments to avoid similar problems.
Analysis:
The failed assert was due to a bug in MWL#68, where it was
incorrectly assumed that the size of the bitmap
subselect_rowid_merge_engine::null_only_columns should be
the same as the size of the array of Ordered_keys.
The bitmap null_only_columns contains bits to mark columns
that contain only NULLs. Therefore the indexes of the bits
to be set in null_only_columns are different from the indexes
of the Ordered_keys. If there is a NULL-only column that appears
in a table after the last partial match column with Ordered_key,
this NULL-only column would require setting a bit with index
bigger than the size of the bitmap null_only_columns.
Accessing such a bit caused the failed assert.
Solution:
Upon analysis, it turns out that null_only_columns is not needed
at all, because we are looking for partial matches, and having
such columns guarantees that there is a partial match for any
corresponding outer value.
Therefore the patch removes
subselect_rowid_merge_engine::null_only_columns.
- JOIN::prepare would have set JOIN::table_count to incorrect value (bad merge of MWL 106)
- optimize_keyuse() would use table-bit as table number
(the change in optimize_keyuse is also the reason for query plan changes. Not
expected to have much effect because only handles cases of no index statistics)
- st_select_lex::register_dependency_item() ignored the fact that some of the
selects on the dependency paths could have been merged to their parents (because they
were mergeable VIEWs)
- Undo the incorrect fix in Item_subselect::recalc_used_tables(): do not call
fix_after_pullout() for Item_subselect::Ref_to_outside members.
- Update test results
- Fix a problem with PS:
= convert_subq_to_sj() should not save where to prep_where or on_expr to prep_on_expr.
= After an unmerged subquery predicate has been pulled, it should call fix_after_pullout() for
outer_refs.
- Added regression test with queries over the WORLD database.
- Discovered and fixed several bugs in the related cost calculation
functionality both in the semijoin and non-semijon subquery code.
- Added DBUG printing of the cost variables used to decide between
IN-EXISTS and MATERIALIZATION.
way of processing prepared statements:
- conversion subquery_predicate -> TABLE_LIST is once per-statement
- However, the code must take into account that materialized temptable
is dropped and re-created on each execution (the tricky part is that
at start of n-th EXECUTE we have TABLE_LIST object but not its TABLE object)
- IN-equality is injected into WHERE on every execution.
One was due the fact that the field SELECT_LEX::insert_tables was not
initialized while the second was due to missing initialization of
JOIN_TAB::preread_init_done in subselect_hash_sj_engine::make_unique_engine.
Removed an invalid assert.
Fixed alias bug when compiling with gcc 4.2.4 that caused subselect.test to fail
sql/item.cc:
Removed alias warnings by changing type from char * to const char*
sql/item.h:
Removed alias warnings by changing type from char * to const char*
sql/item_subselect.cc:
Fixed alias bug when compiling with gcc 4.2.4 that caused subselect.test to fail
sql/sql_string.h:
Removed alias warnings by changing type from char * to const char*
storage/heap/hp_test2.c:
Removed SAFEMALLOC to get rid of compiler error
Fixed test case as we can't anymore use heap_rlast() on a HASH key entry.
Resolved all conflicts, bad merges and fixed a few minor bugs in the code.
Commented out the queries from multi_update, view, subselect_sj, func_str,
derived_view, view_grant that failed either with crashes in ps-protocol or
with wrong results.
The failures are clear indications of some bugs in the code and these bugs
are to be fixed.
sql/item_subselect.cc:
Cleanup. Comments added.
sql/item_subselect.h:
Cleanup.
sql/mysql_priv.h:
Comments added.
sql/opt_subselect.cc:
The function renamed and turned to method.
Comments added.
sql/opt_subselect.h:
The function turned to method of JOIN.
sql/sql_select.cc:
Comment added. The function turned to method.
sql/sql_select.h:
The function turned to method.
- Handle the case of degenerate joins. When join has impossible WHERE clause,
a number of its members, including JOIN::map2table, are not initialized.
Do not try accessing them, detect degenerate joins early.
mysql-test/r/explain.result:
fixed results (new item)
mysql-test/r/subselect.result:
fixed results (new item)
mysql-test/r/subselect_no_mat.result:
fixed results (new item)
mysql-test/r/subselect_no_opts.result:
fixed results (new item)
mysql-test/r/subselect_no_semijoin.result:
Fixed results (new item)
mysql-test/suite/pbxt/r/subselect.result:
Fixed results (new item)
mysql-test/t/explain.test:
Fixed results (correct behaviour)
sql/item_cmpfunc.cc:
Pass through for max/min
sql/item_subselect.cc:
moving max/min
sql/item_subselect.h:
moving max/min
sql/mysql_priv.h:
new uncacheble flags added
sql/opt_subselect.cc:
maxmin moved.
sql/opt_subselect.h:
New function for maxmin.
sql/sql_class.h:
debug code
sql/sql_lex.cc:
Fixed flags.
Limit setting fixed.
sql/sql_lex.h:
2 new flags.
sql/sql_select.cc:
Prepare divided on 2 function to be able recollect some info after transformation.
sql/sql_select.h:
Prepare divided on 2 functions.